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Abstract. This paper focuses on a new geometric approach to (fully actuated) control systems on the
sphere. Our control laws exploit the basic and intuitive notions of geodesic direction and of distance
between points, and generalize the classical proportional plus derivative feedback (PD) without the need
of arbitrary local coordinate charts. The stability analysis relies on an appropriate Lyapunov function,
where the notion of distance and its properties are exploited. This methodology then applies to spin-
axis stabilization of a spacecraft actuated by only two control torques: discarding the rotation about
the unactuated axis, a reduced system is considered, whose state is in fact defined on the sphere. For
this reduced stabilization problem our approach allows us not only to deal optimally with the inevitable
singularity, but also to achieve simplicity, versatility and (coordinate independent) adaptive capabilities.
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1. INTRODUCTION

The purpose of this paper is twofold. On one hand
we design control laws for fully actuated systems de-
fined on the sphere S2. On the other, we apply these
laws to the model of a spacecraft actuated by only
two control torques and we give complete solution to
a reduced attitude stabilization problem, i.e. we sta-
bilize the spacecraft attitude up to a rotation about
the unactuated axis. This problem is of practical im-
portance, since it models for example the failure of
an actuator, and is a classic, very instructive issue in
nonlinear control theory. Indeed new applications to
visual tracking problems (Swain and Stricker, 1991)
seem to offer new examples of systems on spheres.

Within the vast literature on attitude control, Crouch
(1984) shows positive controllability results for the
case of three independent control torques and vari-
ous smooth, stabilizing, control laws have been pro-
posed (Wen and Kreutz-Delgado, 1991). The case
of only two independent controls is more difficult.
Indeed, Byrnes and Isidori (1991) show the non-
stabilizability of the system: no smooth feedback con-
trol law can locally, asymptotically stabilize the full
state of a spacecraft with only two actuators. Both
non-continuous (Krishnan et al., 1994) and smooth
time-varying control laws (Walsh et al., 1994; Morin
et al., 1994) can overcome this limitation by using
ideas from the theory of nonholonomic stabilization,
but are limited to the case of gas jet actuators.

Following Byrnes and Isidori (1991) and Tsiotras and
Longuski (1994), we employ here a reduced approach:
by discarding the rotation about the unactuated axis
we come down to stabilizing a two dimensional system.
The new reduced system is fully controllable (actu-
ated), in that at each position variable corresponds an

independent control, and its state is naturally defined
on the sphere S2. Therefore our attention turns to
the study of control laws on this manifold. Note that
Brockett (1973) introduces a quite complete theory
of control systems defined on spheres, in that he dis-
cusses controllability, observability and optimal con-
trol issues. Here instead, we concern ourselves with
the explicit search for control laws. Since the man-
ifold S? is compact, has no boundary and its Euler
characteristic is two, no smooth control law with only
one stable equilibrium point exists; therefore we must
be satisfied with control laws defined (and stabilizing)
on a open dense subset of S%. Following Koditschek
(1989) we call such feedback law almost—global.

The main contribution of this paper is a novel, gen-
eral approach to fully actuated control systems defined
on the sphere S?. The novelty is based on exploiting
the metric properties of the Riemannian manifold S2.
For a first order model, our control law exerts an ac-
tion which has intensity proportional to the distance
between the state of the system and the goal and is
directed along the geodesic direction connecting these
two points. An appropriate Lyapunov function based
on the Riemannian notion of distance allows us to
prove exponential stability. We then extend this con-
trol law to second order models through a standard
procedure in the robotics literature: we couple the
proportional action with a derivative term, i.e. with
a term proportional to the “velocity”. Again, the ex-
ponential stability of this proportional plus derivative
(PD) control is based on the metric properties of S2.
Our new approach shows two main advantages. First
of all our control laws are coordinate invariant (no ar-
bitrary choice of local chart is necessary) so that they
allow us to solve the trajectory tracking problem in a
global way. Second of all, our ideas can be generalized



in a straightforward manner so that “geodesic” con-
trol laws can be designed for more general Riemannian
manifolds (see Bullo and Murray (1994)).

Regarding the control of the underactuated space-
craft, we cast the problem into this well-suited frame-
work and we give a complete solution to the reduced
stabilization problem. Many differences exist with
respect to the approach described in Tsiotras and
Longuski (1994). First of all we respect and exploit
the (geo)metric properties of the sphere instead of re-
lying on a choice of local coordinates. As a result,
our almost-global control laws confine the inevitable
singularity as far away as possible from the equilib-
rium (i.e. at the antipodal point) and indeed sufficient
conditions on the initial state of the system are pro-
vided in order to confine the closed-loop trajectories
away from the singularity (instead of simply assum-
ing this as an hypothesis). Additionally the control
action remains always bounded even for big errors.
From a practical viewpoint, our feedback laws allow
positive definite matrix gains rather than simple pos-
itive constants, and the final expression of the control
is somewhat simpler than the one given by Tsiotras
and Longuski, where unusual cross terms (position-
velocity) are present.

The paper is organized as follows: Section 2 deals with
some basic Riemannian notions and with the design
of PD control laws on the sphere. In Section 3 re-
duced attitude stabilization is formulated as a control
problem on the sphere. In Section 4 we apply our
design techniques to kinematic and dynamic models
of a spacecraft. Finally we report some simulations
in Section 5 and Section 6 contains a brief discussion.
Due to space limitations, the stability proofs of all
theorems are contained in Bullo et al. (1995).

2. GEODESIC CONTROL OF FIRST AND
SECOND ORDER SYSTEMS ON THE SPHERE

Our goal is to design optimal, in the sense of geodesic,
control laws for fully actuated control system of first
and second order, whose state lies on the manifold
§? = {x ER?:||z|| = 1}. We start by describing the
geometric properties of the sphere and by applying
some basic results of Riemannian geometry (Boothby,
1975). In the following, denote standard inner and
outer product on R® with (-,-) and [-,-]. Let p be a
generic point on the sphere and —p its opposite. For
all points p € S C R?, every tangent vector X, €
TpS? can be uniquely represented as a vector X, € R?
such that X, L p (using the standard inner product
on R*) and more generally Tp,S? = span{p}*. The
canonical inner product on R® induces a Riemannian
structure on S? (i.e. an inner product on 7,S?) in the
natural way:

(Xp, Yohryeo = (X5, Yp) VX, Y, € 1,82 C R,
The geodesics of this natural metric are great circles

and the distance between two generic points p,q € S?
is the angle between the two directions:

d(p, q) = arccos({p, ¢)ps), (1)

great circle

Fig. 1. The sphere and its tangent plane.

with arccos taking values in [0, 7]. Additionally, pro-
vided p and g are neither equal nor opposite, there is
a uniquely defined unit vector Y,! € TpS? called the
geodesic versor that gives the geodesic direction in p
towards q:

Y, 2 [Vers([p7 q]) ,p] = vers(qy),

where g is the component of g orthogonal to p and
the operator versor simply means: vers(z) = z/||z]|.
The notion of distance and of geodesic versor are re-
lated by a useful extension of Gauss’s Lemma:

Lemma 1 (Derivative of distance function)
Consider a trajectory p = p(t) € S?, such that p(t)
never passes through the fixed points g or —g. Then

L dp(t).a) = (5. ;) 15

The proof follows by differentiation of equation (1).

The terms of Lemma 1 can be intuitively interpreted
as follows: the distance between state of the system
p and fixed goal ¢ evolves in time only depending on
the component of p along the geodesic direction Y.
In particular for a trajectory p(t) such that d(p,q) is
constant, Lemma 1 reduces to Gauss’s Lemma and as-
serts the orthogonality between p(t) and the geodesic
versor Y,!. Since we are now able to compute its
time derivative, the Riemannian notion of distance
appears suitable for stability analysis; in the following
let By = {X;, X;} be a smooth orthonormal basis of
TpS?. The regulation problem for a fully controllable,
first order system defined on the sphere reads:

Problem 2.1 (Regulation of first order systems)
Given the system
p:Xll,Ul +X§U2 ETpS27 (2)

find a control v = v(p) such as to steer asymptotically
the state p € §? to the fixed goal q.

Note that B, cannot be smoothly defined on all S, A
canonical choice in the regulation problem would be

B, = {Y;?q,velrs<[p7 q])} ,

where the base By is defined for all p neither equal
nor opposite to g. More generally a natural choice By,



might be suggested by the particular control problem
in question; this is the case in Section 4.

To solve this first problem, we generalize the clas-
sical proportional control to the manifold S? as fol-
lows: the control action has intensity proportional
to the distance between state and goal and is ap-
plied along the geodesic direction (connecting state
and goal) skewed by a positive definite gain K. Let
Amin (Kp) (Amax(Kp)) be the minimum (maximum)
eigenvalue of the positive definite matrix K.

Theorem 2.1 (Regulation of first order systems)
Consider the system in equation (2). Then the control
law

v=d(p,q) Kp [8%7)(52] 7 (3)

exponentially stabilizes the state p at ¢ from any ini-
tial condition p(0) # —q and with time-constant at
least 1/ Amin(K5p).

The stability analysis is based on the Lyapunov func-
tion W := %d(p7 q)?; for details see Bullo et al. (1995).
Note that for p = g the geodesic versor Y}” is not de-
fined. This is no problem, since the control law v can
be easily prolonged continuously and defined equal to
zero at ¢: v(q) = 0. Hence the control law in equa-
tion (3) is smooth on the whole §?\ {—q} and has
a single exponentially stable equilibrium point g. As
already explained, this is the most we can achieve.

We now consider the more general problem of con-
trolling a system via accelerations (or forces) instead
of velocities. The regulation problem for a fully con-
trollable, second order system defined on the sphere
reads:

Problem 2.2 (Regulation of second order systems)
Given the system

p = Xpvi+ Xivs Xy, X2 € T,S? .
v = u, (4)

find a control u = u(p, p) such as to steer asymptoti-
cally the state p € S? to the fixed goal gq.

As typically done in the robotics literature, we now
combine proportional and derivative (PD) action. The
closed-loop system will behave as a nonlinear spring
with a velocity damper and correspondingly the Lya-
punov function will be the sum of pseudo-kinetic and
pseudo-potential energy terms. With respect to a
standard PD controller in local coordinates, the nov-
elty here consists in the form of the proportional ac-
tion (we have a geodesic spring) and of the corre-
sponding pseudo-potential energy term (Riemannian
distance squared).

Theorem 2.2 (Regulation of second order systems)
Consider the system in equation (4). Given the posi-
tive definite matrix gains K, and K4, the control law

_ Y2, X))
u=d(p,q)K |:<p’ p:|—KdU,
(B e | (v X3

exponentially stabilizes the equilibrium point ¢ from
any initial condition p(0) # —¢ and for all K, and
p(0) such that

1500 |

Al > S oy

(3)

The stability analysis relies on the Lyapunov function
W = %d(p7 q)° + %||U||§(;1. Condition (5) confines

the closed-loop trajectories away from singularity.

As last result of the section, we state the trajec-
tory tracking version of our PD control law. Let
q = q(t) € S® be the desired goal and ¢, 4 its velocity
and acceleration! belonging to T,;S% We assume ||¢||
to be bounded. Define the rotation matrix R such
that Rq = p and R[p,q] = [p,q]. Additionally let us
define the scalar quantity & as

&= (tan[1d(p,¢)]Yy —p , [p,q] +[p d])-

Theorem 2.3 (Tracking of second order systems)
Consider the system in equation (4). Given the posi-
tive kp and the positive definite K4, the control law

u=Rj+kpd(p,q) Yy — Ka(p — Rq) +£[p, pl,
exponentially stabilizes {d(p(t),q(t)) , p— R4} to

zero from any initial condition p(0) # —q(0) and for
all k,, p(0), ¢(0) such that

Ky > llp(0) — R(Q)TQ(Q_)LF.
72 —d(p(0), q(0))

Note the strong similarity with the R™ case; only
in the parameter ¢ the curvature of the manifold S2
comes into play. For details see Bullo et al. (1995).

3. SPACECRAFT MODELS WITH TWO
CONTROL TORQUES: PROJECTION ONTO
THE SPHERE

In this section we review kinematic and dynamic mod-
els of a spacecraft actuated by two momentum wheels.
We employ the following standard assumptions: the
control torques are applied along the principal axes
of the spacecraft and the body frame is along these
principal axes, so that J = diag(Ji, 2, J3). Let
R € SO(3) be the rotation matrix, state of the full
system. It holds

R = R(wx), (6)

where w is the angular velocity expressed in the body
frame and the operator x is defined such that (wx)v =
w x & for all # € R?. Following Marsden (1992), we
neglect the dynamics of the actuators and we start

I Note the slight abuse of notation: by § we here mean the time
derivative of the components of ¢ expressed with respect to the
basis B,. More formally, adopting the notation in Boothby
(1975), we have § = 2.



with a kinematic analysis. It holds
Jw = RTmo + e1v1 + ezv2, (7)

where mg is the total constant angular momentum
(vector), e1 = [1,0,0]7, ez = [0,1,0]7 and the v; are
the velocities of the wheels (scaled by the moment of
inertia of the wheels about their own rotation axes).
Combining (6) and (7) we have the kinematic model

R:R [J_l(RTmo +ei1v +62U2)]X . (8)

A dynamic analysis (Crouch, 1984) leads instead to
the standard second order model

R =
Jw =

where the 7;, 1 = 1,2 are the torques applied to the
wheels (scaled by the momentum of inertia of the
wheels about their own rotation axes). Note that this
model also applies to the case of gas jet actuators by
replacing the internal drift [R7mo,w] with the term
[Jw,w] (Euler equations).

R(wx),

[R"mo,w] + €171 + €272,

9)

The reduced control problem for the spacecraft models
in equations (8) and (9) consists in the design of a feed-
back control law that stabilizes the state R € SO(3)
up to a rotation about the unactuated principal axis
e1 X ez = [0,0,1]7 =: ep. To simplify the formu-
lation of the problem, define the projection maps
i SO(3) — S? as mi(R) := Re; (this is the same
projection operator introduced in Walsh and Sastry
(1995)). Stabilizing R up to a rotation about eg is
equivalent to stabilizing the direction of the axis Reg
and discarding the residual drift about this direction.
Thus we can restate our control problem in terms of
the point 7 € S2,

Problem 3.1 (Reduced Attitude Stabilization)
Given the models in equations (8) and (9), find a feed-
back control law such as to steer asymptotically the
reduced state mo € S? to a fixed point ¢ € S%

We now derive the reduced dynamic system corre-
sponding to the state my. Projecting equation (6):

Reo = R([w, €0]) = —mowr + miws

0 1 Wi
-1 0 wo !
with respect to the orthonormal basis {m1,72}. By

discarding the variable ws we write our kinematic
model as

T = 0 5t (mo, m1) v )
o [—Jfl 0 H[<m07”2>] ! [“2]}’ "
and our dynamic model as
. 0 1 w1
s [0 [z
Jrwr _ <m07[gw7ﬂ'1]> 1
I:J2w2:| - |:<m07[gw,7r2]>:| + |:72

Eventually, note that the same reduction procedure

o

] (11)

applies to the gas jet actuators case. The dynamic
equation in system (11) changes to

Jiwr | | (J2 = Ja)waws L™
Jawa - (Jg — Jli)wlws T2 '

4. EXPLICIT FORM OF CONTROL LAWS FOR
THE SPACECRAFT MODELS

Since the spacecraft models introduced in Section 3
are fully controllable, we can apply the stability results
obtained in Section 2.

Subsection 4.1 deals briefly with the kinematic model.
Assuming perfect knowledge of the plant’s parame-
ters, the first proposed control law relies on a feedfor-
ward term which exactly compensates for the dynam-
ics of the system. The main drawback of this cancella-
tion strategy is that various external disturbances may
actually affect the rate of change of the plant’s param-
eter mg. These external disturbances include gravity
gradients, solar radiation pressure, and Earth’s mag-
netic field (see, for example, Slafer and Seidenstucker
(1991)). Therefore, since the dependence of the inter-
nal dynamics is linear on mg, we propose an indirect
adaptive control scheme; for details on the standard
procedure see Sastry and Bodson (1989).

Subsection 4.2 deals in full detail with the dynamic
model. We give a complete solution to the reduced
(spin-axis) stabilization problem through three differ-
ent strategies: model independent control law (PD
without feedforward term), model dependent control
law (PD plus exact feedforward cancellation) and in-
direct adaptive control law (PD plus feedforward and
adaptation law). The set of stability results that our
laws achieve is very similar to what usually obtained
in the robotics literature (Wen and Kreutz-Delgado,
1991) for passive mechanical systems: Lyapunov sta-
bility for the model independent law, exponential con-
vergence in case of exact feedforward cancellation and
asymptotic stability for the indirect adaptive control
scheme. A complete discussion on the proposed con-
trol laws is included.

4.1. PROPORTIONAL CONTROL LAWS FOR
THE KINEMATIC MODEL

Theorem 4.1 (Regulation of kinematic model)
Consider the kinematic model in equation (10) and
let ¢ € S? be the desired goal. Given the positive
definite gain K, the control law

. _ . Y2, m) (mo, m1)
—d 0 J1 K < mgy 01 _ ’

v (7T07QJ I:]2 0 :| P |:<Y7;107ﬂ,2> <m0, 71'2) )
exponentially stabilizes the state m(¢) at the goal g

from any initial condition mo(0) # —q and with time-
constant at least 1/ Apin(K7p).

In case only an estimate of the angular momentum
mg 1s available, a classical indirect adaptive control
scheme can be designed:



Theorem 4.2 (Adaptive regulation of kinematic model)
Consider system in equation (10) and let mo be the
current estimate of the unknown parameter mg. Let
the control gain K, and the adaptation gain I' be sym-
metric, positive definite matrices. Then the control
law (based on the certainty equivalence principle):

v =d(mo,q) I:j —011:| K, |:<Y7\(—10,7T1>] _ |:<M,1?w>

2 <Y7\('1077r2> <7r2,1?7,0>

—_

and the update law:

mo = —d(wo, q) rgJ—'RT vers[mo, ql,

Sa

locally, asymptotically stabilize the state mo(t) at the
goal q € S? and make mo — myg go to a constant.

4.2. PROPORTIONAL PLUS DERIVATIVE CON-
TROL LAWS FOR THE DYNAMIC MODEL

All the stability results in this section rely on a skewed
mechanical metric on S to design the Lyapunov func-
tion. Again, see Bullo ef al. (1995) for more details.
The simplest control law we propose is a PD controller
without feedforward cancellation; since no knowledge
of the model is required we call this control model
independent.

Theorem 4.3 (Model independent regulation)
Consider the dynamic model in equation (11). Given
the positive k, and the positive definite K4, the con-
trol law

_ ' - <)/7'gu ) T2 > - w1
T = kpd(ﬂ'07q) [ <)/7\?077r1> - Rd wWa )
renders the equilibrium point (g, [0 0]7) Lyapunov sta-

ble from any initial condition 7 (0) # —q and for all
kp such that

(w, Jw)

kp> —————1
P g d(7ro(0'),q')2

, (12)

Additionally the distance d(mo(t),q) converges to a
constant d < ||m0||2/(2J3kp).

The second proposed control law assumes exact can-
cellation between internal dynamics and feedforward
control so as to satisfy the hypothesis of Theorem 2.2.

Theorem 4.4 (Model dependent regulation)
Consider the system in equation (11). Given the pos-
itive definite gains K, and K4, the control law

T =

st [ w2
_ [<m07[9w7ﬂ1]>]
< k)

mo, [gw, m2])

exponentially stabilizes the state mo(t) at the goal g
from any initial condition mo(0) # —q and for all K,

)

and w such that

le% —|— szg

Amin R’p‘ Y 3 s a2
(Kp) > 72 — d(m0(0), q)

(13)

As already explained, exact cancellation of internal
drift is not a robust procedure, in that the total angu-
lar momentum mo might either be unknown or change
slowly in time. Therefore, as for the kinematic model,
we design an indirect adaptive control scheme:

Theorem 4.5 (Indirect Adaptive Regulation)
Consider the system in equation (11). Let mo be the
current estimate of mo, let the control gain K, K4
and the adaptation gain I' be symmetric, positive def-
inite matrices. Then the control law

SR LT il B b
_ [@ov[gw’mb] ,

(mo, [gw, m2])

and the update law

~—1 | W1
Ig(wx) Ky [w2:|
0
—ed(mo, q) g(wx)J ™" vers[eo, R ],

locally, asymptotically stabilize the equilibrium point
q € S? for sufficiently small e.

Remark 4.1 (Trade-off between the proposed laws)
Fach of the three proposed strategies has its own
strengths and weaknesses. From an applicative view-
point, the choice of control law can be taken on the ba-
sis of meaningful parameters, such as controller com-
plexity and stability properties versus computational
load, or required a priori knowledge of the plant’s
parameter and of the external disturbances.
complete discussion on this issue we refer for exam-
ple to Wen and Kreutz-Delgado (1991), where a full
set of model independent, model dependent and in-
direct adaptive control laws is also proposed (but for
the attitude stabilization problem).

For a

Remark 4.2 (A family of simplified control laws)
The proportional action, as stated in Section 2, is:

0

sin 6

d(p,q) Yy =

[, g], pl,

where § = d(p,q). This expression immediately sug-
gests a simplification; assuming sin(f) = 6, the model
dependent control law looks like
T = —drift + K, [_<q’ ”2>] e [“1] . (19
(g, m1) w)
The stability properties of this sin-like control law
can be verified through a Lyapunov function based
on a potential-like energy term of the form: (1 —
cos(d(mo, q))); indeed local exponential stability can
be easily proved. This simplified control law is smooth
on all S? and has an instable equilibrium point at —g;



additionally it has the drawback of exerting a decreas-
ing control for an increasing distance of state and goal
when the state is distant more than w/2.

Remark 4.3 (Gas jet actuators) So far we have dealt
with momentum wheels actuators, but the proposed
control laws also apply to the case of gas jets. The
model independent control law remains unchanged:

_ ' —<Y7.g0771'2> I w1

7 =kpd(70,q) [ (Vi ) Kg ws |
and Lyapunov stability can be proved easily through
the same proof of Theorem 4.3. In the model de-
pendent control law, we simply compensate for the
different drift:

7 = d(mo,q) Ky [?Q;fi 77:3)] ~f [i;]

_ [”WWS] (15)

a2Wi1ws

where a1 = Jo — J3, az = Js — J1. As before, condi-
tion (13) ensures the smoothness of the control law.

Note that control law in equation (15) relies on ex-
act knowledge of the inertia matrix and is not robust
with respect to retrieval or deployment of unknown
payloads. Hence we design a locally, asymptotically
adaptive control scheme based on a certainty equiva-
lence control

7 = d(m,q) Kp I:_<§}23077:S>:| K, I:w1:|

T w2
El wols
62 wiws !
coupled with the update law

d al Wil Wws
Rl o - , Vv >0.
dt [02:| i [w1w2w3 K

5. SIMULATIONS

To verify our theoretical predictions, we run simula-
tions for the dynamic model of a spacecraft with mo-
mentum wheels. We simulated the full system defined
on SO(3) x R® as described in equation (9). As is
well-known, the attitude matrix R is not a suitable
parametrization of SO(3) for computational goals; we
therefore relied on unit quaternions, enforcing the
magnitude constraint through a projection procedure.
We implemented the model independent control law
and the adaptive scheme as in Theorems 4.3 and 4.5.
An explicit expression for the adaptive control law is

([w, RTmo], e1) arcsin||z|| .
= ~ — K
’ [([wRTmoLeﬂ TR
. | wr . A —(RTq,62>
—Ky I:“"?] with z= [ (RTq,e1> )

where we used arcsin rather than arccos to avoid nu-
merical singularities. The update law for mg is as
in Theorem 4.5. We assumed the moments of inertia

to be (1.0,0.63,0.87), the constant angular momen-
tum [1,1,1]; initial conditions were R(0) = I3 and
w(0) = J 'RTmg and the final desired orientation
was ¢ = [1,0,0]”. The parameters of the various con-
troller were: k, =5, vy =5, e=1and

. 3.0 .5 . 3.0 3
RP‘[.5 1.5]’ Kd_[.:a 3.0]'
Thus, given that mo(0) = ey and ¢ = e;, we have
d(m0(0),q) = /2. The initial kinetic energy of the
spacecraft is K (0) = (w(0), Jw(0)) = 2.5 so that 5 =
kp > Le(©).70(0)) ~ 10 js a sufficient condition for

w2 —d(m(0),9)
the smoothness of the feedback (see Theorem 4.5).

The numerical simulations are reported in Figure 2
(model independent control), and Figure 3 (indirect
adaptive control). In both cases we include: my €
S? C R?® expressed in inertial coordinates (unitless),
the distance d(mo,¢) and the angular velocity w. For
the second simulation (adaptive control scheme) we
also show the estimate of the angular momentum mo.
Regarding the model independent control law: As in
the theoretical analysis (Theorem 4.3), the distance
between mo and g goes to a constant (second picture),
which satisfies bound (12). Indeed the first two com-
ponents of the angular velocity go to zero, while the
third one becomes a constant (third picture). Regard-
ing the adaptive control law: As in the theoretical
analysis (Theorem 4.5), the state of the spacecraft
converges (at least) asymptotically to the desired equi-
librium configuration (see second picture for d(mq,q)
and third picture for w; and w;), while the estimation
error goes to a steady state generically different from
zero (see fourth picture).

6. CONCLUSIONS

In this paper we have dealt with fully actuated control
systems defined on the sphere S? and in such setting
we have proposed a novel approach to regulation and
trajectory tracking problems. Our results have then
applied to a reduced attitude stabilization problem
(spin-axis stabilization). We have designed a com-
prehensive set of control laws, which differ in stabil-
ity properties, computational complexity and required
model knowledge. By and large, our (differential) ge-
ometric approach has lead to a family of simple, ver-
satile and robust control laws.

The work proposed here can be seen as a develop-
ment of previous investigations on the correct Lya-
punov function’s design (Koditschek, 1989). We rely
on the Riemannian notion of distance to achieve a sim-
ple and successful solution to global problems such as
trajectory tracking. The simplicity and efficacy of this
approach can then apply to more general Riemannian
manifolds (e.g. see Bullo ef al. (1995) for the S™ case).
Indeed, control systems defined on Lie groups belong
to this class and provide a very instructive example.
Here the topological properties of the group, such as
the compactness, influence its metric structure and
only in certain cases our approach applies straight-
forwardly; for an introduction see Bullo and Murray
(1994).
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