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Abstract

This paper focuses on a new geometric approach to (fully actuated) con-
trol systems on the sphere. The control laws exploit the basic and intuitive
notions of geodesic direction and distance between points, and generalize
the classical proportional plus derivative feedback (PD) without the need of
arbitrary local coordinate charts. The stability analysis relies on an appro-
priate Lyapunov function, where the notion of distance and its properties
are exploited. This methodology is applied to spin-axis stabilization of a
spacecraft actuated by only two control torques: discarding the rotation
about the unactuated axis, a reduced system is considered whose state is
defined on the sphere. For this reduced stabilization problem, the approach
allows not only an optimal treatment of the inevitable singularity, but also
simplicity, versatility and (coordinate independent) adaptive capabilities.
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1 Introduction

The purpose of this paper is twofold. On one hand we design control laws for
fully actuated systems defined on the sphere S2. On the other, we apply these
laws to the model of a spacecraft actuated by only two control torques and
we give complete solution to a reduced attitude stabilization problem, i.e.
we stabilize the spacecraft attitude up to a rotation about the unactuated
axis. This problem is of practical importance, since it models for example
the failure of an actuator, and is a classic, very instructive issue in nonlinear
control theory. Indeed new applications to visual tracking problems (Swain
and Stricker 1991) seem to offer new examples of systems on spheres.

Within the vast literature on attitude control, Crouch (1984) shows pos-
itive controllability results for the case of three independent control torques
and various smooth, stabilizing, control laws have been proposed (Wen and
Kreutz-Delgado 1991). The case of only two independent controls is more
difficult. Indeed, Byrnes and Isidori (1991) show the non-stabilizability of
the system: no smooth feedback control law can locally, asymptotically
stabilize the full state of a spacecraft with only two actuators. Both discon-
tinuous (Krishnan, Reyhanoglu, and McClamroch 1994) and smooth time-
varying control laws (Walsh, Montgomery, and Sastry 1994; Morin, Samson,
Pomet, and Jiang 1994) can overcome this limitation by using ideas from
the theory of nonholonomic stabilization, but are limited to the case of gas
jet actuators.

Following Byrnes and Isidori (1991) and Tsiotras and Longuski (1994),
we employ here a reduced approach: by discarding the rotation about the
unactuated axis we come down to stabilizing a two dimensional system.
The new reduced system is fully controllable (actuated), in that at each
position variable corresponds an independent control, and its state is natu-
rally defined on the sphere S?. Therefore our attention turns to the study of
control laws on this manifold. Note that Brockett (1973) introduces a quite
complete theory of control systems defined on spheres, in that he discusses
controllability, observability and optimal control issues. Here instead, we
concern ourselves with the explicit search for control laws. Since the mani-
fold S? is compact, has no boundary and its Euler characteristic is two, no
smooth control law with only one stable equilibrium point exists; therefore
we must be satisfied with control laws defined (and stabilizing) on a open
dense subset of §%. Following Koditschek (1989) we call such feedback law
almost—global.

The main contribution of this paper is a novel, general approach to fully
actuated control systems defined on the sphere S2. The novelty is based
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on exploiting the metric properties of the Riemannian manifold S2. For a
first order model, our control law exerts an action which has intensity pro-
portional to the distance between the state of the system and the goal and
is directed along the geodesic direction connecting these two points. An
appropriate Lyapunov function based on the Riemannian notion of distance
allows us to prove exponential stability. We then extend this control law
to second order models through a standard procedure in the robotics liter-
ature: we couple the proportional action with a derivative term, i.e. with
a term proportional to the “velocity”. Again, the exponential stability of
this proportional plus derivative (PD) control is based on the metric prop-
erties of S2. Our new approach shows two main advantages. First of all the
control laws are coordinate invariant (no arbitrary choice of local chart is
necessary) so that they allow us to solve the trajectory tracking problem in a
global way. Second of all, the ideas can be generalized in a straightforward
manner so that “geodesic” control laws can be designed for more general
Riemannian manifolds, see (Bullo and Murray 1994).

Regarding the control of the underactuated spacecraft, we cast the prob-
lem into this well-suited framework and we give a complete solution to the
reduced stabilization problem. Many differences exist with respect to the
approach described in Tsiotras and Longuski (1994). First of all we respect
and exploit the (geo)metric properties of the sphere instead of relying on a
choice of local coordinates. As a result, our almost-global control laws con-
fine the inevitable singularity as far away as possible from the equilibrium
(i.e. at the antipodal point) and sufficient conditions on the initial state of
the system are provided in order to confine the closed-loop trajectories away
from the singularity (instead of simply assuming this as hypothesis). Addi-
tionally the control action remains bounded even for large errors. From a
practical viewpoint, our feedback laws allow positive definite matrix gains
rather than simple positive constants, and the final expression of the control
is somewhat simpler than the one given by Tsiotras and Longuski, where
unusual cross terms (position-velocity) are present.

The paper is organized as follows: Section 2 deals with some basic Rie-
mannian notions and with the design of PD control laws on the sphere. In
Section 3 reduced attitude stabilization is formulated as a control problem
on the sphere. In Section 4 we apply our design techniques to kinematic
and dynamic models of a spacecraft. Finally we report some simulations in
Section 5 and Section 6 contains a brief discussion.



2 Geodesic control of first and second order sys-
tems on the sphere

Our goal is to design optimal, in the sense of geodesic, control laws for fully
actuated control systems of first and second order, whose states lie on the
manifold §? = {z € R®: ||z|| = 1}. We start by describing the geometric
properties of the sphere and by applying some basic results of Riemannian
geometry (Boothby 1975). In the following, denote the standard inner and
outer products on R? by (-,-) and [+, -]. Let p be a generic point on the sphere
and —p the corresponding antipodal point. For all points p € S? C R?, every
tangent vector X, € 7,S% can be uniquely represented as a vector X, €
R3 such that X, L p (using the standard inner product on R®) and more
generally 7,S% = span{p}*. The canonical inner product on R? induces a
Riemannian structure on S? (i.e. an inner product on 7,S?) in the natural
way:

(Xp, Yo)rs2 = (X,,Y,) VX, Y, € T,8° CR’.

The geodesics of this natural metric are great circles and the distance be-
tween two generic points p, ¢ € S? is the angle between the two directions:

dist(p, q) = arccos({p, qQ)r3), (2.1)

with arccos taking values in [0, 7]. Additionally, provided p and ¢ are neither
equal nor opposite, there is a uniquely defined unit vector Y, € T,S? called
the geodesic versor that gives the geodesic direction in p towards g:

Y, 2 [Vers([p7 q]),p] = vers(q.),

where ¢, is the component of ¢ orthogonal to p and the operator versor
simply means: vers(z) = z/||z||. The notion of distance and of geodesic
versor are related by a useful extension of Gauss’s Lemma:

Lemma 1 (Derivative of distance function)
Consider a trajectory p = p(t) € S%, such that p(t) never passes through the
fixed points ¢ or —¢q. Then

d . .
adlst(p(t), q) = —(p, Y, s2-

Proof. Differentiating the definition in equation (2.1), we have

d .. d
Jdist(p,q) = - arccos((p, ¢)p2)

_ <p7q> — _<p7QJ_> — q
=T mall = Y
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great circle

Figure 1: The sphere and its tangent plane.

The terms of Lemma 1 can be intuitively interpreted as follows: the
distance between state of the system p and fixed goal ¢ evolves in time
only depending on the component of p along the geodesic direction Y,!. In
particular for a trajectory p(f) such that dist(p,q) is constant, Lemma 1
reduces to Gauss’s Lemma and asserts the orthogonality between p(t) and
the geodesic versor Y,'. Note that the result of Lemma 1 corresponds in R™
to the following equality:

d .
Ll = —(, — vers(al),
where — vers[z] is the geodesic versor from z to the origin.

2.1 Regulation on the sphere

Since we are now able to compute its time derivative, the Riemannian notion
of distance appears suitable for stability analysis; in the following let B, =
{X;, Xg} be a smooth orthonormal basis of T,S% The regulation problem
for a fully controllable, first order system defined on the sphere reads:
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Problem 1 (Regulation of first order systems)
Given the system

p=Xjvi+ X2vy  €T,S? (2.2)

find a control v = v(p) so as to steer asymptotically the state p € S§? to the
fixed goal gq.

Note that B, cannot be smoothly defined on all S%. A canonical choice in
the regulation problem would be

B, = {qu,vers([ZL QD} ;

where the base B, is defined for all p neither equal nor opposite to g. More
generally a natural choice B, might be suggested by the particular control
problem in question; this is the case in Section 4.

To solve this first problem, we generalize the classical proportional con-
trol to the manifold S? as follows: the control action has intensity pro-
portional to the distance between state and goal and is applied along the
geodesic direction (connecting state and goal) skewed by a positive definite
gain K,. This approach is considerably more general rather than choosing
a set of local coordinates and applying a proportional control in the local
chart. Even the stability analysis for this generalized proportional controller
holds in full generality, since the Lyapunov function that proves the expo-
nential convergence relies on the notion of distance

Let Amin(K,) be the minimum eigenvalue of the positive definite matrix
K,.

Theorem 2 (Regulation of first order systems)
Consider the system in equation (2.2). Then the control law

v =dist(p, q) K, [§§§Z:§§i] , (2.3)

exponentially stabilizes the state p at ¢ from any initial condition p(0) # —¢
and with time-constant at least 1/ Amin(£,).

Proof. Consider the candidate Lyapunov function

1
W £ idist(p7 q)2 .
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Since p(0) # —¢, Lemma 1 gives

‘ d
W = dist(p, q) dist(p, )

= _diSt(p7 q) <p7 YS>TPS2
Y2 XD [y, XD
:—distp,qQK[<p’p],[p7p]
7K [y ) |(ve, x2))
< 2 Amin(K,)W.

Hence the distance between p(¢) and ¢ decreases exponentially and the
closed-loop system never passes through the singularity point —gq. |

Note that for p = ¢ the geodesic versor Y} is not defined. This is nota serious
problem, since the control law v can be easily prolonged continuously and
defined equal to zero at ¢: v(¢) = 0. Hence the control law in equation (2.3)
is smooth on S?\ {—¢} and has a single exponentially stable equilibrium
point ¢g. As explained in the introduction, no smooth global control law
with only one stable equilibrium point exists on the sphere. Therefore the
most we can achieve is an almost-global control law, that is a smooth law
defined on a dense subset of the sphere; this is what equation (2.3) gives.

We now consider the more general problem of controlling a system via
accelerations (or forces) instead of velocities. The regulation problem for a
fully controllable, second order system defined on the sphere reads:

Problem 2 (Regulation of second order systems)
Given the system

(2.4)

p = )(;’Ul + /X}?'UQ . ]}, ){5 € TpSZ
U=,

find a control u = u(p, p) such as to steer asymptotically the state p € S% to

the fixed goal ¢.

As typically done in the robotics literature (Murray, Li, and Sastry 1994,
Chapter 5, Section 4.3), we now combine proportional and derivative (PD)
action. The closed-loop system will behave as a nonlinear spring with a
velocity damper and correspondingly the Lyapunov function will be the
sum of pseudo-kinetic and pseudo-potential energy terms. With respect to
a standard PD controller in local coordinates, the novelty here consists in
the form of the proportional action (we have a geodesic spring) and of the
corresponding pseudo-potential energy term (Riemannian distance squared).
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Theorem 3 (Regulation of second order systems)
Consider the system in equation (2.4). Given the positive definite matrix
gains K, and Ky, the control law

, ye, X1
u = dlSt(p, q) Kp [EYZJ X’%i] - KdV7
y“Ap

exponentially stabilizes the equilibrium point ¢ from any initial condition
p(0) # —q and for all K, and p(0) such that

O
w2 — dist(p(()),q)2

Amin(Kp) >
Proof. Consider the typical candidate Lyapunov function
A 1. 2 1 2
w :§dlst(p,q) +3 HVHKP—I . (2.5)

Since p(0) # —¢, Lemma 1 holds at least for small ¢, and gives

W = —dist(p, a) (b, Y7 52 + (v, K; )
= —dist(p,q) <p7Yg>TpS2 - ”V”12<;1Kd
. (Y5, X,)
+ dist(p,q v,[ o]0
Pt [ )

Since with respect to the basis B, it holds

U2

s =[] [ 38D
we have

o 2
W= = ol 1, (2.6)
so that, for small ¢, the Lyapunov function in equation (2.5) is decreasing.

Because of the condition in equation (2.5), we have

2W| < dist(p(0),q)* + Amax(Ky 1) [[B(0)]|?

= dist(p(0), )2 4+ Amin(K,) [ B(0)]2

2
<7,
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and, since W < 0,

2

1
Vit >0, % > Wi(t) > §dis‘c(p(t),q)27 = dist(p(t),q) < =,

proving this way that the state p will never pass through the point —gq.
Therefore Lemma 1 holds for all ¢ and equation (2.6) shows the Lyapunov
stability of the closed-loop system.

We can now invoke Lasalle’s principle to prove asymptotic stability: the
closed-loop trajectories of the system converge asymptotically to the largest
invariant set contained in

Q{(p,v): W =0} = {(p,v) €S*xR*:v =0},
and since in  the dynamic equation of the closed-loop system reduces to

, Yy, X)
0 = dist(p, q) K, [EYZJ Y%i] ,
y“Ap

then the largest invariant set contained in € is the set {(¢,0)}.

To prove the exponential stability, we introduce into the Lyapunov func-
tion a cross term of the form:

—¢ dlSt(p’ q) <p7 YS>TPS2-
This procedure is quite standard (see (Wen and Bayard 1988) and (Murray,

Li, and Sastry 1994, Chapter 5, Section 4.3)), and we refer to Appendix A,
which contains the relative detailed calculations. |

Note that the condition expressed in equation (2.5) confines the closed-loop
trajectories away from singularity.

As a final result on regulation problems, we show how to generalize the
proposed approach to the case of control systems defined on S™. Let p and ¢
be generic points on the sphere §* C R™*!. Even though no outer product
is in general defined on R”, we can still define

dist(p,q) £ arccos({p, q)gn).
and
Y7 £ vers[q,] = vers[q — {q,p)p] € T,S",

where p is assumed different from ¢ and —¢. The extension of Gauss’s
Lemma still holds; indeed it is easy to prove that

d . .
%dlst(p(t), q) = —(p, Y) 1,680
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Thus, both our proportional and proportional plus derivative control laws
can be easily rewritten for this new case. We shall here give the more general
version of Theorem 3:

Theorem 4 (Regulation of second order systems on S")
Let B, = {X;, 1< < n} be a smooth orthonormal basis of 78", and
consider the system

{p::mg+m+%m

U= u,

where v = [v;...v,]T. Let K, ad K4 be symmetric positive definite gains,
then the control law

(Y5, Xp)
U = dlSt(p, q) Kp - KdV7
(e, X7)
exponentially stabilizes the state p at ¢ from any initial condition p(0) # —¢
and for all K, such that

[12(0) |2

AInin K > .
() 2 — dist(p(0), q)*

2.2 Trajectory tracking on the sphere

In this subsection we state the trajectory tracking version of our PD control
law; let ¢ € S? the desired state, ¢,§ € T,S? be the desired velocity and
acceleration.! In the following we will assume ¢ bounded. Define R € SO(3)
as the rotation about [p, ¢] which maps p to ¢:

1 — cos(dist(p, q))
sin(dist(p, q))?

R £ I+ ([p,qdx)+ ([p, 41x)?, (2.7)

or equivalently,

Rp=q (2.8)
Rp,q]l = [p, ql- (2.9)

'"Note the slight abuse of notation: by § we here mean the time derivative of the

components of ¢ expressed with respect to the basis B,. More formally, adopting the
notation in (Boothby 1975), we have ¢ = %q.
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Define the angular velocity w € R? such that R = R(wx); let w, £ (w, p).
We start by extending Lemma 1 on the time derivative of dist(p(t), q(t)) to
the case ¢ = ¢(t). By differentiating first with respect to p and then with
respect to ¢, we have

d . . .
Edlst(p,q) = —<P7YS>TPS2 - <q7Y§>TqSQ'

Since equations (2.8) and (2.9) imply RY, = —Y/, we can simplify the
previous expression to

d . . .
Edlst(p, q)=—(p— RTq, Yp)T,52- (2.10)

Theorem 5 (Tracking of second order systems)

Consider the system in equation (2.4). Given a positive k, and positive
definite Ky, the control law

u = Ri+ kpdist(p,q) Y5 — Ka(p — Rq) + wp[p, p] (2.11)

exponentially stabilizes {dist(p(t),q(t)), p — Rq} to zero from any initial
condition p(0) # —¢(0) and for all k,, p(0), ¢(0) such that

15(0) = R(0)4(0)[?

. 2.12
7 w2~ dist(p(0),q(0))” 212

Additionally the scalar w, can be computed from
wp = (tan(Ldist(p,q) )Yy —p . [p,a]+ [p, d)). (2.13)

We refer to Appendix A for the proof.

Remark 6 (Interpretation)

Note the intuitive interpretations of all the terms present in the control law:
plant inversion, proportional action, derivative action and an additional term
due to the sphere curvature. If ¢ = ¢ = 0 this control law does not reduce
to the simple PD controller shown previously. The reson being that w, # 0
and we have an additional extra term. Of course, despite this difference, the
feedback law (2.11) ensures convergence also for the regulation problem.
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3 Spacecraft models with two control torques:
projection onto the sphere

In this section we review kinematic and dynamic models of a spacecraft
actuated by two momentum wheels. We employ the following standard
assumptions: the control torques are applied along the principal axes of
the spacecraft and the body frame is along these principal axes, so that
J = diag(Ji, J2,J3). Let R € SO(3) be a rotation matrix which describes
the state of the system. It follows that

R = R(wx), (3.1)

where w is the angular velocity expressed in the body frame and the opera-
tor x is defined such that (wx)v = wx z for all z € R®. Following (Marsden
1992), we neglect the dynamics of the actuators and we start with a kine-
matic analysis. From conservation of angular momentum it follows that

Jw = RTmo+ e1v1 + egvy, (3.2)

where mg is the total constant angular momentum (vector), e; = [1,0,0]7,
ez = [0,1,0]T and the v; are the velocities of the wheels (scaled by the
moment of inertia of the wheels about their own rotation axes). Combining
(3.1) and (3.2) we have the kinematic model

R =R [J_l(RTmo + €101 + 62’()2)] X . (33)

A dynamic analysis (Crouch 1984) leads instead to the standard second
order model

R = R(LUX), (34)
Jw = [RTmo7w]+€1T1+€2T27

where the 7;, ¢ = 1,2 are the torques applied to the wheels (scaled by the
momentum of inertia of the wheels about their own rotation axes).

Remark 7 (Gas jet actuators)

Note that this model also applies to the case of gas jet actuators by re-
placing the internal drift [RT mg,w] with the term [Jw,w] (Euler equations).
See (Crouch 1984) for details.

The reduced control problem for the spacecraft models in equations (3.3)
and (3.4) consists in the design of a feedback control law that stabilizes
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the state R € SO(3) up to a rotation about the unactuated principal axis
e1 X ea =1[0,0,1]7 =: eg. To simplify the formulation of the problem, define
the projection maps 7; : SO(3) — S? as 7;(R) := Re; (this is the same
projection operator introduced in (Walsh and Sastry 1995)). Stabilizing R
up to a rotation about eg is equivalent to stabilizing the direction of the
axis Reg and discarding the residual drift about this direction. Thus we can
restate our control problem in terms of the point 7y € S2.

Problem 3 (Reduced Attitude Stabilization)

Given the models in equations (3.3) and (3.4), find a feedback control law
such as to asymptotically steer the reduced state 7y € S? to a fixed point
q €S2

We now derive the reduced dynamic system corresponding to the state
7. Projecting equation (3.1):

’ ) 0 1
o = Reo = R([w, eq]) = —maw1 + mwz = [—1 0] [ij ’

with respect to the orthonormal basis {my,72}. By discarding the variable
w3 we write our kinematic model as

.o gt f{mo, ) | |ur
"= [—Jfl 0 ] {<m07”2>+ val )7 (3:5)
and our dynamic model as
7 . 0 1 w1
O 7 -1 0f |wo
[.]1@1] _ [<mo, [gw,m])] + |:T1:|
Jar (mo, [gw, ma])| * [m2]
Finally, note that the same reduction procedure applies to the gas jet actu-
ators case. The dynamic equation in system (3.6) changes to

[Jﬂ«bl] _ |:(']2 - J3)w2w3] + [7'1]
JQ@Q (]3 — Jl)wlwg T2 )

For the sake of completeness, we report here the expressions of the resid-
ual drift of the third component of the angular velocity:

(3.6)

Jaon — (mo, [gw, mg]) momentum wheels
w3 = (J1 = J2)wiws gas jet
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Regardless of the kind of actuator, as wy, wy — 0 the third component w3 be-
comes constant. In particular, for the momentum wheels case, equation (3.2)
projected along es gives:

w3 J3 1<RTm0, €3> = -]3_1<’I7”LO7 71'0>

J-
— ']3_1<m07 q>

where the last equality holds once the state has converged at its equilibrium
point: my = ¢. In general we can conclude that ws becomes a constant of
motion and that the trajectories of the spacecraft become rotations about
the axis eg.

4 Explicit form of control laws for the spacecraft
models

The stability results obtained in Section 2 are here applied to the models
introduced in Section 3. The spacecraft models are indeed fully controllable
and, except for the presence of internal dynamics, satisfy the hypothesis of
Theorem 2 (Regulation of first order systems) and Theorem 3 (Regulation
of second order systems).

Subsection 4.1 deals briefly with the kinematic model. Assuming perfect
knowledge of the plant’s parameters, the first proposed control law relies
on a feedforward term which exactly compensates for the dynamics of the
system. The main drawback of this cancellation strategy is that various
external disturbances may actually affect the rate of change of the plant’s
parameter mg. These external disturbances include gravity gradients, solar
radiation pressure, and Earth’s magnetic field (see, for example, (Slafer
and Seidenstucker 1991)). Therefore, since the dependence of the internal
dynamics is linear on mg, we propose an indirect adaptive control scheme;
for details on the standard procedure see (Sastry and Bodson 1989).

Subsection 4.2 deals in full detail with the dynamic model. We give a
complete solution to the reduced (spin-axis) stabilization problem through
three different strategies: model independent control law (PD without feed-
forward term), model dependent control law (PD plus exact feedforward
cancellation) and indirect adaptive control law (PD plus feedforward and
adaptation law). The set of stability results that our laws achieve is very sim-
ilar to what is usually obtained in the robotics literature (Wen and Kreutz-
Delgado 1991) for passive mechanical systems: Lyapunov stability for the
model independent law, exponential convergence in the case of exact feedfor-
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ward cancellation, and asymptotic stability for the indirect adaptive control
scheme. A complete discussion on the proposed control laws is included.

4.1 Proportional control laws for the kinematic model

Theorem 8 (Regulation of kinematic model)
Consider the kinematic model in equation (3.5) and let ¢ € S% be the desired
goal. Given the positive definite gain K, the control law

v = dist (7o, q) [0 ‘Jl] K, [<Y’g°’“>] = [<m0’m>] ,

J 0 (Vi m2) (mo, m2)

exponentially stabilizes the state mo(¢) at the goal ¢ from any initial condition
70(0) # —¢ and with time-constant at least 1/ Apin(Kp).

Proof. Simply note that the trajectories of the closed-loop system satisfy

. (Yo, m1)
7o = dist(mo, q) Kp [<Y7?0 )]

Theorem 2 applies. |

Remark 9 (Inertia matrix unknown)
If {Ji,J2} are not known (while the angular momentum myg is), then the
control law:

v ] Fasmoa [p 3 (G757,

still ensures exponential stability of the equilibrium point ¢ with time-
constant at least 1/ Amin(diag(J; 1, J7)K,). Given W = dist(mo,q)* /2,
we have:

J;t o
: : Yo, m)| [(Ya,71)
W = —dist(ro, q)? 0o J! [< Y 1],[ T
( 0 ) < I(p ! <Y7gov7r2> <Y7go77r2> >

< =2 Amin(diag(J5 1, ST Kp) W.

Assume now that the inertia matrix is known and that only have an estimate
of the angular momentum mq is available. Then, we can design a classical
indirect adaptive control scheme:
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Theorem 10 (Adaptive regulation of kinematic model)

Consider system in equation (3.5) and let 7 be the current estimate of the
unknown parameter mg. Let the control gain K, and the adaptation gain
I' be symmetric, positive definite matrices. Then the control law

v = dist(m0, q) [0 ‘Jl] K, [<Y’?°’m>] = [<m’m°>] ,

Jo 0 <Y7?0 3 7T2> <7T27 ’fh‘0>

(based on the certainty equivalence principle) and the update law

%fﬁo = —dist (7o, q) TRI7IRT vers[ng, q],
locally, asymptotically stabilize the state mo(#) at the goal ¢ € S and make

mo — Mg go to a constant.

Appendix B contains the detailed proof; here instead let us comment on the
word “locally”. Under that we actually mean the following sufficient upper
bound on the initial conditions:

dist (m0(0),q)* + ||mo — Mo (0)||3_1 < 72

Note that decreasing the adaptation gain I (in this matrix case, decreasing
the eigenvalues of I') makes this bound as loose as desired. If the condition
is verified, then dist(mg,q) < = for all ¢ (proof in Appendix B) and the
singularity of the control law is never reached.

4.2 Proportional plus derivative control laws for the dynamic
model

All the stability results in this section rely on a skewed mechanical metric
on S? to design the Lyapunov function.

The simplest control law we propose is a PD controller without feedfor-
ward cancellation; since no knowledge of the model is required we call this
control “model independent”. The stability proof is based on the fact that
the kinetic energy of the full spacecraft is constant in absence of control
inputs.

Theorem 11 (Model independent regulation)
Consider the dynamic model in equation (3.6). Given the positive k, and
the positive definite K4, the control law

_ : _<Y7goa7r2> _ w1
T = kydist(mo, q) [ Vi) Kq NE
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renders the equilibrium point (g, [0 0]7) Lyapunov stable (not necesseraly
asymptotically stable) from any initial condition 7¢(0) # —¢ and for all £,
and w such that

(w, Jw)

72 — dist (m(0),q)*’ D

ky >

Additionally the distance dist(mg(t), q) converges to a constant d < [|mg||%/(2J3k,).
Proof. Consider as state of the system (mg,w) € S% x R? and let
W& ];—pdist(ﬂ'o, Q)% + (w, Jw),
be our candidate Lyapunov function. Recall that the full state dynamic
equation is

1
Jo = [RT'mg,w] + |7
0

and take the time derivative of W':

i = —yiet(ro.a) (|21 [0 2] e o)

w2 T2

_ . w1 —<Y7$0 s 7T2> w1 1
= kpdlst(ﬂ'o, q) < |:w2:| s |: <Y7?0,7T1> > + < Wy ) 5 >7
since the last term is null (the drift does not affect the kinetic energy). As

in the proofs of Section 2, the proportional term cancels the derivative of
the distance-square term:

Y

+ <[Zj , k,dist (o0, q) [187;73 ) 73>] K, [w1]>

L M

Since the Lyapunov function W is decreasing, the bound in equation (4.1)
ensures the smoothness of the control law. Lyapunov stability is therefore
proved. Additionally, by Lasalle’s principle it follows that

2

Ky

lim i (1) = Jim ws(r) =0,
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so that even %71’0 goes to zero and the error dist(mg, q) to a constant. Indeed
in ©Q we have

o= [ ch ] b [45257)

which leads to the asymptotic bound

2

dist(mo,q) < £|<m0 mo)| - [|[mo, mo]|| < [[mo .
Y= kp k k - 2Jz3k,

Note that increasing the gain k, makes this bound as tight as desired. W

The second proposed control law assumes exact cancellation between
internal dynamics and feedforward control so as to satisfy the hypothesis
of Theorem 3. Since exact knowledge of the model is required, we call this
control law “model dependent”.

Theorem 12 (Model dependent regulation)
Consider the system in equation (3.6). Given the positive definite gains K,
and Ky, the control law

: —(Ya,m >] [wl] [<m0 [gw 71'1])]
7 = dist(7g,q) K (Yo, T2 - K — s

LR i R | R
exponentially stabilizes the state mo(¢) at the goal ¢ from any initial condition

79(0) # —¢ and for all K, and w such that

le% + ng%
w2 — dist (m(0),q)*

Amin(Kp) > (4.2)

Proof. The proof is the same as Theorem 3, with the only difference that
a skewed mechanical metric is used in designing the candidate Lyapunov
function. Simply define

a1l 2 1w I AT U
V[/'_idlst(’/myq) ‘|‘§<{ ]7KP 0 J, )

w2 W

- edist(vro,q)<[ij ! [zgfo 7:3)]>

and then follow the steps of the proof of Theorem 3 (including Appendix A).
As usual, condition (4.2) is imposed to confine the closed-loop trajectories
away from the singularity. |
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As already explained, exact cancellation of internal drift is not a robust
procedure, in that the total angular momentum mg might either be unknown
or change slowly in time (see discussion at the beginning of this section).
Therefore, as for the kinematic model, we design an indirect adaptive control
scheme:

Theorem 13

(Indirect Adaptive Regulation) Consider the system in equation (3.6). Let
mg be the current estimate of mg, let the control gain K,, K, and the
adaptation gain I' be symmetric, positive definite matrices. Then the control
law

et [0 2] - [ ).

and the update law

d KU
%ffzo =Tg(wx) | ? |wa]| — edist(mo,q) g(wx)I ™! vers[ey, RTq],
0

locally, asymptotically stabilize the equilibrium point ¢ € S? for sufficiently
small e.

Proof. For the detailed proof see Appendix B. |

Let us now comment on the proposed laws:

Remark 14 (Trade-off between the proposed laws)

Each of the three proposed strategies has its own strengths and weaknesses.
From an applications viewpoint, the choice of control law can be taken on the
basis of meaningful parameters, such as controller complexity and stability
properties versus computational load, or required a priori knowledge of
the plant’s parameter and of the external disturbances. For a complete
discussion on this issue we refer for example to (Wen and Kreutz-Delgado
1991), where a full set of model independent, model dependent and indirect
adaptive control laws is also proposed (but for the attitude stabilization
problem).

Remark 15 (A family of simplified control laws)
The proportional action, as described in Section 2, is:

0

sin 6

dist(p,q) Y = [[p,dl, pl, (4.3)
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where 6 = dist(p, q). This expression immediately suggests a simplification;
assuming sin(#) = 6, the model dependent control law looks like

r = _drift + K, | ¢ ”2>] - K [“1] : 4.4

P |: <Q7 7T1> 4 w2 ( )
The stability properties of this sin-like control law can be verified through
the following candidate Lyapunov function:

W = (1 — cos(dist(mo,q))) + <[Zj KS! [ij ),

where the cosine is introduced to maintain the cancellation which occurs in
the derivative of W. The usual steps lead to

=2
w2

proving the Lyapunov stability of the closed-loop trajectories of the system.
Indeed, exponential stability can be easily proved, since close to the origin
(small dist(mg,q)) new and old strategies do not differ substantially.

This simplified control law has the following two main differences with
respect to the original one: first, the law is smooth on all 2 and the point
—g becomes an instable equilibrium point. Second, the new law has the
drawback of exerting a decreasing control for an increasing distance of state
and goal when the state is more distant than /2.

2

7
=1 7
K, Ky

Remark 16 (Gas jet actuators)

So far we have dealt with momentum wheel actuators, but the proposed
control laws also apply to the case of gas jets. The model independent
control law remains unchanged:

_ . _<Y7rqov7r2> _ w1
T = kydist(mo, q) [ Vi m) Kq NE

and Lyapunov stability can be proved easily through the same proof of
Theorem 11. In the model dependent control law, we simply compensate
for the different drift:

r = dist(ro, q) K, [_<Y“q°’”2>] ~ Ky [“’1] - [“1“’2“3] . (45)

<Y7?07 7T1> Wy aaW1W3

where ay = Jy — J3, ag = J3 — J1. As before, condition (4.2) ensures the
smoothness of the control law.
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Note that the control law in equation (4.5) relies on exact knowledge of
the inertia matrix and is not robust with respect to retrieval or deployment
of unknown payloads. Hence we design a locally, asymptotically adaptive
control scheme based on a certainty equivalence control

_(vy4 ~
T = dist(ﬂ'o,q) Kp |: <Y7r07772>:| _ Kd |:w1:| . [a1w2w3] 7

(Yo, m1) wy owiws
coupled with the update law
d [a, w1Wwaws
dt [ﬁg] -7 [wlwgwg] '
for all v > 0. The stability proof is standard.

5 Simulations

To verify theoretical predictions and to gain insight into the stability proper-
ties, we run two sets of simulations. In the first one we implemented the the
dynamic model of a spacecraft with momentum wheels and the regulation
algorithms in Section 4. In the second set, we simulated a general second
order systems on the sphere and we implemented the trajectory tracking
law of Subsection 2.2.

5.1 Reduced attitude regulation of the dynamic spacecraft
The full system defined on SO(3) x R? is simulated:

R = R(wx),
71
Jw = [RTmg,w]+ |
0

Note that the attitude matrix R is not a suitable parametrization of SO(3)
for computational goals: it includes too much redundancy and we would
have to project from G'L(3) to SO(3) at each step. Instead we use the unit
quaternion parametrization, which minimizes the redundancy while at the
same time avoiding singularities in the representation. Let us recall that, if
R= R(wx), the corresponding unit quaternion (go, §) € R* satisfies

% [qqg] - % [%ufbi%w]] '
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Inertia matrix J = diag(1.0,0.63,0.87)
Angular momentum me = [1,1,1]T
Proportional gain: scalar %k, = 5

. . . 3.0 0.5
Proportional gain K, = |:0'5 1'5]
Derivative gain Ky = [32 (1)2]
Adaptation gain: scalar v = 5
Adaptation gain: scalar e = 1
Desired orientation q = [1,0,0]"
Time step h = 0.01 secs

Table 1: Table of parameters for simulations.

To enforce the unit norm constraint on the numerical solution of the differ-
ential equation, we adopt a projection procedure.

We implemented the model independent control law and the adaptive
scheme as in Theorems 11 and 13. An explicit expression for the adaptive
control law is

([, RT ), €1>:| arcsin||z|| . . [wl]
= ~ + ——— K,z — K
gl R e

where

=[G |

and where we use arcsin : [—1,1] = [—7/2, 7/2] instead of arccos : [-1, 1] —
[0, 7] to avoid numerical singularities when ||z|| = sin(dist(mo,q)) is small.
The estimate of the parameter mg follows the update law of Theorem 13.

The numerical integrator of ODE is a 4*" order Runge Kutta, the sim-
ulations were implemented on Matlab and were run on a Sun Sparcstation.
Initial conditions were R(0) = I3 and w(0) = J~'RTmg. The final de-
sired orientation was ¢ = [1,0,0]”. The parameters of plant, controller and
simulation, are listed in Table 1. Note that

0 1
71'0(0):]3602602 0 s q=€ = 0 y
1 0
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and therefore dist(mo(0),q) = 7/2. The initial kinetic energy of the space-
craft is

K(0) = (w(0), Jw(0)) = (J  myg, mg) = 2.5,

so that

((0), Jo(0)) 10
72 — dist(70(0),q) ~ 37 1.6,

Amin (I(p) Z

is a sufficient condition for the smoothness of the control law for the model
independent control law.

The numerical simulations are reported in Figure 2 on the facing page
(model independent control), and Figure 3 on page 24 (indirect adaptive
control). In both cases we include: my € S? C R? expressed in inertial coor-
dinates (unitless), the distance dist(mg,q) and the angular velocity w. For
the second simulation (adaptive control scheme) we also show the estimate of
the angular momentum mg. Regarding the model independent control law:
As in the theoretical analysis (Theorem 11), the distance between 7y and
q goes to a constant (second picture), which satisfies bound (4.1). Indeed
the first two components of the angular velocity go to zero, while the third
one becomes a constant (third picture). Regarding the adaptive control
law: As in the theoretical analysis (Theorem 13), the state of the spacecraft
converges (at least) asymptotically to the desired equilibrium configuration
(see second picture for dist (7, q) and third picture for w; and wy), while the
estimation error goes to a steady state generically different from zero (see
fourth picture).
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Figure 2: Simulation for the model independent control law (as in Theo-
rem 11).
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Figure 3: Simulation for indirect adaptive control scheme (as in Theo-

rem 13).
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5.2 Trajectory tracking on the sphere

We simulated the dynamic system in equation (2.4) and the PD control law
in Theorem 5. The most instructive reason for performing such a simulation
is to test the importance of the weird additional term w, in the control law.
Indeed recall that the control law (2.11) is

u =R+ kpdist(p,q) Y3 — Ka(p — Rd) + wp[p, pl,

where the feedforward term R§ performs a plant inversion, k, and K  corre-
pond to proportional and derivative action and the additional (with respect
to the standard R"™ case) term w,[p, p] represents some kind of a “curvature”
correction term.

Surprisingly enough, despite the technical need for such a correction term
in the stability proof, the control law performs equally well even without it.
As a matter of fact in our first simulation (see Figure 4 on the following
page) we show the experimental data obtained without the presence of such
term. We don’t report the full control law, since the performances are
approximately equal: exponential tracking is achieved as foreseen in the
theoretical analysis.

In the second simulation (see Figure 5 on page 27) we implement an
even more simplified control law, where even the feedforward term vanishes.
This corresponds to the concrete case in which the acceleration of the desired
signal § is unknown. The control law shows a still satisfying performance
and actually tracks the signal achieving a bounded error response.

Just a few words about the details of the simulations: in both cases
the desired goal ¢(t) € S* behaves under the effects of a gravitational-like
acceleration field § and of a small damping. The initial conditions can be
easily observed from the various plots; the controller’s gains are k, = 2 and
kq=1.
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——————————— a w,

20 30 10 20 30
t, sec i, sec

Figure 4: Simulation for the trajectory tracking law (as in Theorem 5): PD
controller with feedforward term. We report: the state p(t) € S?, its velocity
p € T,S?% the desired position ¢(t) € S?, its velocity ¢ € T,S?; the distance
between state and goal dist(p(t),q(t)) and the Lyapunov function Wy (t) as
defined in equation (A.5).
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d(p,q)

i, sec i, sec

Figure 5: Simulation for the trajectory tracking law (as in Theorem 5):
simple PD control law without the feedforward term. As before we report:
the state p(t) € S? its velocity p € T,S% the desired position ¢(t) € S?, its
velocity ¢ € T,S% the distance between state and goal dist(p(t),q(t)) and
the Lyapunov function Wy (¢) as defined in equation (A.5).
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6 Conclusions

In this paper we have dealt with fully actuated control systems defined on
the sphere S? and in such setting we have proposed a novel approach to reg-
ulation and trajectory tracking problems. Our results have then applied to
a reduced attitude stabilization problem (spin-axis stabilization). We have
designed a comprehensive set of control laws, which differ in stability prop-
erties, computational complexity and required model knowledge. By and
large, our (differential) geometric approach has lead to a family of simple,
versatile and robust control laws.

The work proposed here can be seen as a development of previous inves-
tigations on the correct Lyapunov function’s design (Koditschek 1989). We
rely on the Riemannian notion of distance to achieve a simple and successful
solution to global problems such as trajectory tracking. The simplicity and
efficacy of this approach can then apply to more general Riemannian man-
ifolds. Indeed, control systems defined on Lie groups belong to this class
and provide a very instructive example. Here the topological properties of
the group, such as the compactness, influence its metric structure and only
in certain cases our approach applies straightforwardly; for an introduction
see (Bullo and Murray 1994).
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A Stability proofs for the PD controllers

We report here the stability proofs of the PD control laws in Section 2.

A.1 Exponential convergence for the PD regulator (Proof of
Theorem 3)

Proof. Using the notations introduced in Section 2, we rewrite here the
closed-loop system:

p o= Xpvr+ XJvg,

, - <qu7X1>]
v = dist(p,q) K Dol — Kgv,
(P, a) Kp [<qu7 Xp2> d

where v = [v; v3]7. Let us define

Cross = dist(p,q) (p, Yy)1,52 = dist(p, q) <[m] ’ [gﬁz§§§]>

U2
Note that, for small ¢, the candidate Lyapunov function

1 1
Wkewed = §dist(p7 q)2 + 2 HVHf<p_1 — ¢ Cross (A.1)
=W — ¢Cross,

is positive definite, since |Cross| < dist(p,q)||v|. Indeed, recall that the
standard steps performed in Section 2, equation (2.6), give

W=—|v

.
Iﬂp Kg*

We now need to show that Wskewed is definite negative. Taking the time
derivative of the cross term

d d, .. .
%Cross = (dlst(p, q)) (b, Y3

+asitoo (3] (G5 0] + 6. v)

U2

£ —(p,Y;)’ + Bi + By, (A.2)

where we used Lemma 1 in the last step.
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We can now easily compute a bound on Bj:
Y, XD [y, XD
By = dist(p, q)* (K [“’ p][ b p]
v= A T [y ] (v, X))

— dist(p, q) (Ka [Zj ’ [gﬁz)‘%ib

Z /\min(I(p)diSt(p7 q)2 - /\max(Kd)diSt(p7 q) Hpuv

where Apin(Kp) is the minimum eigenvalue of K, and Apax(K4) the maxi-

mum.
The lower bounding of the third term entails more computations. Let

d = dist(p, q) and notice that

7 Il VX
Yp - [Vers[p, QLP] - SiIl d .
Recall d = —(p, Y,!); we have
dyq_ E0a)p— {p,g)p)sind — (g~ (p, 9)p) cosdd
dt? sin?d
_ e . cosd . .,
~ Tsind?” sindp+ sind<p’Yp Yo
Y X)) cosd /. A\
T Tsind? sind <p— <p,Yp>Yp).

Substituting this expression into the definition of By we have:

o d dcosd,. ,. .
BZ _ d<p7 E pq> = - sind. <p7 (p - <p’ qu>qu)>
dcosd

=————(lI8l* - (, Y, 1)?).

Notice that for d € [0, 7 /2]

By > — max (dCOSd

> —max (OB > 20l

while for d € [7/2,7) the addendum B; is positive and it holds By > 0.
Eventually:

By > -2||p||%.
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By and large equation (A.2) gives

d o g . . .
ECross > /\min(hp)dlst(p,q)2 — Amax(Ka)dist(p, q) ||p]| — 3[|p||%,
and we have for the candidate Lyapunov function
W, =W - eiCross
skewed — dt

—€ Amin (K,)dist(p, q)2 + € Amax(Ka)dist(p, q) [|p||

2
- HU‘|I(;1I((1—3512 ,

IN

which makes the derivative of the Lyapunov function in equation (A.1) neg-
ative definite. Thus there exists a sufficiently small A > 0 such that

Wekewed < _)\Wskewedv
and the convergence is exponential. |

Note that the previous proof can be slightly refined by adopting the slight
modified computations described in the next subsection.

A.2 Exponential convergence for the PD trajectory tracker
(Proof of Theorem 5)

In the following we will adopt the notations in Section 2. We start by stating
some preliminary equalities: by differentiating expressions (2.8) and (2.9)
and premultiplying by RT, we have

[w,pl =RTG—p (A.3)
[w,[p,q]]l = (R - I5) %[p, q]. (A.4)

Note that the first expression determines uniquely w; = w — w,p (the or-
thogonal projection of w onto 7,S?), while w, is implicitly defined in the
second.

We will first prove exponential stability and then prove expression (2.13).

Proof of Part I: Exponential Stability. Let é = p— R ¢ and consider the
candidate Lyapunov function

k 1
W2 g+ L el — i) @Y
= Wi+ Wy, (A5)



34 A. CONVERGENCE OF PD CONTROLLERS

where the positive definite W, is skewed by the cross term Ws. For small €
the function W is positive definite in (dist(p,q) Yy, &) € (T,S?)?. Differenti-
ating with respect to time along the solutions of p = u:

d .
— Wi = —kydist(p,q) (&, Y3 + (6,u = RT§ — R"q)

dt
= —k,dist(p, q) (¢, Yg)
+ (¢, lpdist(p, ) Y3} = Kaé + wp[p, p] = R'4)
= (&, —Kqé 4+ wp[p, p] — RT§)
= _HéH%«’d + (€, wp[p, p] — RT@y

where all the steps performed are standard. If w; = w — w,p, we have

(&, wpp, p) = RT4) = (&, wp[p, p) = [R" ¢, w])
= (&, wp[p, p] — wp[RTQ7p] - [RT‘LWLD
= wp<é7 [6,p]> - <€7 [/R’T(LWJ-]) = 07

since in the first triple product é is repeated and in the second one the three
vectors belong to the same plane 7,82 Thus we have
d .12
L, = el
so that, setting ¢ = 0, we have proved the Lyapunov stability of the close
loop plant. Given this result, we can now follow the same steps as in the
proof of Theorem 3 and exploit condition (2.12). Indeed we have:

[[€(0)]? :
e T asp)qo)y RO alt) < vEW0) <&.6)

proving that, for all £, dist(p(t), q(t)) is bounded away from 7; we will need
this fact later. Now we go on to differentiate W:

d . 2 g N . . d
%Wz = (6,Y,))" —dist(p,q) (& Yp) — dist(p, q) (¢, aYS)

< |é* + By + Ba. (A7)

To simplify the notation let d = dist(p,q). Substituting the control law
in (2.11):

By = —d{k,dY! — Kqé, Y7 — d{w,[p,p] — RTq, Y1)
= —kpd® + d(Kqé, Y1) — d{[é,p] = [RT¢,w.], Y1)
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Now, note that |[¢, pl[| < [|€]|, and [[[R"g,wo]|| < [1g] - [lwll = [I4ll - [lé]] by
equation (A.3). Therefore we have the bound

By <~y + Auax (Ka) d €l + 1]+ d Je] - ]
= —pd? + (14 Amax () + [d1]) 11

Regarding By we have

dyg_da—pap _ dg—cos(dp
dt ¥ dt sin(d) dt  sin(d)
B sin(d) (q — cos(d)p+ sin(d)dp) — <q — cos(d)p) cos(d)d
sin (d)?
_q-= cos(d)p (€Y + cos(d) (6, Y)Y

sin(d) e sin(d)
cos(d) Is — cos(d)RT .

= _<é7qu>p - sin(d) (é - <é7qu>) + qu

From the definition of R in equation (2.7) we have

I3 — cos(d)R” _ 1= cos(d) <I3 — (vers[p, Q]X)2> + cos(d) (vers[p, q]x),

sin(d) ~ sin(d)
so that, interpreting the matrices above, we have
I3 — ?os(d)RT < max 1 - cos(d) Ll
sin(d) 9 d sin(d)

Plugging in the this bound in the definition of By we obtain

By = —d(é, %Yp%
cos(d 5 — COS T
= —d(e _sin((;? (6~ (e v) + - Sin(fgm q)
< | S5 e+ (e | ot 1) el

Recall now that d = dist(p,q) is bounded away from w. Thus there exist

two positive constants M; and My such that

1 — cos(d)
sin(d)

d cos(d)
sin (d)

< M27

max

d d

‘<M1 and max
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for all times t. Eventually we have
By < My[é]|* + [|dll (M + 1)dist(p, q) [|&].

Substituting By and B, into equation (A.7), we have

d ) .
71 V2 < —kpdist(p, a)* + (14 My)|Jé))?

(1 Amax(Ka) + (24 Ma) ] ) dist (p, ) [¢]-

Therefore our Lyapunov function W in equation (A.5) satisfies

d d d
EW = %Wl —|— € %Wz
) d
S%kﬁg+€%wﬁ
< —ckydist(p,) 4% — (Amin(Ka) = (1 -+ My)) ¢]

(1 Al IS5) + (24 M) ) dist (p. ) ]
_|dist(p,q) T ek, €x dist(p, q)
o [ Hél|)! ’ ] L *  Amin(Ka) —e(1+ Ml)] [ Hél\)! ’ ]

where

1 N .
.= _5(1 + Amax(Kq) + (2 + M2)HQH)-

Recalling that ||¢|| is bounded by assumption, £V is negative definite
for sufficiently small ¢ in (dist(p,q) Yp, ) € (T,S??2. This proves ezponential
stability. |
Proof of Part II: Fxpression (2.13). Multiply equation (A.4) by Y, and
then apply the triple product rule to obtain
I, —RT d
— (BT oy S ).
“r sin(dist(p,q)) ? ' dt b, a
From the definition of R in equation (2.7) we have
I;—RT
sin(dist(p, q))
so that

= (Vers[p7 q] X) — tan(%dist(p, q)) (Vel‘S[p, ql X)2

_=RT L, + tan(3dist(p, q)) Y3
sin (dist(p, q)) * g 2 B

The result is now straightforward. |
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B Stability proofs for the adaptive control laws

We report here the stability proofs of adaptive control laws presented in
Section 4.

B.1 Adaptive Regulation of the kinematic model (Proof of
Theorem 10)

Proof. We rewrite here the closed-loop system for sake of completeness:
-1~
I T - <Y7r[-10,ﬂ'1> 0 1 .]1 0 <m0,7r1>
o = dlSt(ﬂ-O’ q) I\p [<Y7?0,7r2> + -1 0 0 .]2 <’ﬁl0, 7T2> ’
g = —dist (7o, q) TRITIRT vers[mo, q],

where mg is the total constant angular momentum, mg its estimate and
Mg = mg — Mg the estimation error.
Let W be our candidate Lyapunov function:

1. 1, .
W = 5d15t(71'0,C1)2 + iumOHIZ*—“

where I' =TT > 0 is the adaptation gain.
Following the steps in proof of Theorem 2, we have

= e [ 2] (G20 - o

o (Yo, m1) 0 1 .]1_1 0 (o, 1)
dist (7o, q) ( [<Y7go )] =1 0 0 .]2_1 (g, T3) )
S 2 oo d o
< — Amin(Kp)dist(mo, q)” — (Mo, I amo>
. J7U 0o 1] [V, )] [(RT e, er)
- dlSt(ﬂm q) <|: 0 ]2—1:| |:1 0 :| |:<Y7?0,7T2> 3 <RTT710, 62> >
Note that with respect to the basis {m, 72} of T, S? it holds

e )

and

Y R ] g e | R e B
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Substituting, we can then notice:

. d
W < = Amin(K,)dist (o, q)* — (1o, F—laﬁ@

- o (3 2] [ el [

< — Amin(Kp)dist(mo, q)2 — (Mo, F_I%fﬁO)
— dist(7o,q) <J_1RT vers[mo, q], RT1ﬁ0>R3,
and picking
r-1 %ﬁzo = dist (7o, q) RJTIRT vers[rg, q],
the last two addenda cancel. Eventually
W < = Amin(K,)dist (70, q)* .

By Lasalle’s Principle the asymptotic stability of the closed-loop space-
craft system follows:

lim dist(mo(t),q) =0,

t—00

and consequently

B.2 Adaptive Regulation of the dynamic model (Proof of
Theorem 13)

Proof. We rewrite here the closed-loop system for sake of completeness:

[0 B

] = [y o)+ st | P <[]

K|
P wy | — edist(mo, q) R(wx)J ™! vers[eg, RTq],

0

d
%mo = FR(WX)
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Define the candidate Lyapunov function:
a1l 2 w1 ST S UN I
W = idISt(ﬂ-07q) + < Wy 7Kp 0 .]2 W >
B . w1 _<Y7go ) 7T2> ~ 112
édlst(ﬂ'o, q) <|:w2:| ) |: <Y730, 7Tl> > + HmOHF—1+13
= Wola + HmOH%—lﬂg-

If g = 0, we know that Wod < —AWo1q for some small A > 0. Here instead,
in the derivative of W,q there are two additional terms due to the drift. We

have:
W < —AWoa + <[Zj K [%g;gzﬂ Z;ib — (g, (I + 13)%7710)
~eameoa( 5] [ o] [

Note that the second addendum satisfies:

<|:<-U1:| e [<[RTm0,w],e1>]> (k! [m] 7 |:<[RT77~10,W]761>:| Vo

<[RTm07 w]? 62>

wy| " [([R g, w], €2) P ws
(|5 {Z] TR g, ]
0
= (i, R(wx) {Kp 1 H] )
0

Note that the fourth addendum satisfies, remember equation (B.1):
<|:]1 0:| - |:<[RT77~107M],€1>:| |:_<Y72077T2>:|>
0 Jy <[RTm07 w]7 62> ’ <Y7go ) 7T1>

(el o 5] [

= ([R"o,w], J 'R vers[mo, q])ms
= <ﬁ”&07 R(WX)J_IRT VQI‘S["TO, q]>

The two terms in the update law are chosen such as to render:

W < _AWOlCh
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and by Lasalle’s principle, the closed-loop trajectories of the system converge
asymptotically to the largest invariant set contained in 2 = Q4. Hence

lim dist(mo(t),q) = lim w;(t) = lim wy(t) = 0.

t—00 t—oo o t—oo



