con grande affetto
ai miei carissimi genitori

Indice

Indice iii
Elenco delle Figure v
1 Introduzione 2
2 Modello matematico di un satellite 8
2.0.1 Notazioni 8
2.1 Elementi di meccanica dei corpi rigidi 9
2.2 Modello cinematico 11
2.2.1 Sistema in $S O(3)$ 13
2.2.2 Sistema in \mathbb{S}^{2} 14
2.3 Modello dinamico completo in $S O(3) \times \mathbb{R}^{3}$ 15
3 Strumenti algebrici e geometrici 18
3.0.1 Notazioni 18
3.1 Accenni di geometria Riemanniana 19
3.1.1 Proprietà metriche della sfera 23
3.2 Accenni di teoria dei gruppi e delle algebre di Lie 24
3.2.1 Metrica canonica in un gruppo di Lie 31
3.3 Idee intuitive su geodesiche e curve esponenziali 32
4 Il gruppo $S O(3)$ 34
4.1 Isomorfismo "forte" tra \mathbb{R}^{3} e $\mathfrak{s o}(3)$ 34
4.1.1 Cambiamenti di base in $\mathfrak{s o}(3)$ 35
4.1.2 Interpretazione geometrica dell'automorfismo Ad 36
4.1.3 Derivata temporale della rappresentazione aggiunta 36
4.2 Logaritmo e mappa esponenziale in $S O(3)$ 38
4.3 Coordinate esponenziali in $S O(3)$ 39
4.3.1 Altre parametrizzazioni 40
4.4 Sistema espresso in coordinate esponenziali 42
4.5 Metrica Riemanniana in $S O(3)$ 46
5 Strategie di controllo 50
5.1 Formulazione del problema di controllo 50
5.1.1 Strategia geodesica 53
5.1.2 Strategia minimale 53
5.1.3 Strategia adattativa 54
5.2 Sistemi definiti in gruppi di Lie 57
5.3 Sistemi definiti sulla sfera 59
6 Inseguimento in $S O(3)$ 62
6.1 Controllo con conoscenza dei parametri 64
6.2 Controllo adattativo 66
7 Regolazione in \mathbb{S}^{2} 72
7.1 Controllo con conoscenza dei parametri 73
7.2 Controllo adattativo 75
8 Simulazioni 78
8.1 Regolazione adattativa in $S O(3)$ 78
8.1.1 Parametri 82
9 Strategie per modelli del secondo ordine 86
9.0.2 Modelli dinamici definiti su varietà 86
9.1 Regolazione classica 87
9.2 Regolazione su $S O(3) \times \mathbb{R}^{3}$ 90
9.2.1 Un'altro approccio 92
9.3 Regolazione adattativa in $S O(3) \times \mathbb{R}^{3}$ 94
10 Conclusione 98
Bibliografia 100

Elenco delle figure

3.1 Lemma di Gauss. 22
3.2 Mappa esponenziale tra lo spazio Euclideo $\mathfrak{g}=T_{e} G$ e la varietà differenziale G. 27
4.1 Grafico della funzione $\alpha(x), x \in[0, \pi]$. 44
8.1 Modello del 1° ordine - Regolazione adattativa in $S O(3)$: stato ed errore di stima. Elevato guadagno nello stimatore. 82
8.2 Modello del 1° ordine - Regolazione adattativa in $S O(3)$: logaritmo naturale della norma dello stato e dell'errore di stima. Elevato guadagno nello stimatore. 83
8.3 Modello del 1° ordine - Regolazione adattativa in $S O(3)$: stato ed errore di stima. Basso guadagno nello stimatore. 84
8.4 Modello del 1° ordine - Regolazione adattativa in $S O(3)$: logari- tmo naturale della norma dello stato e dell'errore di stima. Basso guadagno nello stimatore. 84

Capitolo 1

Introduzione

Il controllo e la stabilizzazione dell'assetto di un corpo rigido costituiscono un problema classico nell'ambito del controllo nonlineare.

Lo stato di questo sistema dinamico "vive" naturalmente su di uno spazio non Euclideo, ovvero su di uno spazio che è solo localmente simile (diffeomorfo) a \mathbb{R}^{n}.

In generale un tale spazio prende il nome di varietà. L'assetto di un corpo rigido in particolare, è naturalmente definito da una matrice di rotazione che è un elemento dell'insieme delle matrici ortogonali a determinante unitario. Questa varietà prende il nome di gruppo speciale ortogonale $S O(3)$.

Complessivamente, una corretta formulazione del problema di controllo di un corpo rigido deve fare riferimento alla struttura della varietà $S O(3)$. Saranno le proprietà geometriche di questo spazio a fornirci gli strumenti necessari ad un corretta soluzione del problema posto.

In particolare $S O(3)$ possiede una struttura "metrica", ovvero tra punti della varietà è naturalmente indotta la nozione di distanza e di curva di lunghezza minima (geodesica).

Il controllo dell'assetto di un corpo rigido rientra quindi naturalmente nel più generale ambito del controllo di sistemi definiti su varietà con metrica (le cosiddette varietà Riemanniane).

In questa tesi ci proponiamo di impostare l'intero problema del controllo dell'assetto in un ambito strettamente geometrico, cercando di sfruttare al meglio dei risultati di geometria Riemanniana e di teoria dei gruppi di Lie.

Letteratura

Il problema denominato attitude control è di grande interesse tecnologico in quanto legato a problemi di robotica, controllo di satelliti, navigazione aerea, docking ...

Noi qui ci dedichiamo in particolare al caso di un satetellite controllato da propulsori ("jet-thrusters") o da dispositivi per l'interscambio della quantità di momento angolare (rotori d'inerzia).

In questo caso, l'obbiettivo è una legge di controllo in retroazione dallo stato tale da garantire stabilità globale nell'inseguimento di una traiettoria desiderata.

Su questo argomento esiste una abbondante letteratura che, partendo da metodi di linearizzazione negli anni sessanta (controllo classico), arriva a moderni metodi di controllo nonlineare.

Ricordiamo infatti come i primi metodi di risoluzione si basassero sul principio della linearizzazione attorno al punto di lavoro. All'interno di un numero estremamente elevato di controllori lineari, veniva selezionato quello più vicino alle condizioni di lavoro attuali.

Più recentemente, le moderne metodologie di controllo nonlineare geometrico sono state applicate con notevole successo (vedi [Crouch, 1984, Singh, 1987], [Wen and Kreutz-Delgado, 1991, Slotine and Benedetto, 1990]).

Distingueremo il caso del satellite dotato di tre o due attuatori: vi è infatti una notevole differenza qualitativa e quantitativa sul tipo di risultati ottenibili e sulla metodologia applicata.

Satellite con tre attuatori

Nel caso di tre attuatori, il classico [Crouch, 1984] dimostra forti proprietà di controllabilità e stabilizzabilità.

Il problema fondamentale che si incontra già al livello di formulazione del problema, consiste nel fatto che non esiste alcuna legge di controllo (campo vettore) continua, globale e asintoticamente stabilizzante in $S O(3)$, [Koditschek, 1988] e [Wen and Kreutz-Delgado, 1991]. Questo fatto scende da proprietà strutturali delle varietà compatte che si studiano in geometria. In particolare si dimostra che non esiste un campo vettore (legge continua) regolare su tutto $S O(3)$ che abbia un unico punto di equilibrio (stabile).

Così ci si deve accontentare di una legge che abbia discontinuità oppure che abbia altri punti di equilibrio (instabili) oltre a quello di equilibrio stabile. Le leggi proposte nel [Wen and Kreutz-Delgado, 1991] rientrano in questa seconda categoria. Quelle che proporremo in questa tesi, rientrano nella prima classe.

Un secondo problema è dovuto alla scelta di coordinate nella varietà. Per esempio i parametri di Gibbs [Slotine and Benedetto, 1990] oppure i classici angoli di Eulero [Singh, 1987], sono scelte di coordinate locali che non rispettano le proprietà metriche di $S O(3)$ e che introducono singolarità in punti scelti arbitrariamente.

Queste parametrizzazioni locali rendono poi impossibile costruire una funzione di Lyapunov globale per lo studio della stabilità. Accade così che la scelta migliore compiuta in letteratura sia quella dei quaternioni unitari. Grazie a questa parametrizzazione globale, [Wen and Kreutz-Delgado, 1991] riescono a costruire una
funzione di Lyapunov globale, che permette di dimostrare la stabilizzazione quasiglobale di una classe di leggi di controllo per il caso di tre attuatori indipendenti.

Occore però osservare come nemmeno la parametrizzazione a quaternioni unitari sfrutti le proprietà metriche di $S O(3)$ e conduca a costruire funzione di Lyapunov e leggi di controllo più complicate di quanto necessario.

Si noti infine che queste leggi di controllo in retroazione necessitano della conoscenza completa dello stato: matrice di rotazione e velocità angolare. Nel caso in cui si abbiano a disposizione solamente sensori di posizione, si rende necessario l'introduzione nella catena di retroazione di uno stimatore nonlineare. Rimandiamo per esempio al [?] o più in generale ai classici [Krener and Responderek, 1985, Krener and Isidori, 1983, Zeitz, 1987] per la teoria degli stimatori dello stato nonlineari.

Noi qui supponiamo che lo stato sia accessibile.

Satellite con due attuatori

Molto meno esplorato è il problema della stabilizzazione di un satellite dotato di due soli attuatori. In questo caso, l'interesse tecnologico è legato alla possibilità di eventuale avaria di uno degli attuatori.

In questo ambito, la formulazione di una legge di controllo si configura come un problema di esistenza: il famoso [Byrnes et al., 1991] dimostra la non esistenza di una legge di controreazione dalla stato che stabilizzi il sistema satellite in $S O(3)$ con due attuatori.

Solo molto recentemente, tramite l'implementazione di leggi di retroazione con una esplicita dipendenza temporale [Pomet, 1992, Teel et al., 1992], si intravede la possibilità di costruire leggi stabilizzanti per un modello di satellite con due attuatori semplificato (privo di dinamica interna).

Se, invece di considerare il controllo dell'intero stato in $S O(3)$, si pone il problema della stabilizzazione a meno di rotazioni attorno all'asse "non attuato", si riesce ancora a costruire leggi di controllo capaci di stabilizzare il sistema ridotto.

In generale gli articoli che trattano questo argomento sono piuttosto recenti e ancora non si è giunti ad una formulazione definitiva del problema. I punti deboli sono legati al solito classico problema della parametrizzazione: non globale e tale da non tenere in giusta considerazione la metrica della varietà su cui sono definiti.

Ad esempio nel [Tsiotras and Longuski, 1993] è utilizzata una parametrizzazione tramite coordinate proiettive, che sebbene molto elegante porta a due difetti finali:
[i] - non permette un'analisi globale a causa delle singolarità presenti.
[ii] - la legge di controllo è proporzionale ad una grandezza che ha scarso significato geometrico.

Gruppi ed Algebre di Lie

Le idee principali di teoria dei sistemi su gruppi di Lie sono contenute nei [Brockett, 1972, Jurdjevic and Sussmann, 1972, Brockett, 1973], ove vengono trattati problemi di controllabilità, osservabilità e realizzazione. In particolare si deve a R. W. Brockett l'aver introdotto la teoria dei gruppi di Lie nei campi del controllo e della rappresentazione di moti rigidi.

Recentemente la teoria dei gruppi e delle algebre di Lie ha ricevuto una notevole attenzione in campi ingegneristici quali la robotica ed il controllo nonlineare, vedi [Brockett, 1990, Sarti et al., 1993, Murray and Sastry, 1993, Walsh et al., 1993, Lian et al., 1993].

Tipicamente nel rappresentare un moto rigido, composto di rotazione e traslazione, l'utilizzazione della rappresentazione omogenea e del gruppo $S E(3)$ comporta i seguenti vantaggi:
[i] - rappresentazione globale non-singolare,
[ii] - descrizione concisa e significativa (geometrica), che permette di semplificare l'analisi di meccanismi (in robotica).

Il nuovissimo [Murray et al., 1994] mostra come un approccio moderno alla robotica si basi in maniera preponderante sull'introduzione dei gruppi di Lie matriciali $S O(3)$ e $S E(3)$.

Infine un articolo ove è presente un approccio in un certo senso simile al nostro è il [Gu, 1988].

Piano della tesi

Il Capitolo 2 tratta il modello dinamico del sistema satellite. In particolare viene derivato un modello del 1° ordine per un satellite controllato da rotori d'inerzia: al variare del numero di attuatori, lo stato del sistema viene naturalmente definito sulle due varietà $S O(3)$ e \mathbb{S}^{2}. Viene poi ricavato anche il modello classico (vedi letteratura) per il caso del satellite dinamico.

Nel Capitolo 3 descriviamo i principali strumenti matematici che verranno utilizzati nel corso della tesi. La motivazione per questo approfondimento viene dai modelli dinamici derivati nel Capitolo 1. Particolare importanza hanno la teoria delle varietà Riemanniane e la teoria dei gruppi e delle algebre di Lie.

Nel Capitolo 4 presentiamo uno studio completo ed approfondito dello spazio $S O(3)$, inteso come gruppo di Lie e come varietà Riemanniana. Da un lato siamo interessati alla sua algebra $\mathfrak{s o}(3)$ e dall'altro alla scelta naturale di metrica Riemanniana. Si noti come la Sezione 4.4 sia completamente originale dell'autore.

Nel Capitolo 5 descriviamo delle strategie di controllo per sistemi definiti su generiche varietà Riemanniane. Partendo da determinate ipotesi sulla varietà e sul sistema da controllare, deriviamo leggi di controllo di tipo geodesico, minimale e adattativo. In seguito poi, particolarizziamo tali strategie a sistemi definiti sulle varietà $S O(3)$ e \mathbb{S}^{2}.

Nel Capitolo 6 applichiamo le strategie di controllo appena esposte al problema della stabilizzazione dell'assetto di un satellite attuato da tre rotori d'inerzia (modello del 1° ordine).

Nel Capitolo 7 applichiamo le strategie di controllo descritte in Capitolo 5, al problema della stabilizzazione dell'orientazione di un asse di un satellite attuato da due rotori d'inerzia (modello del 1° ordine).

Nel Capitolo 8 vengono presentate delle simulazioni per la verifica numerica degli algoritmi di controllo sviluppati nei Capitoli precedenti. Particolari accorgimenti sono previsti, affinché nella simulazione di un'equazione differenziale definita in $S O(3)$ la stima dello stato si mantenga effettivamente sulla varietà.

Nel Capitolo 9 estendiamo le strategie geodesiche esposte per modelli cinematici del 1° ordine, vedi Capitoli 5 e 6 , al caso di modelli completi di dinamica degli attuatori (modello del 2° ordine).

Infine nel Capitolo 10 discutiamo promettenti direzioni in cui sviluppare l'attività di ricerca futura.

Capitolo 2

Modelli cinematici e dinamici di satellite

Abstract

In questo Capitolo formuliamo esplicitamente le equazioni che regolano il comportamento di un satellite controllato da attuatori di due tipi: rotori d'inerzia e propulsori (gas jet).

In particolare ci interessa il modello cinematico di un satellite attuato da m rotori d'inerzia. In tal caso, il principio su cui si basa il sistema di controllo è la conservazione del momento angolare totale del sistema satellite-rotori.

2.0.1 Notazioni

In quanto segue, denoteremo con il simbolo:

$$
<x, y>_{V}, \quad \text { con } \quad x, y \in V,
$$

il prodotto scalare tra i due elementi x e y dello spazio vettoriale V.
Nel caso in cuil V sia dotato di una operazione di prodotto esterno $V \times V \mapsto V$, indicheremo tale mappa con il simbolo ${ }^{1}[\cdot, \cdot]_{V}$.

Infine riserviamo il simbolo \times all'operatore: $\mathbb{R}^{3} \mapsto \mathbb{R}^{3 \times 3}$ che al vettore $x=$ $\left[x_{1}, x_{2}, x_{3}\right]^{T} \in \mathbb{R}^{3}$ associa la matrice

$$
(x \times) \triangleq\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right]
$$

Vale ovviamente

$$
\begin{aligned}
(x \times): \mathbb{R}^{3} & \mapsto \mathbb{R}^{3}, \\
y & \mapsto(x \times) y \equiv[x, y]_{\mathbb{R}^{3}} .
\end{aligned}
$$

[^0]
2.1 Elementi di meccanica dei corpi rigidi

Siano $\Sigma_{\text {assoluto }}$ e $\Sigma_{\text {solidale }}$ due sistemi di riferimento con origine nel centro di massa del corpo rigido Ω tali che $\Sigma_{\mathrm{a}} \triangleq \Sigma_{\text {assoluto }}$ sia inerziale, $\Sigma_{\mathrm{s}} \triangleq \Sigma_{\text {solidale }}$ sia solidale con il moto del corpo.

Si denoti con a il generico vettore espresso nel sistema di riferimento Σ_{a} e corrispondentemente con r la stessa grandezza espressa in Σ_{s}.

È possibile definire le matrici di rotazione ${ }^{\mathrm{a}} R_{\mathrm{s}}$ e ${ }^{\mathrm{s}} R_{\mathrm{a}}$ tali che

$$
\begin{equation*}
{ }^{\mathrm{a}} \mathrm{r}={ }^{\mathrm{a}} R_{\mathrm{s}}{ }^{\mathrm{s}} \mathrm{r}, \quad \mathrm{e} \quad{ }^{\mathrm{s}} \mathrm{r}={ }^{\mathrm{s}} R_{\mathrm{a}}{ }^{\mathrm{a}} \mathrm{r}, \tag{2.1}
\end{equation*}
$$

dove ovviamente ${ }^{\mathrm{a}} R_{\mathrm{s}}{ }^{T}={ }^{\mathrm{s}} R_{\mathrm{a}} \in S O(3)$.

Cinematica

Si denoti con ${ }^{a} \omega$ la velocità angolare del corpo rigido espressa nel sistema assoluto Σ_{a} e con ${ }^{\varsigma} \omega$ la velocità angolare del satellite espressa nel sistema solidale Σ_{s}.

Derivando le 2.1 si ottengono le seguenti relazioni cinematiche:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} R_{\mathrm{s}}(t)=\left({ }^{\mathrm{a}} \omega \times\right)^{\mathrm{a}} R_{\mathrm{s}}(t)={ }^{\mathrm{a}} R_{\mathrm{s}}(t)\left({ }^{\mathrm{s}} \omega \times\right) \tag{2.2}
\end{equation*}
$$

ed equivalenti relazioni in ${ }^{\mathrm{s}} R_{\mathrm{a}}$.

Dinamica

Ricordiamo la definizione di momento angolare di un corpo rigido Ω, calcolato rispetto al sistema di riferimento Σ :

$$
\mathbf{m} \triangleq \int_{\Omega}[\mathbf{r}, \dot{\mathbf{r}}] \rho(\mathbf{r}) \mathrm{d} \mathbf{r}
$$

dove $\rho(\mathbf{r})$ è la funzione densità di massa e \mathbf{r} e $\dot{\mathbf{r}}$ sono espressi nel sistema Σ.
Se il centro di Σ è fisso, esiste igni istante un vettore velocità angolare istantanea ω tale che $\dot{\mathbf{r}}=[\omega, \mathbf{r}]$. Pertanto

$$
\begin{aligned}
\mathbf{m} & =\int_{\Omega}[\mathbf{r},[\omega, \mathbf{r}]] \rho(\mathbf{r}) \mathrm{d} \mathbf{r} \\
& \triangleq \mathcal{I} \omega
\end{aligned}
$$

dove il secondo passaggio, sfruttando la linearità del prodotto esterno in \mathbb{R}^{3}, definisce implicitamente \mathcal{I}.

Si dice tensore d'inerzia \mathcal{I} la matrice simmetrica, definita positiva

$$
\begin{aligned}
\mathcal{I} & \triangleq \int_{\Omega}-(\mathbf{r} \times)^{2} \rho(\mathbf{r}) \mathrm{d} \mathbf{r} \\
& =\int_{\Omega}\left(\|\mathbf{r}\|^{2} I_{3}-\mathbf{r r}^{T}\right) \rho(\mathbf{r}) \mathrm{d} \mathbf{r}
\end{aligned}
$$

dove nell'ultimo passaggio abbiamo usato una banale identità (si veda Proposizione 14 a pagina 35).

Si noti che tale definizione vale in entrambii sistemi di riferimento $\Sigma_{\text {a }}$ assoluto e Σ_{s} solidale ${ }^{2}$:

$$
\begin{aligned}
& \mathrm{a} \mathrm{~m}={ }^{\mathrm{a}} \mathcal{I}{ }^{\mathrm{a}} \omega, \\
& \mathrm{~s}, \\
& \mathrm{~m}={ }^{\mathrm{I}} \mathcal{I}^{\mathrm{s}} \omega,
\end{aligned}
$$

e che quindi sostituendo le 2.1, vale per i tensori d'inerzia la ${ }^{\mathrm{I}} \mathcal{I}={ }^{\mathrm{a}} R_{\mathrm{s}}{ }^{\mathrm{s}} \mathrm{I}^{\mathrm{s}} R_{\mathrm{a}}$.
Si noti inoltre come, a seconda del sistema di riferimento, il tensore d'inerzia sia o meno costante rispetto al tempo.

Essendo il corpo fisso nel suo stesso sistema di riferimento Σ_{s}, si ha che

$$
\begin{aligned}
{ }^{\mathrm{s}} \mathcal{I} & =\text { costante } \\
{ }^{\mathrm{I}} \mathcal{I} & ={ }^{\mathrm{a}} R_{\mathrm{s}}(t){ }^{\mathrm{s}} \mathcal{I}^{\mathrm{a}} R_{\mathrm{s}}{ }^{T}(t)
\end{aligned}
$$

Non essendovi momenti esterni, vale il principio di conservazione del momento angolare, espresso nel sistema di riferimento assoluto Σ_{a} :

$$
{ }^{\mathrm{a}} \mathrm{~m}=\text { costante in } \mathbb{R}^{3},
$$

e quindi esplicitando il tutto in funzione di ${ }^{\mathrm{s}} \omega$:

$$
\begin{aligned}
{ }^{\mathrm{s}} \boldsymbol{w} & ={ }^{\mathrm{s}} \mathcal{I}^{-1}{ }^{\mathrm{s}} \mathrm{~m}, \\
& ={ }^{\mathrm{s}} \mathcal{I}^{-1 \mathrm{~s}} R_{\mathrm{a}} \mathrm{~m}, \\
& ={ }^{\mathrm{s}} \mathcal{I}^{-1}{ }^{\mathrm{a}} R_{\mathrm{s}}{ }^{T}{ }^{\mathrm{a}} \mathrm{~m} .
\end{aligned}
$$

Sostituendo nell'equazione cinematica 2.2 e definendo $g \triangleq{ }^{\mathrm{a}} R_{\mathrm{s}} \in S O(3)$, si ha:

$$
\dot{g}=g\left({ }^{\mathrm{s}} \mathcal{I}^{-1} g^{T \mathrm{a}} \mathbf{m}\right) .
$$

A questo punto è facile derivare le equazioni di Eulero che descrivono l'evoluzione temporale di ${ }^{\kappa}$.

Basta ricordare che per ogni grandezza ${ }^{\text {ar }} \mathbf{r}$ costante nel sistema di riferimento assoluto, la derivata temporale di ${ }^{\text {r }}$ è:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~s} \mathrm{r}=\left[\mathrm{r},{ }^{\mathrm{s}} \omega\right]
$$

[^1]Quindi per ${ }^{s} m$, con ${ }^{9} m$ costante, vale

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~m}=\left[\mathrm{m},{ }^{\mathrm{s}} \omega\right] . \tag{2.3}
\end{equation*}
$$

Sostituendo la relazione lineare tra momento e velocità angolare, si ottiene il famoso sistema di equazioni differenziali quadratiche in ${ }^{5} w$.

2.2 Modello cinematico del satellite attuato da rotori d'inerzia

Cercheremo ora di ripetere il procedimento della sezione precedente: il Principio di conservazione della momento angolare totale è il vincolo che dobbiamo imporre per poter descrivere la dinamica del sistema.

Una volta ottenuta una relazioni implicita nella velocità angolare ${ }^{s} \omega$ sarà, sostituiremo il suo valore all'interno dell'equazione cinematica 2.2.

Adotteremo le due seguenti assunzioni sulla geometria dei rotori:
A1 l'asse di rotazione dei rotori passa per il centro di massa del sistema satelliterotori,

A2 i rotori sono simmetrici attorno al proprio asse di rotazione.
Sia ancora Σ_{a} il sistema inerziale e Σ_{s} quello solidale con il satellite. Sia S il satellite e R_{i} il rotore i-esimo, per $i=1 \ldots m$. Valgono ancora le

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}{ }^{\mathrm{a}} R_{\mathrm{s}}(t) & ={ }^{\mathrm{a}} R_{\mathrm{s}}(t)\left({ }^{\mathrm{s}} \boldsymbol{\omega} \times\right) \\
{ }^{\mathrm{s}} \mathrm{~m} & ={ }^{\mathrm{s}} \mathcal{I} \boldsymbol{s},
\end{aligned}
$$

Inoltre sia

$$
{ }^{\mathrm{s}} \mathcal{I}_{\text {totale }}=\int_{S \cup\left\{R_{i}\right\}_{i}}\left(\|\mathbf{r}\|^{2} I_{3}-{ }^{\mathrm{s}} \mathbf{r}^{\mathrm{s}} \mathbf{r}^{T}\right) \rho\left({ }^{\mathbf{s}} \mathbf{r}\right) \mathrm{d} \mathbf{r}
$$

il quale, grazie alla assunzione $[\mathbf{A 2}]$, è costante al ruotare dei rotori.
Il momento angolare totale si scompone nella somma di 2 addendi, uno (${ }^{5} \mathrm{~m}_{\mathrm{rot} .}$ sat. .) dovuto alla rotazione di tutto il corpo satellite-rotori e l'altro (${ }^{\prime} \mathrm{m}_{\text {rot. relativarotori}}$) dovuto alla rotazione dei rotori:

$$
\begin{align*}
\mathrm{s}_{\text {totale }} & ={ }^{\mathrm{s}} \mathrm{~m}_{\text {rot. sat. }}+{ }^{\mathrm{s}} \mathbf{m}_{\text {rot. relativa rotori }} \\
& ={ }^{\mathrm{s}} \mathrm{~m}_{\text {rot. sat. }}+\sum_{i=1}^{m} \mathrm{~m}_{\text {rot. relativa rotore i-esimo }} \tag{2.4}
\end{align*}
$$

Il calcolo esplicito degli addendi di 2.4 è semplice. Vale ovviamente:

$$
{ }^{s} \mathrm{~m}_{\text {rot. sat. }}={ }^{s} \mathcal{I}_{\text {totale }}{ }^{s} \omega \text {. }
$$

Per il generico rotore i-esimo, si definiscano: ${ }^{5} n_{i}$ il versore attorno a cui ruota il rotore, (esso esiste grazie alla assunzione $[\mathbf{A 1}]$), J_{i} il momento d'inerzia del rotore attorno ad ${ }^{\mathrm{s}} \mathrm{n}_{i} \mathrm{e}{ }^{\mathrm{s}} \omega_{i}$ la velocità angolare del rotore come vista dal satellite. Vale

$$
\mathrm{m}_{\text {rot. relativa rotore i-esimo }}=J_{i}^{\mathrm{s}} \omega_{i}^{\mathrm{s}} \mathbf{n}_{i} .
$$

Riassumendo si può esprimere il principio di conservazione del momento angolare nella forma:

$$
\mathrm{m}_{\text {totale }}={ }^{\mathrm{a}} R_{\mathrm{s}}\left[{ }^{\mathrm{s}} \mathcal{I}_{\text {totale }}{ }^{\mathrm{s}} \omega+\sum_{i=1}^{m} J_{i}^{\mathrm{s}} \omega_{i} \mathbf{n}_{i}\right]=\text { costante in } \mathbb{R}^{3}
$$

Esplicitando la ${ }^{s} \omega$ si ottiene:

$$
\begin{equation*}
{ }^{\mathrm{s}} \boldsymbol{\omega}={ }^{\mathrm{s}} \mathcal{I}_{\text {totale }}^{-1}\left[{ }^{\mathrm{a}} R_{\mathrm{s}}{ }^{T}{ }^{\mathrm{a}} \mathbf{m}_{\text {totale }}-\sum_{i=1}^{m} J_{i}{ }^{\mathrm{s}} \boldsymbol{\omega}_{i} \mathbf{n}_{i}\right] \tag{2.5}
\end{equation*}
$$

Indicando ora con $J \triangleq{ }^{\Delta} \mathcal{I}_{\text {totale }}, \quad \mathbf{x}_{i} \triangleq \operatorname{vers}\left[J^{-1} \mathbf{n}_{i}\right]$ e $u_{i} \triangleq-J_{i}\left\|J^{-1 \mathrm{~s}} \mathbf{n}_{i}\right\|^{s} \omega_{i}$, si ha infine:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} R_{\mathrm{s}}(t)={ }^{\mathrm{a}} R_{\mathrm{s}}(t)\left({ }^{\mathrm{s}} \omega \times\right) \tag{2.6}\\
\mathrm{s} \omega=J^{-1 \mathrm{a}} R_{\mathrm{s}}{ }^{T} \mathrm{a} \mathrm{~m}_{\text {totale }}+\sum_{i=1}^{m} \mathbf{x}_{i} u_{i}
\end{array}\right.
$$

Si noti come a $u_{i}=0$, le equazioni si riducono a quelle del moto di un corpo rigido.

Osservazione 1 (Assunzione Cruciale) Per poter esprimere la dinamica del sistema come equazione differenziale nella varietà $S O(3)$ (al posto che nella varietà $S O(3) \times \mathbb{R}^{3}$) è necessaria l'ipotesi che sia possibile controllare direttamente la velocità delle ruote.

Grazie a ciò, si può inoltre esprimere il sistema sotto forma di equazioni differenziali del 1° ordine (e non del $\mathfrak{2}^{\circ}$, come sarebbe ovviamente necessario assumendo un controllo della forma $\tau_{i}=J_{i}{ }^{\mathrm{s}} \dot{ }_{i}$).

In altri termini noi trascuriamo la dinamica degli attuatori, assumendola molto più veloce delle altre dinamiche presenti nel sistema.

Questa assunzione è tipica di lavori nell'ambito del motion planning e del controllo nonolonomo.

2.2.1 Sistema in $S O(3)$

Siamo finalmente in grado di esprimere il sistema satellite come equazione differenziale in $S O(3)$.

Si definisca $g \triangleq{ }^{\Delta} R_{\mathrm{s}} \in S O(3)$ stato del sistema in $S O(3)$, sia $y_{0}={ }^{\mathrm{a}} \mathrm{m}_{\text {totale }} \mathrm{e}$ siano $X_{i} \triangleq\left(x_{i} \times\right)$. L'equazione finale è quindi:

$$
\left\{\begin{array}{l}
\dot{g}=g Y(g)+g \sum_{i=1}^{m} X_{i} u_{i}(t) \tag{2.7}\\
Y(g)=\left(J^{-1} g^{T} y_{0}\right) \times
\end{array}\right.
$$

con $y_{0} \in \mathbb{R}^{3}$ momento angolare totale (espresso in $\Sigma_{\mathbf{a}}$ e quindi costante) e J tensore d'inerzia del sistema complessivo satellite-rotori.

Osservazione 2 Si noti come nel [Walsh and Sastry, 1991] un procedimento simile sia stato seguito per un satellite attuato da 2 rotori e con momento angolare totale nullo. L'equazione descritta in letteratura \grave{e} :

$$
\dot{g}=g\left[X_{1} u_{1}(t)+X_{2} u_{2}(t)\right]
$$

che corrisponde esattamente al nostro modello.
D'ora innanzi si suppone che le direzioni X_{i} siano indipendenti. In caso contrario è molto semplice eseguire una ortogonalizzazione delle stesse, ridefinendo i controlli u_{i}.

Osservazione 3 (Tre attuatori) Si nota subito che avendo a disposizione tre attuatori indipendenti è possibile annullare la dinamica propria del sistema e seguire una qualunque traiettoria in $S O(3)$.

Si ricorda brevemente che tre attuatori indipendenti significano nel nostro caso che:

$$
\begin{equation*}
\operatorname{span}\left[X_{i}\right]_{i=1,2,3}=\mathfrak{s o}(3), \quad \Rightarrow \quad \operatorname{span}\left[g X_{i}\right]_{i=1,2,3}=T_{g} S O(3), \quad \forall g \in S O(3) \tag{2.8}
\end{equation*}
$$

Secondo le definizioni della teoria del Controllo Nonlineare, vedi [Isidori, 1989] e [Nijmeijer and Van der Schaft, 1990], questo sistema soddisfa le condizioni di accessibilità e controllabilità globale.

Torneremo più avanti sulle implicazioni dell'equazione 2.8.
Lemma 4 Sia $A \in \mathbb{R}^{3 \times 3}$ simmetrica e tale che $\operatorname{det}(A)=1$.
Allora per ogni vettore $y \in \mathbb{R}^{3}$

$$
\left(A^{-1} y\right) \times=A(y \times) A
$$

La dimostrazione consiste in una semplice verifica (lunga e noiosa).
Dato che il nostro J è simmetrico (ed anche definito positivo), segue che ridefinendo $y_{0}=y_{0} \operatorname{det} J^{1 / 3}$ e $J=J \operatorname{det} J^{-1 / 3}$ si può scrivere il drift nella forma equivalente:

$$
\begin{equation*}
Y(g)=J \operatorname{Ad}_{g^{T}}\left(y_{0} \times\right) J=J \operatorname{Ad}_{g^{T}}\left(Y_{0}\right) J \tag{2.9}
\end{equation*}
$$

2.2.2 Sistema in \mathbb{S}^{2}

Si supponga ora invece di avere a disposizione solo 2 rotori:

$$
\left\{\begin{aligned}
\dot{g} & =g Y(g)+g X_{1} u_{1}(t)+g X_{2} u_{2}(t) \\
Y(g) & =\left(J^{-1} g^{T} y_{0}\right) \times, \quad X_{i}=\left(x_{i} \times\right)
\end{aligned}\right.
$$

Sia $x_{0}=\left[x_{1}, x_{2}\right]_{\mathbb{R}^{3}}$ e si supponga, senza perdità di generalità, che $\left\{x_{0}, x_{1}, x_{2}\right\}$ sia una base ortonormale destrorsa di \mathbb{R}^{3}. Avendo a disposizione solamente due attuatori, rinunciamo a controllare l'intero stato $g \in S O(3)$ e ci limitiamo a stabilizzare il satellite a meno di una rotazione attorno all'asse x_{0}.

Il nostro nuovo sistema vive dunque in $S O(3) / S O(2)=\mathbb{S}^{2} \subset \mathbb{R}^{3}$.
Per poterne dare l'equazione di stato, definiamo le proiezioni

$$
\begin{aligned}
\pi_{i}: S O(3) & \longmapsto \mathbb{S}^{2} \\
g & \longmapsto \pi_{i}(g)=g x_{i}, \quad i=0,1,2
\end{aligned}
$$

Si noti come $\left\{\pi_{0}, \pi_{1}, \pi_{2}\right\}$ sia una base ortonormale di \mathbb{R}^{3}.
L'orientazione $\pi_{0} \in \mathbb{S}^{2} \subset \mathbb{R}^{3}$ diviene lo stato del nuovo sistema satellite. Conseguentemente il nostro scopo diviene la regolazione della orientazione dell'asse del satellite x_{0} : il punto $\pi_{0} \in \mathbb{S}^{2}$ infatti rappresenta esattamente l'orientazione x_{0} espressa in coordinate inerziali.

Calcoliamo allora la dinamica di π_{0}. Sia $y(g)=J^{-1} g^{T} y_{0}$:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0} & =\dot{g} x_{0}=g\left(Y(g) x_{0}+X_{1} x_{0} u_{1}+X_{2} x_{0} u_{2}\right) \\
& =g\left(\left[y(g), x_{0}\right]+\left[x_{1}, x_{0}\right] u_{1}+\left[x_{2}, x_{0}\right] u_{2}\right) \\
& =g\left(\left[x_{1}, x_{0}\right]\left[u_{1}+<x_{1}, y(g)>_{\mathbb{R}^{3}}\right]+\left[x_{2}, x_{0}\right]\left[u_{2}+<x_{2}, y(g)>_{\mathbb{R}^{3}}\right]\right) \\
& =-\pi_{2}\left(u_{1}+<x_{1}, y(g)>_{\mathbb{R}^{3}}\right)+\pi_{1}\left(u_{2}+<x_{2}, y(g)>_{\mathbb{R}^{3}}\right) . \tag{2.10}
\end{align*}
$$

A meno di una semplice ridenominazione degli ingressi, $\left(v_{1}, v_{2}\right)=\left(u_{2},-u_{1}\right)$, possiamo scrivere:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}=\operatorname{drift}(g)+\pi_{1} v_{1}+\pi_{2} v_{2}
$$

ottenendo così un sistema dinamico in \mathbb{S}^{2} con due ingressi.
A questo punto, l'Osservazione 3, può essere riformulata per il nuovo sistema:

Osservazione 5 (Due attuatori) Avendo a disposizione due attuatori indipendenti è possibile annullare la dinamica propria del sistema e seguire una qualunque traiettoria in \mathbb{S}^{2}.

Vale quindi ancora la

$$
\begin{equation*}
\operatorname{span}\left\{\pi_{1}(g), \pi_{2}(g)\right\}=T_{\pi_{0}(g)} \mathbb{S}^{2} \tag{2.11}
\end{equation*}
$$

Secondo le definizioni della teoria del Controllo Nonlineare, vedi [Isidori, 1989] e [Nijmeijer and Van der Schaft, 1990], questo sistema soddisfa le condizioni di accessibilità e controllabilità globale.

2.3 Modello dinamico completo del satellite

In questa Sezione, vogliamo includere la dinamica degli attuatori nel modello cinematico 2.7:

Rotori d'inerzia Riportiamo per comodità l'espressione della velocità angolare nell'espressione 2.5:

$$
J \omega=g^{T} y_{0}+\sum_{i=1}^{m} x_{i} u_{i}
$$

dove x_{i} e u_{i} sono definiti in maniera leggermente diversa rispetto alla Sezione 2.2: $x_{i} \triangleq$ vers $\left[\mathrm{n}_{i}\right]$ e $u_{i} \triangleq-J_{i}{ }^{\mathrm{s}} \tilde{w}_{i}$.
Basta a questo punto derivare tale equazione per ottenere la dinamica di ω :

$$
J \dot{\omega}=\left[g^{T} m_{0}, \omega\right]+\sum_{i=1}^{m} x_{i} \frac{\mathrm{~d}}{\mathrm{~d} t} u_{i}
$$

cosicché il sistema satellite-rotori completo di dinamica degli attuatori è descritto da:

$$
\left\{\begin{array}{l}
\dot{g}=g(\omega \times) \tag{2.12}\\
J \dot{\omega}=\left[g^{T} m_{0}, \omega\right]+\sum_{i=1}^{m} x_{i} \tau_{i},
\end{array}\right.
$$

dove lo stato $(g, \omega) \in S O(3) \times \mathbb{R}^{3}$ e gli ingressi $\tau_{i}=\frac{\mathrm{d}}{\mathrm{d} t} u_{i} \in \mathbb{R}, \quad i=1, \ldots, m$ sono i momenti meccanici applicati ai rotori (a meno di un fattore di scala).

Propulsori Si può inoltre facilmente ottenere una simile espressione per il caso di attuatori di tipo propulsori (gas jet). Le equazioni di Eulero 2.3 si modificano nella forma:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} m=\left[{ }^{\mathrm{s}} m, \omega\right]+{ }^{\mathrm{s}} \tau
$$

dove ${ }^{s} m$ è il momento angolare totale dell sistema satellite-rotori e ${ }^{s} \tau$ è il momento meccanico totale applicato al satellite. Sostituendo la ${ }^{\mathrm{s}} m \triangleq J^{s} \omega=$ $J \omega$, si ha

$$
\frac{\mathrm{d}}{\mathrm{~d} t} J \omega=[J \omega, \omega]+\sum_{i=1}^{m} x_{i} \tau_{i}
$$

ovvero per l'intero sistema:

$$
\left\{\begin{array}{l}
\dot{g}=g(\omega \times) \tag{2.13}\\
J \dot{\omega}=[J \omega, \omega]+\sum_{i=1}^{m} x_{i} \tau_{i}
\end{array}\right.
$$

Come prima, lo stato è $(g, \omega) \in S O(3) \times \mathbb{R}^{3}$ e gli ingressi sono le $\tau_{i} \in \mathbb{R}, \quad i=$ $1, \ldots, m$, che rappresentano i momenti meccanici applicati al satellite dai propulsori (a meno di un fattore di scala).

Si noti come entrambe le espressioni per la dinamica di ω possano essere scritte nella forma:

$$
\dot{\omega}=f(g, \omega)+\sum_{i=1}^{m} g_{i} u_{i}
$$

dove a cambiare è solamente l'espressione del drift:

$$
\begin{aligned}
f_{\text {propulsori }}(g, \omega) & \triangleq J^{-1}[J \omega, \omega] \\
f_{\text {rotori }}(g, \omega) & \triangleq J^{-1}\left[g^{T} m_{0}, \omega\right]
\end{aligned}
$$

Osservazione 6 (Confronto con Letteratura) Si noti come il sistema satellite con rotori 2.12 e con propulsori 2.13 sia già descritto in letteratura (si veda per esempio il classico [Crouch, 1984, pagine 322 e 323, equazioni (1) e (6)]).

Capitolo 3

Strumenti algebrici e geometrici

In questo Capitolo descriviamo i principali strumenti matematici che verranno utilizzati nel seguito. Particolare importanza hanno la teoria delle varietà Riemanniane e la teoria dei gruppi e delle algebre di Lie.

3.0.1 Notazioni

Si presuppone in seguito una conoscenza di base di Geometria Differenziale e di Controllo Nonlineare Geometrico. Vedi i Capitoli III e IV del [Boothby, 1975] oppure l'Appendice A dell' [Isidori, 1989].

Fissiamo qui solamente alcune notazioni.
Con il termine varietà di grado n intendiamo un insieme localmente omeomorfo a \mathbb{R}^{n}. Una varietà che ammette una struttura differenziale ${ }^{1}(\phi, U)$ completa, si dice varietà differenziale.

Siano date due varietà differenziali M e N e una mappa

$$
\begin{aligned}
f: M & \mapsto N \\
p & \mapsto f(p) .
\end{aligned}
$$

La mappa f si dice regolare se appartiene a $C^{\infty}(M, N)$, ovvero se ammette infinite derivate tutte continue. In particolare chiameremo $C^{\infty}(M)$ l'insieme delle funzioni regolari di M in \mathbb{R}.

La mappa f si dice un diffeomorfismo tra le due varietà M e N se f è biiettiva e sia f che f^{-1} sono regolari.

Sia dato un punto $p \in M$. Si dice spazio tangente a M in p, l'insieme delle funzioni (derivazioni) $X_{p}: C^{\infty}(M) \mapsto \mathbb{R}$ tali che per ogni $\alpha, \beta \in \mathbb{R}$ e per ogni $f, g \in C^{\infty}(M)$, valga

[^2]i) $X_{p}(\alpha f+\beta g)=\alpha X_{p}(f)+\beta X_{p}(g)$,
ii) $X_{p}(f g)=X_{p}(f) g(p)+f(p) X_{p}(g)$.

Lo spazio tangente a M in p si denota con il simbolo $T_{p} M$ ed è dotato della struttura di spazio vettoriale tramite le operazioni:

$$
\begin{aligned}
\left(X_{p}+Y_{p}\right)(f) & =X_{p}(f)+Y_{p}(g) \\
\left(\alpha X_{p}\right)(f) & =\alpha X_{p}(f) .
\end{aligned}
$$

Un elemento generico dello spazio tangente viene chiamato vettore tangente.
Si consideri la funzione regolare $f: M \mapsto N$ tra le due varietà differenziali M e N : si dice mappa tangente di f al punto $p \in M$, la funzione

$$
\begin{aligned}
(\mathrm{d} f): T_{p} M & \mapsto T_{f(p)} N \\
X_{p} & \mapsto(\mathrm{~d} f) X_{p} \in T_{f(p)} N,
\end{aligned}
$$

dove la derivazione $(\mathrm{d} f) X_{p}$ è definita da:

$$
(\mathrm{d} f) X_{p}(\lambda) \triangleq X_{p}(\lambda \circ f)
$$

dove con il simbolo o denotiamo l'operatore composizione di funzioni e dove $\lambda \in$ $C^{\infty}(N)$, cioè $\lambda: N \mapsto \mathbb{R}$.

Un campo vettore regolare in M è una mappa regolare X, che associa ad un punto $p \in M$ un vettore tangente $X_{p} \in T_{p} M$.

Denotiamo con il simbolo $\mathcal{X}(M)$ l'insieme dei campi vettori di M. Ovvero $X \in \mathcal{X}(M)$ è tale che

$$
p \in M \quad \mapsto \quad X_{p} \in T_{p} M
$$

3.1 Accenni di geometria Riemanniana

Riferimento principale è il [Boothby, 1975, pagine 181-190, 241-248 e 338-360]. Altre fonti sono l'[Helgason, 1978] ed il [Klingenberg, 1982]. Si veda il [Fegan, 1991] per un trattazione meno approfondita.

Sia V spazio vettoriale sul corpo \mathbb{R}, una forma bilineare su V è una mappa $\Phi: V \times V \mapsto \mathbb{R}$, lineare in entrambe le variabili. Una forma bilineare simmetrica $(\Phi(v, w)=\Phi(w, v))$ e definita positiva $(\Phi(v, v) \geq 0, \forall v$ e $\Phi(v, v)=0 \Rightarrow v=0)$, si dice prodotto interno.

Uno spazio vettoriale dotato di prodotto interno si dice spazio vettoriale Euclideo, visto che è possibile definire la lunghezza di un vettore $\|v\| \triangleq(\Phi(v, v))^{1 / 2} \mathrm{e}$ conseguentemente la distanza tra punti.

Nel caso in cui il sistema dinamico sotto studio sia definito su di una varietà differenziale, occorre allora introdurre alcune notazioni di geometria Riemanniana per poter parlare di proprietà metriche dello spazio.

Definizione 1 Un campo Φ di forme bilineari in una varietà M è una legge che assegna ad ogni $p \in M$, una forma bilineare $\Phi_{p}: T_{p} M \times T_{p} M \mapsto \mathbb{R}$.

Definizione 2 Una varietà M in cui sia definito un campo di forme bilineari simmetriche e definite positive Φ, si chiama varietà Riemanniana (Φ prende il nome di struttura Riemanniana su M).

Grazie alla struttura di spazio Euclideo dello spazio tangente $T M$, la varietà M diviene uno spazio metrico. Infatti, grazie al prodotto interno in $T M$, si definiscono in M lunghezza di una curva, distanza tra punti e curve geodesiche:

Definizione 3 Sia data $\gamma:[a, b] \subset \mathbb{R} \mapsto M$, curva in M. Si definisce la lunghezza della curva $\gamma(t), t \in[a, b]$ come:

$$
L(c) \triangleq \int_{a}^{b} \sqrt{\Phi_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} \mathrm{d} t
$$

Si può dimostrare che la definizione non dipende dalla particolare scelta della parametrizzazione della curva e che quindi una scelta canonica sarebbe la lunghezza d^{\prime} 'arco $s(t)=\int_{a}^{t}[\Phi(\dot{\gamma}(\tau), \dot{\gamma}(\tau))]^{1 / 2} \mathrm{~d} \tau$.

Definizione 4 Si definisce la distanza tra punti:

$$
\operatorname{dist}(p, q) \triangleq \inf \{L(\gamma): \gamma(t) \text { è curva da } p \text { a } q\}
$$

per ogni $p, q \in M$.
E si possono infine definire le curve geodesiche, analoghe nella varietà Riemanniana delle rette della geometria Euclidea.

Definizione 5 Un curva $\gamma:[a, b] \mapsto M$ è geodesica se dati ogni suoi due punti p e q sufficientemente vicini, la distanza tra p e q è uguale alla lunghezza di γ nel tratto pq.

Ovvero la curva γ si dice geodesica ${ }^{2}$ se è la curva a lunghezza minima per ogni coppia di suoi punti sufficientemente vicini.

[^3]Le curve geodesiche generalizzano alle varietà Riemanniane le linee rette della geometria Euclidea, nel senso che sono soluzione di equazioni differenziali nelle quali il campo vettore è in un qualche senso "parallelo" (costante).

Diamo qui di seguito una versione leggermente semplificata del Teorema 5.8 presentato nel [Boothby, 1975].

Teorema 1 (Esistenza ed unicità delle geodesiche) Sia M una varietà

 Riemanniana, $p \in M$ e V intorno opportuno di p.Allora esiste $\epsilon=\epsilon(p)$ tale che $\forall X_{p} \in T_{p} M$ con $\left\|X_{p}\right\|<\epsilon$, esiste una sola geodesica

$$
p(t)=p\left(t, p, X_{p}\right)
$$

definita per $t \in[-1,1]$ con $p(0)=\left.p e\left(\frac{\mathrm{~d}}{\mathrm{~d} t} p(t)\right)\right|_{t=0}=X_{p}$.
Definizione 6 Si definisce la mappa esponenziale ${ }^{3}$ per ogni punto $p \in M$:

$$
\begin{aligned}
\operatorname{Exp}_{p}:\left\{X_{p}:\left\|X_{p}\right\|<\epsilon\right\} \subset T_{p} M & \longmapsto M \\
X_{p} & \longmapsto \operatorname{Exp}_{p}\left(X_{p}\right)=\operatorname{Exp}\left(X_{p}\right)=p(1),
\end{aligned}
$$

dove $p(t)$ e ϵ sono descritti nel Teorema precedente.
Pertanto $\operatorname{Exp}\left(X_{p}\right)$ è il punto dell'unica geodesica $p(t)$ determinata da X_{p}, la cui distanza da p è $\left\|X_{p}\right\|=\left[\Phi_{p}\left(X_{p}, X_{p}\right)\right]^{1 / 2}$. Ovviamente la $\operatorname{Exp}\left(t X_{p}\right)$ definita per t piccoli, è proprio la geodesica che passa per p con "tangente" X_{p}.

Si potrebbe a questo punto dimostrare che la mappa esponenziale è un diffeomorfismo di un intorno di $0_{p} \in T_{p} M$ in un intorno del punto $p \in M$. Ha pertanto senso definire infine quelle che sono chiamate coordinate normali.

In quanto segue chiameremo versore geodesico (e lo indicheremo con il simbolo $\left.Y_{p}(p, q) \in T_{p} M\right)$ il vettore tangente a M in p, di norma unitaria e diretto nella direzione geodesica dal punto p verso il punto q.

Defininiamo inoltre la sfera geodesica $S_{r}(p) \subset M$ di centro p e raggio $r<\epsilon(p)$ come l'immagine diffeomorfa secondo la mappa Exp_{p} di $B_{\epsilon}\left(0_{p}\right)=\left\{\left\|X_{p}\right\|=r, \forall r<\epsilon\right\}$ intorno del punto $0_{p} \in T_{p} M$. In formule:

$$
S_{r}(p) \triangleq \operatorname{Exp}_{p}\left(\left\{X_{p} \in T_{p} M:\left\|X_{p}\right\|=r<\epsilon\right\}\right)
$$

Con le notazioni appena introdotte, si enuncia infine un risultato che viene ricordato con il nome di Lemma di Gauss:

[^4]

Figura 3.1: Lemma di Gauss.
Proposizione 7 (Lemma di Gauss) Sia data la coppia di punti (p, q) a distanza $r=\operatorname{dist}(p, q)$, allora la geodesica che passa per il punto p verso q è ortogonale (in $T M)$ alla sfera geodesica $S_{r}(q)$.
In formule, per ogni coppia (p, q), distante $r=\operatorname{dist}(p, q)$, vale

$$
Y_{p}(p, q) \perp X_{p}, \quad \forall X_{p} \in T_{p} S_{r}(q)
$$

Una varietà Riemanniana può pertanto essere rappresentata localmente come illustrato in Figura 3.1.

Un ultimo risultato teorico che risulterà utile, riguarda la nozione di "completezza" della varietà. Esistono due concetti di completezza per varietà Riemanniane: completezza metrica e completezza geodesica.

La varietà Riemanniana M si dice completa metricamente se è completa come spazio metrico, cioè se per ogni coppia di punti esiste un segmento geodesico che li unisce.

La varietà Riemanniana M si dice completa geodesicamente se ogni geodesica può essere estesa a tutto \mathbb{R}, ovvero se ogni segmento geodesico $\gamma_{I}: I=[a, b] \mapsto M$ può essere prolungato a $\gamma_{\mathbb{R}}: \mathbb{R} \mapsto M$.
Teorema 2 (Hopf-Rinow) Sia M una varietà Riemanniana.
Le seguenti proprietà sono equivalenti:

- M è completa come spazio metrico.
- M è geodesicamente completa.

Per una trattazione più approfondita si veda l'ottimo [Klingenberg, 1982].
Dal nostro punto di vista interessa il fatto che, se la varietà M è completa, allora esiste sempre una geodesica che unisce due suoi punti presi a piacere.

3.1.1 Proprietà metriche della sfera

Diamo qui un esempio molto concreto delle definizioni e proprietà descritte finora. Descriviamo infatti le proprietà metriche dello spazio \mathbb{S}^{2} inteso immerso in \mathbb{R}^{3} in modo canonico:

$$
\mathbb{S}^{2} \triangleq\left\{[x, y, z]^{T} \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

Essendo $T \mathbb{S}^{2} \subset \mathbb{R}^{3}$, è ivi indotta una struttura Riemanniana in maniera canonica:

$$
\forall X_{p}, Y_{p} \in T_{p} S^{2}, \quad<X_{p}, Y_{p}>_{T_{p} \mathbb{S}^{2}} \triangleq<X_{p}, Y_{p}>_{\mathbb{R}^{3}}
$$

Valgono allora le seguenti:
Le curve geodesiche di \mathbb{S}^{2} sono le circonferenze di raggio massimo. Pertanto la curva a distanza minima che unisce due generici punti $p, q \in$ \mathbb{S}^{2} è la rotazione attorno all'asse vers $[p, q]$ di una angolo $\arccos [\langle p, q\rangle]$, dove

$$
\arccos :[-1,+1] \mapsto[0, \pi] .
$$

Ad ogni punto $p \in \mathbb{S}^{2}$, il versore geodesico risulta essere:

$$
Y_{p}(p, q) \equiv \operatorname{vers}[p,[q, p]] \in T_{p} \mathbb{S}^{2}
$$

Siano allora dati due punti p, q e sia γ l'arco di raggio massimo che li unisce. Con brevi calcoli si dimostra che la distanza tra p e q è:

$$
\operatorname{dist}(p, q)=L(\gamma)=\text { angolo minimo }=\arccos [\langle p, q\rangle]
$$

Avendo chiarito le definizioni di geodesica e di distanza tra punti di \mathbb{S}^{2}, ha senso ora definire l'errore di orientazione tra due punti $p, q \in \mathbb{S}^{2}$, nel seguente modo:

$$
\begin{equation*}
e(p, q) \triangleq \arccos [\langle p, q\rangle] \operatorname{vers}[p, q], \quad \in \mathbb{R}^{3} . \tag{3.1}
\end{equation*}
$$

Ovviamente vale la

$$
q=\mathrm{e}^{(\mathrm{e}(p, q) \times)} p
$$

Supponendo di partire da $p(0)$ e dirigersi verso q costante lungo la geodesica che unisce $p(0)$ a q, vale allora per l'errore $e(t)=e(p(t), q)$:

$$
\operatorname{vers}[e(p(t), q)]=\text { costante in } \mathbb{R}^{3} .
$$

3.2 Accenni di teoria dei gruppi e delle algebre di Lie

Riferimenti standard sono: il [Warner, 1989], di grande utilità didattica, ed il più complesso e preciso [Helgason, 1978]. Per certi punti inoltre anche [Boothby, 1975] e [Fegan, 1991] posso risultare più appropriati.

Definizione 7 (Gruppo di Lie) Sia G un gruppo e nel contempo una varietà differenziabile. G si dice gruppo di Lie se la mappa $G \times G \mapsto G$ definita da $(\sigma, \tau) \mapsto \sigma \tau^{-1}$ è di classe C^{∞}.

Si noti che genericamente ${ }^{4}$ indichiamol'operazione di gruppo tramite il semplice accoppiamento di due elementi.

Definizione 8 (Algebra di Lie) Uno spazio vettoriale V si dice algebra di Lie se possiede un prodotto esterno, ciò̀ una mappa $V \times V \mapsto V$ che alla coppia $X, Y \in V$ associa l'elemento $[X . Y] \in V$, che soddisfi le seguenti proprietà:

1. è bilineare: $\left[a_{1} X_{1}+a_{2} X_{2}, Y\right]=a_{1}\left[X_{1}, Y\right]+a_{2}\left[X_{2}, Y\right]$
2. \grave{e} antisimmetrica: $[X, Y]=-[Y, X]$.
3. soddisfa l'eguaglianza di Jacobi: $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.

Segue una descrizione dei principali argomenti di teoria dei gruppi e delle algebre di Lie.

Traslazione a destra e sinistra Sia $\sigma \in G$, si definiscono i diffeomorfismi traslazione a destra R_{σ} e traslazione a sinistra L_{σ}, nel seguente modo:

$$
L_{\sigma}(\tau) \triangleq \sigma \tau, \quad \mathrm{e} \quad R_{\sigma}(\tau) \triangleq \tau \sigma
$$

Definizione 9 (Campi vettore invarianti a sinistra) Un campo vettore $X \in \mathcal{X}(M)$ si dice invariante a sinistra se:

$$
\left(\mathrm{d} L_{\sigma}\right) X=X \circ L_{\sigma}
$$

dove $\mathrm{d} L_{\sigma}$ è la mappa tangente di L_{σ}.
Dato un generico gruppo di Lie G, si definisce $\mathfrak{g} \triangleq \mathcal{L}(G)$ l'insieme dei campi vettore invarianti a sinistra di G. Valgono allora i seguenti fatti:

[^5]1. \mathfrak{g} è uno spazio vettoriale ed è isomorfo a $T_{e} G$ tramite la mappa $\alpha: \mathfrak{g} \mapsto$ $T_{e} G$ che ad ogni $X \in \mathfrak{g}$ associa il suo valore all'identità: $\alpha(X)=X_{e}$.
2. \mathfrak{g} è un'algebra di Lie sotto l'operazione di parentesi di Lie definita in $T G$.

Esempi di queste definizioni sono il gruppo di Lie $G L(n)$ e la sua algebra $\mathfrak{g l}(n)$:

$$
\begin{aligned}
G L(n) & \triangleq\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A) \neq 0\right\} \\
\mathfrak{g l}(n) & \equiv \mathbb{R}^{n \times n}
\end{aligned}
$$

Si noti come in $G L(n)$ l'operazione di gruppo sia semplicemente la moltiplicazione tra matrici (che conserva la non-singolarità), mentre l'operazione di prodotto esterno in $\mathfrak{g l}(n)$ risulta essere il famoso commutatore matriciale:

$$
[X, Y]_{\mathfrak{g l}(n)} \triangleq X Y-Y X
$$

Omomorfismi di gruppi ed algebre Siano (G, \circ) e (H, \diamond) due gruppi di Lie con le loro rispettive operazioni, una mappa $\phi: G \mapsto H$ si dice omomorfismo di gruppo di Lie, se

$$
\phi\left(\sigma \circ \tau^{-1}\right)=\phi(\sigma) \diamond \phi(\tau)^{-1}, \quad \forall \sigma, \tau \in G .
$$

Siano \mathfrak{g} e \mathfrak{h} due algebre di Lie, una mappa $\psi: \mathfrak{g} \mapsto \mathfrak{h}$ si dice omomorfismo di algebre di Lie, se è lineare e se

$$
\psi([X, Y] \mathfrak{g})=[\psi(X), \psi(Y)]_{\mathfrak{h}}, \quad \forall X, Y \in \mathfrak{g}
$$

Se il codominio dell'omomorfismo ϕ è $G L(n)$, allora ϕ si dice rappresentazione del gruppo G. Corrispondentemente, se il codominio dell'omomorfismo ψ è $\mathfrak{g l}(n)$, allora ψ si dice rappresentazione dell'algebra \mathfrak{g}.

Teorema 3 Siano G e H gruppi di Lie e $\mathfrak{g} e \mathfrak{h}$ le loro rispettive algebre, sia inoltre ϕ un omomorfismo di gruppi.
Allora la restrizione all'identità e_{G} della mappa tangente di ϕ :

$$
\left.\mathrm{d} \phi\right|_{e_{G}}: T_{e_{G}} G \mapsto T_{\phi\left(e_{G}\right)} H \equiv T_{e_{H}} H,
$$

è un omomorfismo di Lie algebre.

Teorema 4 (Corrispondenza tra omomorfismi) Siano G e H gruppi di Lie e sia G connesso, e sia inoltre $\psi: \mathcal{L}(G) \mapsto \mathcal{L}(H)$ un omomorfismo tra algebre di Lie.
Allora esiste un'unico omomorfismo di gruppi di Lie $\phi: G \mapsto H$ tale che $\mathrm{d} \phi \equiv \psi$.

Sottogruppi e sottoalgebre Un sottoinsieme $H \subset G$ che sia chiuso rispetto all'operazione di gruppo, si dice sottogruppo di G.
A sua volta, un sottospazio vettoriale $\mathfrak{h} \subset \mathfrak{g}$ si dice sottoalgebra se $[X, Y] \in \mathfrak{h}$ per ogni $X, Y \in \mathfrak{h}$.

Teorema 5 Vi è una corrispondenza biunivoca tra le sottoalgebre di $\mathfrak{g}=$ $\mathcal{L}(G)$ e i sottogruppi connessi di G.

Mappa esponenziale Un omomorfismo $\phi:(\mathbb{R},+) \mapsto(G, \circ)$ si dice sottogruppo unidimensionale di G.

Sia G un gruppo di Lie e $\mathfrak{g}=\mathcal{L}(G)$. Sia inoltre $X \in \mathfrak{g}$. Allora

$$
\lambda \frac{\mathrm{d}}{\mathrm{~d} t} \mapsto \lambda X
$$

è un omomorfismo tra le algebre di Lie $T_{0} \mathbb{R}$ e \mathfrak{g}, e a norma del Teorema 4 è univocamente determinato il sottogruppo unidimensionale di G

$$
\exp _{X}: \mathbb{R} \mapsto G
$$

tale che

$$
\operatorname{dexp}_{X}\left(\lambda \frac{\mathrm{~d}}{\mathrm{~d} t}\right)=\lambda X
$$

Definizione 10 Si dice mappa esponenziale la mappa

$$
\begin{aligned}
\exp : \mathfrak{g} & \mapsto G \\
X & \mapsto \exp (X) \triangleq \exp _{X}(1)
\end{aligned}
$$

Si veda Figura 3.2 per una descrizione qualitativa della mappa esponenziale.

Teorema 6 Sia $X \in \mathfrak{g}=\mathcal{L}(G)$.
Allora

$$
\text { 1. } \exp (t X)=\exp _{X}(t)
$$

Figura 3.2: Mappa esponenziale tra lo spazio Euclideo $\mathfrak{g}=T_{e} G$ e la varietà differenziale G.
2. $\exp \left(t_{1}+t_{2}\right) X=\left(\exp t_{1} X\right)\left(\exp t_{2} X\right)$,
3. $\exp (-t X)=(\exp (t X))^{-1}$,
4. \exp è di classe C^{∞}, dexp è l'identità in \mathfrak{g} e pertanto \exp è un diffeomorfismo di un intorno di $0 \in \mathfrak{g}$ in un intorno di $e_{G} \in G$.
5. $L_{\sigma} \circ \exp _{X}$ è l'unica curva integrale di X che assume il valore σ a $t=0$. Come conseguenza i campi vettori invarianti a sinistra sono sempre completi ${ }^{5}$.

Il nome di mappa esponenziale deriva dal fatto che, restringendo il nostro interesse al gruppo matriciale $G L(n)$ si verifica che:

$$
\begin{align*}
\exp : \mathfrak{g l}(n) & \mapsto G L(n) \\
A & \mapsto \mathrm{e}^{A} \triangleq \sum_{n=0}^{\infty} \frac{A^{n}}{n!} . \tag{3.2}
\end{align*}
$$

Si noti infatti che anche l'esponenziale di una matrice a determinante nullo (in $\mathfrak{g l}(n)$), è una matrice a rango pieno (in $G L(n)$).

L'espressione dell'esponenziale in $G L(n)$ è ereditata da ogni suo sottogruppo (ad esempio $S O(3)$).

[^6]Proposizione 8 Sia $\phi: G \mapsto H$ un omomorfismo di gruppi di Lie, allora il seguente diagramma commuta:

Si noti come tale diagramma commuti per ogni omomorfismo di gruppi. In particolare in corrispondenza di rappresentazioni ${ }^{6}$, noi conosciamo l'espressione esatta della mappa esponenziale nel gruppo codominio.

Rappresentazione Aggiunta Per ogni $\sigma \in G$, si consideri l'automorfismo di G :

$$
\begin{aligned}
a_{\sigma}: G & \mapsto G, \\
\tau & \mapsto \sigma \tau \sigma^{-1} .
\end{aligned}
$$

Dato che l'identità e_{G} è un punto fisso di a_{σ}, ne segue che la restrizione di $\mathrm{d} a_{\sigma}$ a $T_{e_{G}}$

$$
\left.\mathrm{d} a_{\sigma}\right|_{T_{e_{G}} G} \quad: \quad T_{e_{G}} G=\mathfrak{g} \longmapsto T_{e_{G}} G=\mathfrak{g}
$$

appartiene allo spazio degli automorfismi di \mathfrak{g}. Si dà allora la seguente
Definizione 11 Si dice Rappresentazione Aggiunta di G la mappa:

$$
\begin{aligned}
\text { Ad : }: & \longmapsto \operatorname{Aut}(\mathfrak{g}) \\
\sigma & \left.\longmapsto \operatorname{Ad}_{\sigma} \triangleq \mathrm{d} a_{\sigma}\right|_{T_{e_{G}} G}
\end{aligned}
$$

dove con $\operatorname{Aut}(\mathfrak{g})$ si intende l'insieme degli automorfismi dello spazio vettoriale \mathfrak{g}.

Chiamiamo allora ad \triangleq dAd. Il seguente diagramma commuta:

[^7]Svolgendo allora i calcoli nel caso in cui $G=G L(n)$ si ottiene:

$$
\operatorname{Ad}_{B}(C)=B C B^{-1}, \quad \forall B, C \in G L(n)
$$

In tutta generalità vale poi la seguente
Proposizione 9 Sia G un gruppo di Lie e siano $X, Y \in \mathfrak{g}=\mathcal{L}(G)$.
Allora

$$
\operatorname{ad}_{X}(Y) \equiv[X, Y]
$$

Ricordando l'espressione dell'esponenziale matriciale, si ha dal diagramma 3.3:

$$
\operatorname{Ad}_{\exp (X)}(Y)=\sum_{n=0}^{\infty} \frac{\operatorname{ad}_{X}^{n} Y}{n!}
$$

Formula di Campbell-Baker-Hausdorff Per una descrizione completa, ci si riferisca al [Naimark and Stern, 1982] o al [Varadarajan, 1984]; a noi qui basta sottolineare solamente l'esistenza di una tale formula.
Siano $X, Y \in \mathfrak{g}$. Noi vorremmo poter calcolare $Z=Z(X, Y) \in \mathfrak{g}$, dove

$$
\exp (Z(X, Y))=\exp (X) \exp (Y)
$$

Ebbene un calcolo piuttosto lungo porta a dimostrare come la soluzione sia data da una serie (Serie di Campbell-Baker-Hausdorff):

$$
Z=\sum_{n=1}^{\infty} c_{n}(X, Y)
$$

dove i coefficienti c_{n} sono definiti ricorsivamente in modo assai complicato. $\grave{\mathrm{E}}$ da notare che c_{n} contiene addendi con parentesi di Lie di ordine nesimo tra X e Y e che i primo due coefficienti sono:

$$
\begin{aligned}
c_{1}(X, Y) & =X+Y \\
c_{2}(X, Y) & =\frac{1}{2}[X, Y] .
\end{aligned}
$$

Complessivamente ciò che si desume è che se

$$
g_{1}=\exp \left(X_{1}\right) \quad \text { e } \quad g_{2}=\exp \left(X_{2}\right)
$$

allora certamente non vale ${ }^{7} g_{1} g_{2}=\exp \left(X_{1}+X_{2}\right)$!

[^8]Mappa Esponenziale Suriettiva Enunciamo qui un risultato che sarà utile nel dimostrare come la parametrizzazione esponenziale di $S O(3)$ sia globale (vedi la Sezione 4.3).

Proposizione 10 Sia G un gruppo di Lie compatto ${ }^{8}$ e connesso, allora la mappa $\exp : \mathfrak{g}=\mathcal{L}(G) \mapsto G$ è suriettiva.

Forma di Killing (vedi [Helgason, 1978, pag. 131]).
Dati due elementi $X, Y \in \mathfrak{g}$, si dice forma di Killing la mappa bilineare:

$$
\begin{aligned}
\kappa: \mathfrak{g} \times \mathfrak{g} & \longmapsto \mathbb{R} \\
(X, Y) & \longmapsto \kappa(X, Y) \triangleq \operatorname{tr}\left[\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right]
\end{aligned}
$$

Si noti che $\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}: \mathfrak{g} \mapsto \mathfrak{g}$ è un endomorfismo dello spazio vettoriale \mathfrak{g} e come tale la sua traccia è univocamente definita.

Tale forma è per costruzione bilineare, simmetrica ed invariante rispetto ad un qualunque automorfismo di \mathfrak{g}.

L'algebra di Lie \mathfrak{g} si dice semi-semplice se la forma di Killing κ è non degenere (ovvero se $\kappa(X, X)=0 \Rightarrow X=0$).
L'importanza della forma di Killing è legata ai seguenti due risultati, vedi [Helgason, 1978, Proposizione 6.6, pag 132]:

Proposizione 11 (Scomposizione in parte semi-semplice e nilpotente)

 Ogni Lie algebra \mathfrak{g} compatta è la somma diretta$$
\mathfrak{g}=\mathfrak{z} \oplus[\mathfrak{g}, \mathfrak{g}]
$$

dove $\mathfrak{z}=\{X \in \mathfrak{g}:[X, Y]=0, \forall Y \in \mathfrak{g}\}$ è l'insieme degli elementi di \mathfrak{g} che commutano con tutti gli altri (ed è chiamato centro di \mathfrak{g}), $e[\mathfrak{g}, \mathfrak{g}]$ è un ideale semi-semplice compatto.

Nel nostro caso quindi, sarà facile dimostrare come $\mathfrak{s o}(3)$ sia una algebra semisemplice (ovvero che $S O(3)$ sia un gruppo semi-semplice), visto che non vi sono rotazioni che commutino con tutto $S O(3)$.

[^9]Proposizione 12 (forma di Killing definita negativa) Sia \mathfrak{g} una Lie algebra semi-semplice, allora \mathfrak{g} è compatta se e solo se la forma di Killing κ è definita negativa.

È quindi facile intuire come in ogni algebra di Lie semi-semplice ${ }^{9}$ e compatta si abbia a disposizione in modo naturale una forma bilineare simmetrica, Ad invariante e definita positiva:

$$
-\kappa(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \equiv T_{e} G \times T_{e} G \mapsto \mathbb{R}
$$

3.2.1 Metrica canonica in un gruppo di Lie

A questo punto appare chiaro come dotare l'intero gruppo di Lie G di una struttura Riemanniana: tramite la mappa tangente della traslazione a sinstra, noi possiamo "traslare" a tutto $T G$ la forma bilineare $\Phi_{e} \equiv-\kappa$.

In formule, per ogni $p \in G$ e per ogni $X_{p}, Y_{p} \in T_{p} G$ (il che implica $X_{p} \equiv p X$ e $\left.Y_{p} \equiv p Y \operatorname{con} X, Y \in \mathfrak{g}\right)$, si ha che:

$$
\begin{aligned}
\Phi_{p}\left(X_{p}, Y_{p}\right) & \triangleq \Phi_{e}\left(d L_{p^{-1}} \circ X_{p}, d L_{p^{-1}} \circ Y_{p}\right) \equiv-\kappa\left(p^{-1} X_{p}, p^{-1} Y_{p}\right) \\
& =-\kappa(X, Y)
\end{aligned}
$$

Per costruzione questa metrica è invariante a sinistra. In più grazie alle proprietà della κ, la mappa Φ è anche invariante a destra. Pertanto è $\mathrm{Ad}=L \circ R$ invariante. Una tale metrica si dice essere biinvariante.

Costruita una struttura Riemanniana sul gruppo di Lie G compatto e connesso (vedi esempio $S O(3)$), vogliamo ora mostrarne le caratteristiche.

In particolare la coincidenza tra la mappa esponenziale nel gruppo di Lie G e la mappa esponenziale nella varietà Riemanniana G, gioca un ruolo importante nella comprensione delle proprietà dello spazio.

Si veda [Boothby, 1975, Teorema 8.9, pagina 351].
Teorema 7 (Curve esponenziali sono geodesiche) Sia $M=G$ un gruppo di Lie compatto e connesso con metrica biinvariante indotta dalla forma di Killing. Sia inoltre $X \in T_{e} G \stackrel{\text { iso }}{=} \mathcal{L}[G]$.

Allora l'unica geodesica $p(t)$ con $p(0)=\left.e_{G} e\left(\frac{\mathrm{~d}}{\mathrm{~d} t} p(t)\right)\right|_{t=0}=X$ è esattamente il sottogruppo unidimensionale determinato $d a X$.

Tutte le altre geodesiche di G, si ottengono componendo traslazioni a sinistra o a destra di questi sottogruppi unidimensionali.

[^10]Osservazione 13 (Coincidenza di coordinate normali ed esponenziali) Grazie al teorema appena illustrato, appare ovvio come le coordinate normali della varietà Riemanniana G, coincidono con le coordinate esponenziali (del primo tipo) del gruppo di Lie G.

La nostra scelta di parametrizzazione del gruppo $S O(3)$ sarà pertanto influenzata da questo risultato.

3.3 Idee intuitive su geodesiche e curve esponenziali

Campi vettore geodesici. In una varietà Riemanniana è definita una nozione di derivazione di campi vettore (derivazione covariante), univocamente determinata dalla metrica Φ. Dato un vettore tangente $X_{p} \in T_{p} M$ è possibile estenderne la definizione a tutto M in modo tale da costruire un intero campo vettore "parallelo" al vettore di partenza. Questo è il modo più corretto di definire le curve geodesiche: sono la soluzione di un'equazione differenziale in cui il campo vettore è la "traslazione parallela" del vettore tangente iniziale.

Campi vettore invarianti a sinistra. In un gruppo di Lie G, dato un qualsiasi elemento di $T_{e} G$ è possibile estenderlo a tutto $T G$ tramite la mappa tangente della traslazione a sinistra L_{g}. Per costruzione otteniamo in questo modo un campo vettore invariante a sinistra.

La morale è che questi due procedimenti sono coincidenti nel caso in cuil il gruppo di Lie G sia dotato della metrica invariante naturalmente indotta dalla forma di Killing.

Capitolo 4

Il gruppo $S O(3)$, la sua algebra $\mathfrak{s o}(3)$ e le sue proprietà metriche

In questo Capitolo presentiamo uno studio completo ed approfondito sullo spazio $S O(3)$, inteso come gruppo di Lie e come varietà Riemanniana. Quindi ci interesseremo da un lato alla sua algebra di Lie $\mathfrak{s o}(3)$ e dall'altro alla scelta naturale di metrica Riemanniana in questo spazio.

Grazie alla forte interpretazione geometrica di certe relazioni, risulta più facile iniziare con lo studio di $\mathfrak{s o}(3)$.

4.1 Isomorfismo "forte" tra \mathbb{R}^{3} e $\mathfrak{s o}(3)$

Si vuole qui descrivere l'isomorfismo di spazi vettoriali normati e di algebre di Lie indotto tra gli spazi \mathbb{R}^{3} e $\mathfrak{s o}(3)$ dall'operatore \times.

Formalmente l'operatore \times è definito nel seguente modo:

$$
\forall x \in \mathbb{R}^{3} \quad \longmapsto \quad X \triangleq x \times \triangleq\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
x_{1} & -x_{2} & 0
\end{array}\right] \in \mathfrak{s o}(3) .
$$

Nel seguito adotteremo la convenzione di indicare con lettere maiuscole gli elementi di $\mathfrak{s o}(3)$ e con lettere minuscole i corrispondenti in \mathbb{R}^{3}.

La struttura di \mathbb{R}^{3} è ben nota. Sono definite due operazioni, il prodotto scalare e quello vettoriale, che rendono \mathbb{R}^{3} algebra di Lie e spazio vettoriale con prodotto scalare. Corrispondentemente in $\mathfrak{s o}(3)$ sono definiti un prodotto scalare ${ }^{1}$ e un

[^11]prodotto esterno ereditati da $\mathfrak{g l (} 3)$:
\[

$$
\begin{align*}
<X, Y>_{\mathfrak{s o}(3)} & \equiv<X, Y>_{\mathfrak{g l}(3)} \tag{4.1}\\
{[X, Y]_{\mathfrak{s o}(3)} } & \equiv[X, Y]_{\mathfrak{q l}(3)}
\end{aligned} \begin{aligned}
& \triangleq X Y-Y X \tag{4.2}
\end{align*}
$$
\]

Ebbene grazie al fatto che per ogni $X=(x \times)$ e $Y=(y \times)$

$$
\begin{aligned}
<x, y>_{\mathbb{R}^{3}} & =<X, Y>_{\mathfrak{s o}(3)} \\
(x \times y) \times & =[X, Y]_{\mathfrak{s o}}(3)
\end{aligned}
$$

i due spazi sono isomorfi sotto tutti i punti di vista.
Vale in entrambi gli spazi la proprietà associativa del prodotto scalare rispetto al prodotto esterno:

$$
<[X, Y], Z>_{\mathfrak{s o}(3)}=<X,[Y, Z]>_{\mathfrak{s o}(3)}=<[x, y], z>_{\mathbb{R}^{3}}=<x,[y, z]>_{\mathbb{R}^{3}}
$$

Aggiungiamo inoltre un paio di relazioni valide per matrici emisimmetriche:
Proposizione 14 (Proprietà matrici emisimmetriche) Per ogni $x \in \mathbb{R}^{3}$ valgono:

$$
\begin{aligned}
(x \times)^{2} & =x x^{T}-\|x\|^{2} I_{3} \\
(x \times)^{3} & =-\|x\|^{2}(x \times)
\end{aligned}
$$

Infine calcoli noiosi mostrano che, se $x=x(t) \in \mathbb{R}^{3}$ con $\|x(t)\|=1$, allora

$$
X \dot{X} X \triangleq(x \times)(\dot{x} \times)(x \times)=0
$$

4.1.1 Cambiamenti di base in $\mathfrak{s o}(3)$: Rotazioni e Rappresentazioni Aggiunte

Grazie alla relazione $g(y \times) g^{T}=(g y) \times$, si dimostra facilmente che ad una rotazione in \mathbb{R}^{3} corrisponde una rappresentazione aggiunta in $\mathfrak{s o}(3)$:

$$
\begin{aligned}
y & \longmapsto g y \\
Y & \longmapsto \operatorname{Ad}_{g}(Y) \triangleq g Y g^{T} .
\end{aligned}
$$

È importante notare che la rotazione in \mathbb{R}^{3} e la rappresentazione aggiunta in $\mathfrak{s o}(3)$ godono di proprietà particolari.

Essi sono infatti automorfismi di algebre di Lie, cioè rispettano la struttura di algebra di Lie di \mathbb{R}^{3} e $\mathfrak{s o}(3)$. Ne segue per esempio la proprietà di invarianza del prodotto esterno in $\mathfrak{s o (3)}$ rispetto all'operatore Ad_{g} :

$$
\begin{align*}
g(x \times y) & =(g x) \times(g y), & & \text { in } \mathbb{R}^{3} \tag{4.3}\\
\operatorname{Ad}_{g}[X, Y] & =\left[\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y)\right], & & \text { in } \mathfrak{s o}(3) . \tag{4.4}
\end{align*}
$$

Per quanto riguarda invece il prodotto scalare, occorre ricordare come la rotazione rientri nell'insieme delle trasformazioni di \mathbb{R}^{3} che mantengono invariata la distanza tra punti.

Pertanto il prodotto scalare è invariante rispetto alla rotazione, ovvero:

$$
\begin{align*}
<x, y> & =<g x, g y>, & & \text { in } \mathbb{R}^{3} \tag{4.5}\\
<X, Y> & =<\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y)>, & & \text { in } \mathfrak{s o}(3) \tag{4.6}
\end{align*}
$$

dove l'ultima equazione rappresenta la proprietà di Ad invarianza per il prodotto scalare in $\mathfrak{s o}(3)$.

4.1.2 Interpretazione geometrica dell'automorfismo Ad

Applicare la rotazione g^{T} ad un vettore costante di \mathbb{R}^{3}, equivale ad esprimerne le coordinate nel sistema di riferimento non inerziale solidale con il satellite. Viceversa applicare la rotazione g ad un vettore espresso nel sistema di riferimento del satellite, equivale ad esprimerlo in coordinate assolute.

Se per esempio y_{0} rappresenta un vettore costante nel sistema assoluto, allora $\operatorname{Ad}_{g^{T}}\left(Y_{0}\right)$ ne è la rappresentazione (come matrice emisimmetrica) nel sistema di riferimento del satellite (la quale non è più costante, ovviamente).

Alla luce di questa interpretazione, assume significato anche la invarianza rispetto all'operatore Ad del prodotto scalare e del prodotto esterno in $\mathfrak{s o}(3)$. E diviene assai importante richiedere -come poi sarà verificato- che la metrica ${ }^{2}$ del gruppo $S O(3)$ sia invariante rispetto a questo tipo di operatori.

4.1.3 Derivata temporale della rappresentazione aggiunta

Dopo aver chiarito il significato della rappresentazione aggiunta in $S O(3)$, vogliamo qui ricavare alcune semplici formule relative alla dinamica temporale della rappresentazione aggiunta. I seguenti Lemmi permetteranno di eseguire calcoli in $\mathfrak{s o}(3)$ senza doversi sempre riferire ai corrispondenti vettori in \mathbb{R}^{3}.

Iniziamo con un risultato valido in $G L(n)$.

[^12]Lemma 15 Per ogni $X, Y \in \mathfrak{g l}(n)$ costanti, $\exp (X t) \in G L(n)$, e per ogni $t \in \mathbb{R}$, valgono le

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{\exp (X t)}(Y) & =\operatorname{Ad}_{\exp (X t)}[X, Y]=\left[X, \operatorname{Ad}_{\exp (X t)}(Y)\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{\exp (-X t)}(Y) & =\operatorname{Ad}_{\exp (-X t)}[-X, Y]=\left[\operatorname{Ad}_{\exp (-X t)}(Y), X\right]
\end{aligned}
$$

Dim: Ricordando l'espansione in serie di Lie per l'operatore Ad:

$$
\operatorname{Ad}_{\exp (X t)}(Y)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \operatorname{ad}_{X}^{n} Y,
$$

se ne può facilmente calcolare la derivata temporale:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{\exp (X t)}(Y) & =\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \operatorname{ad}_{X}^{n} Y=\sum_{n=1}^{\infty} \frac{t^{n-1}}{(n-1)!} \operatorname{ad}_{X}^{n} Y \\
& =\operatorname{ad}_{X}\left(\sum_{n=1}^{\infty} \frac{t^{n-1}}{(n-1)!} \operatorname{ad}_{X}^{n-1} Y\right) \\
& =\left[X, \operatorname{Ad}_{\exp (X t)}(Y)\right]
\end{aligned}
$$

Ricordando poi che $\operatorname{Ad}_{\exp (X t)}(X)=X$, si dimostrano tutte le altre eguaglianze.

Si noti che $g(t)=\mathrm{e}^{X t}$ nel Lemma 15 è la soluzione del sistema di equazioni differenziali in $G L(n)$

$$
\dot{g}=g X
$$

dove $X \in \mathfrak{g l}(n)$ è un vettore costante.
Se invece si vuole valutare $\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{Ad}_{g}(Y)$ al variare di $g(t)$ seconda la $\dot{g}=g X(g, t)$, occorre restringersi al caso di $S O(3)$.

Lemma 16 (Derivata Temporale della Rappresentazione Aggiunta) Sia

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{g}(Y) & =\operatorname{Ad}_{g}[X, Y]+\operatorname{Ad}_{g}(\dot{Y}) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{g^{T}}(Y) & =\left[\operatorname{Ad}_{g^{T}}(Y), X\right]+\operatorname{Ad}_{g^{T}}(\dot{Y})
\end{aligned}
$$

dove $\dot{Y} \in T \mathfrak{s o}(3) \stackrel{\text { iso }}{=} \mathfrak{s o}(3)$.

Dim: Tutto si basa sulla eguaglianza $\operatorname{Ad}_{g}(y \times)=g(y \times) g^{T}=(g y) \times$, valida $\forall y \in \mathbb{R}^{3}$ e $\forall g \in S O(3)$. I facili calcoli sono:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{g}(Y) & =(\dot{g} y) \times+(g \dot{y}) \times=(g X y) \times+\operatorname{Ad}_{g}(\dot{y} \times) \\
& =\operatorname{Ad}_{g}((X y) \times)+\operatorname{Ad}_{g}(\dot{Y})=\operatorname{Ad}_{g}[X, Y]+\operatorname{Ad}_{g}(\dot{Y}) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ad}_{g^{T}}(Y) & =\left(\dot{g}^{T} y\right) \times+\left(g^{T} \dot{y}\right) \times=\left(X^{T} g^{T} y\right) \times+\operatorname{Ad}_{g^{T}}(\dot{y} \times) \\
& =-\left(x \times\left(g^{T} y\right)\right) \times+\operatorname{Ad}_{g^{T}}(\dot{Y})=-\left[X, \operatorname{Ad}_{g^{T}}(Y)\right]+\operatorname{Ad}_{g^{T}}(\dot{Y})
\end{aligned}
$$

Si noti che in ogni spazio vettoriale, la derivata di un versore è ortogonale al versore stesso. Supponendo $\|Y\|$ costante, si può verificare come questo fatto sia rispettato in entrambe le formule del Lemma 16. Infatti:

$$
\left[\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y)\right] \perp \operatorname{Ad}_{g}(Y), \quad \forall X \in \mathfrak{s o}(3)
$$

e

$$
\dot{Y} \perp Y \quad \Rightarrow \quad \operatorname{Ad}_{g}(\dot{Y}) \perp \operatorname{Ad}_{g}(Y)
$$

4.2 Logaritmo e mappa esponenziale in $S O(3)$

Il materiale presentato in questa sezione e nella seguente è standard. Per un ottimo testo si veda il [Murray et al., 1994].

Come già mostrato nell'equazione 3.2, l'esponenziale matriciale è definito nel seguente modo:

$$
\exp (X) \triangleq \sum_{n=0}^{\infty} \frac{X^{n}}{n!}, \quad X \in \mathfrak{g l}(n)
$$

In particolare è di interesse la restrizione di $\exp (\cdot)$ a $\mathfrak{s o}(3)$: per ogni $\xi \in \mathbb{R}^{3}$, vale la famosa Formula di Rodrigues

$$
\begin{align*}
\exp (\xi \times) & =I_{3}+\frac{(\xi \times)}{\|\xi\|} \sin \|\xi\|+\frac{(\xi \times)^{2}}{\|\xi\|^{2}}(1-\cos \|\xi\|) \\
& =I_{3}+\operatorname{vers}[\xi \times] \sin \|\xi\|+\operatorname{vers}[\xi \times]^{2}(1-\cos \|\xi\|) \tag{4.7}
\end{align*}
$$

Tale espressione si dimostra sostituendo nella serie 3.2, la relazione $(\xi \times)^{3}+$ $(\xi \times)=0$ (vedi Proposizione 14). Ricordando le espansioni di sin e cos, si riesce a sommare la serie.

Essendo $S O(3)$ compatto e connesso, siamo nelle ipotesi della Proposizione 10 e si ha pertanto che $\exp \{\mathfrak{s o}(3)\}=S O(3)$, ovvero che l'immagine di $\mathfrak{s o}(3)$ copre l'intero $S O(3)$ (la mappa esponenziale è suriettiva).

D'altronde, visto che per ogni $\xi \in \mathbb{R}^{3}, \exp (\xi \times)$ corrisponde ad una rotazione attorno all'asse vers $[\xi]$ di un angolo $\|\xi\|$, si intuisce facilmente come questa mappa sia non iniettiva. L'ampiezza dell'angolo di rotazione $\|\xi\|$ è infatti definita a meno di multipli di 2π.

Fissando un criterio di scelta, è possibile comunque definire univocamente una funzione inversa che chiameremo logaritmo: sia $g \in S O(3)$ una matrice di rotazione, si definisce il $\log (g) \in \mathfrak{s o}(3)$, come il vettore a norma minima nell' insieme

$$
\exp ^{-1}(g)=\{X \in \mathfrak{s o}(3): \exp (X)=g\}
$$

In altri termini:

$$
\begin{equation*}
\log (g) \triangleq \underset{X \in \mathfrak{s o}(3)}{\operatorname{argmin}}\left\{\|X\|_{\mathfrak{s o}(3)}: \exp (X)=g\right\} . \tag{4.8}
\end{equation*}
$$

Questa definizione corrisponde alla scelta di $\|X\|$ eguale all' angolo minimo necessario a "spiegare" la rotazione g. Intuitivamente è facile convincersi che:

$$
0 \leq\|\log (g)\|_{\mathfrak{s o}(3)} \leq \pi, \quad \forall g \in S O(3)
$$

Si noti infine come, nel [Curtis, 1979, pagina 49], si definisca il logaritmo matriciale nel seguente modo:

$$
\log (A)=-\sum_{n=1}^{\infty} \frac{(I-A)^{n}}{n}, \quad \forall\|A-I\|<\epsilon,
$$

dove la serie converge in un opportuno intorno di I.
Si può dimostrare come tale definizione corrisponda nel caso di $A \in S O(3)$ alla 4.8.

4.3 Coordinate esponenziali in $S O(3)$

È opportuno a questo punto ricordare la definizione di coordinate canoniche in un generico gruppo di Lie G (vedi Sezione 3.2).

Essendo la mappa esponenziale un diffeomorfismo tra un'intorno di $0 \mathfrak{g} \in \mathfrak{g}$ ed un'intorno di $e_{G} \in G$, è possibile utilizzarla come carta locale. Pertanto data una base $\left\{X_{1}, \ldots, X_{n}\right\}$ dell'algebra di Lie, è univocamente determinato $\xi=$ $\left[\xi_{1}, \ldots, \xi_{n}\right]^{T} \in \mathbb{R}^{n}$ tale che

$$
g=\exp \left(\xi_{1} X_{1}+\ldots+\xi_{n} X_{n}\right)
$$

Nell'ambito della teoria delle varietà Riemanniane [Boothby, 1975, pag 335], le ξ_{i} sono chiamate coordinate normali. In particolare nell'ambito della teoria
dei gruppi di Lie [Helgason, 1978], si usa il termine coordinate canoniche (del primo tipo). Infine in Robotica esse prendono il nome di coordinate esponenziali, vedi [Murray et al., 1994].

Esaminiamo ora le proprietà di questa parametrizzazione alla luce di quanto detto sul caso $S O(3)$ nella sezione precedente:

In $S O(3)$ la mappa esponenziale è suriettiva e quindi la parametrizzazione esponenziale è globale. Cioè per ogni $g \in S O(3)$ esiste un unico $(\xi \times)=\log (g) \in \mathfrak{s o}(3)$, le componenti del quale -rispetto ad una base assegnata- costituiscono le coordinate esponenziali di g.
\square La parametrizzazione esponenziale non è C^{∞} in tutto $S O(3)$. Infatti il logaritmo sceglie come rotazione equivalente quella ad angolo minimo e vi è quindi discontinuità nel rappresentare una rotazione di ($\pi-$ $\epsilon) \mathrm{rad} o(\pi+\epsilon) \mathrm{rad}$ in una qualunque direzione.

Occorre infine constatare come le coordinate esponenziali non godano della proprietà di additività.
Dati due matrici di rotazione g_{1} e g_{2} e le loro coordinate esponenziali $X_{1}=\log g_{1}$ e $X_{2}=\log g_{2}$. Quali sono le coordinate esponenziali di $g_{1} \circ g_{2}=g_{1} g_{2}$?
Una risposta assai incauta potrebbe essere $X_{1}+X_{2}$. In realtà tale relazione è errata e la corretta eguaglianza tra la coppia $\left(X_{1}, X_{2}\right)$ e $\log \left[\exp \left(X_{1}\right) \exp \left(X_{2}\right)\right]$ richiede l'utilizzo della Serie di Campbell-Baker-Hausdorff: vedi Sezione 3.2 (oppure in letteratura di robotica il [Gu, 1988]).

4.3.1 Altre parametrizzazioni

Si noti come sia la parametrizzazione esponenziale sia una qualunque altra scelta di parametrizzazione minimale (con solamente tre parametri) di $S O(3)$, non può essere globale e continua (vedi [Boothby, 1975]).

Angoli di Eulero Un altra parametrizzazione canonica di $S O(3)$ è data dai classici angoli di Eulero. In questo caso la parametrizzazione si basa su di un prodotto di mappe esponenziali - in contrasto con l'unica mappa esponenziale presente in 4.3. Si ha:

$$
g=\exp \left(\phi_{1} X_{1}\right) \exp \left(\phi_{2} X_{2}\right) \exp \left(\phi_{3} X_{3}\right)
$$

dove le tre matrici emisimmetriche $\left\{X_{1}, X_{2}, X_{3}\right\}$ determinano il significato di $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ (tipicamente angoli di roll, pitch e yaw).

In generale tutte le parametrizzazioni che fanno uso del prodotto di tre matrici di rotazione, vengono denominate coordinate canoniche del secondo tipo.

Parametrizzazione asse e angolo Sia $g \in S O(3)$ tale che $\|g\| \neq 0, \pi$. Esistono allora univocamente determinati $0<\phi<\pi$ e $X \in \mathfrak{s o}(3)$ con $\|X\|=1$, tali che:

$$
g=\mathrm{e}^{\phi X}=\mathrm{e}^{\log (g)}
$$

dove vale $\log (g) \equiv \phi X$. Si noti come asse $X \equiv \operatorname{vers}[\log (g)]$ e angolo $\phi=$ $\|g\|_{S O(3)}$.

Quaternioni unitari Formalmente un quaternione è un vettore della forma:

$$
Q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k}, \quad q_{i} \in \mathbb{R}, i=1, \ldots, 3
$$

dove q_{0} è la parte scalare e $\vec{q}=\left[q_{1}, q_{2}, q_{3}\right]^{T}$ la parte vettoriale di $Q=$ $\left(q_{0}, \vec{q}\right) \in \mathbb{Q}$. L'insieme dei quaternioni \mathbb{Q} è uno spazio vettoriale. L'insieme dei quaternioni unitari gode della struttura di gruppo se dotato del prodotto tra quaternioni nel seguente modo:

$$
\begin{array}{r}
\mathrm{ii}=\mathrm{jj}=\mathrm{kk}=\mathrm{ijk}=-1 \\
\mathrm{ij}=-\mathrm{ji}=\mathrm{k}, \quad \mathrm{jk}=-\mathrm{kj}=\mathrm{i}, \quad \mathrm{ki}=-\mathrm{ik}=\mathrm{j} .
\end{array}
$$

È inoltre definita l'operazione di coniugazione:

$$
Q^{\star} \triangleq\left(q_{0},-\vec{q}\right)
$$

Quando utilizzato per parametrizzare $S O(3)$ il quaternione unitario assume l'espressione:

$$
q_{0}=\cos (\|g\| / 2), \quad \text { e } \quad \vec{q}=\sin (\|g\| / 2) \operatorname{vers}[\log (g)]
$$

Si noti come la norma di $\left(q_{0}, \vec{q}\right)$ inteso come vettore in \mathbb{R}^{4} sia unitaria per costruzione.

Si può dimostrare come questa parametrizzazione sia non singolare e copra l'intero $S O(3)$. Valgono inoltre notevoli corrispondenze: la moltiplicazione tra matrici g, corrisponde alla moltiplicazione tra quaternioni Q e la trasposizione di g corrisponde semplicemente alla coniugazione di Q.

In particolare l'equazione

$$
\dot{g}=g(\omega \times)
$$

si traduce nella parametrizzazione a quaternione nella

$$
\dot{Q}=\frac{1}{2}\left[\begin{array}{cccc}
0 & -\omega_{1} & -\omega_{2} & -\omega_{3} \\
\omega_{1} & 0 & \omega_{3} & -\omega_{2} \\
\omega_{2} & -\omega_{3} & 0 & \omega_{1} \\
\omega_{3} & \omega_{2} & -\omega_{1} & 0
\end{array}\right] Q
$$

Per una descrizione più completa rimandiamo al [Murray et al., 1994].

4.4 Sistema espresso in coordinate esponenziali

Da quanto descritto nelle Sezioni precedenti, la scelta della parametrizzazione esponenziale $S O(3) \mapsto \mathfrak{s o}(3)$

$$
\xi=\log (g)
$$

è l'unica in cui le proprietà metriche dello spazio di partenza vengono rispettate. A questo punto diviene assai istruttivo e necessario per i successivi calcoli, riuscire ad esprimere il sistema dinamico di partenza (definito quindi in funzione di $g \in$ $S O(3)$), in funzione delle nuove variabili $\xi \in \mathbb{R}^{3}$.

Vogliamo cioè esprimere la dinamica delle coordinate esponenziali ξ, al variare di $g(t)$ secondo la

$$
\begin{equation*}
\dot{g}=g U(t), \quad U(t) \in \mathfrak{s o}(3), \tag{4.9}
\end{equation*}
$$

dove $U(t) \in \mathfrak{s o}(3)$ è genericamente composto di drift e controllo.
In altri termini, vogliamo poter lavorare con lo spazio Euclideo $\mathfrak{s o}(3)$ al posto dello spazio curvo $S O(3)$.

Derivazione Errata: Si noti come sarebbe erroneo eseguire la seguente derivazione simbolica:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} g & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{\log (g)}=\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\infty} \frac{\log (g)^{n}}{n!} \\
& \neq \sum_{n=1}^{\infty} \frac{\log (g)^{n-1}}{(n-1)!} \frac{\mathrm{d}}{\mathrm{~d} t} \log (g) \\
& =\mathrm{e}^{\log (g)} \frac{\mathrm{d}}{\mathrm{~d} t} \log (g),
\end{aligned}
$$

in quanto nulla ci dice che le due matrici $\log (g)$ e $\frac{\mathrm{d}}{\mathrm{d} t} \log (g)$ commutino.
Tale passaggio vale solamente nel caso particolare in cui la curva $g(t)$ sia della forma:

$$
\begin{equation*}
g(t)=\exp \left(X_{0} \phi(t)\right) \tag{4.10}
\end{equation*}
$$

$\operatorname{con} X_{0}=\operatorname{vers}[\log (g)] \in \mathfrak{s o}(3)$ costante. Infatti vale la ovvia:

$$
X_{0} \mathrm{e}^{X_{0} \phi}=\mathrm{e}^{X_{0} \phi} X_{0}, \quad \forall \phi \in \mathbb{R} .
$$

Chiameremo allora curve esponenziali i^{3} le curve della forma 4.10. Solo per tali curve, ricordando l'equazione 4.9 , si ottiene:

$$
\begin{equation*}
U(t)=g^{T} \dot{g}=X_{0} \dot{\phi}=\operatorname{vers}[\log (g)] \frac{\mathrm{d}}{\mathrm{~d} t}\|\log (g)\|_{S O(3)} \equiv \frac{\mathrm{d}}{\mathrm{~d} t} \log (g) \tag{4.11}
\end{equation*}
$$

la quale costituisce un'equazione differenziale lineare nello spazio $\mathfrak{s o}(3)$.

Si supponga allora di avere un movimento del tutto generico, nel qua-le $g(t)$ varia sia in norma $\|g(t)\|_{S O(3)}=\|\log [g(t)]\|_{\mathfrak{s o}(3)}$, sia in direzione vers $[\log [g(t)]]$.

Vale il seguente risultato:
 in $S O(3)$

$$
\dot{g}=g(u(t) \times), \quad u(t) \in \mathbb{R}^{3},
$$

siano inoltre $(\xi \times)=\log (g) \in \mathfrak{s o}(3)$ le coordinate esponenziali di g.
Allora in ogni intorno di $g(t)$, con g tale che $\|g(t)\|<\pi$, ξ evolve secondo la seguente equazione differenziale in \mathbb{R}^{3} :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \xi=u_{\|}+\frac{\|\xi\|}{2} \cot \left(\frac{\|\xi\|}{2}\right) u_{\perp}+\frac{1}{2}[\xi, u] \tag{4.12}
\end{equation*}
$$

dove $u_{\|} \triangleq \operatorname{pr}_{\text {span }\{\xi\}}(u)$ è la componente di u lungo ξ e $u_{\perp}=u-u_{\|}$è la componente perpendicolare.

Si noti come i tre addendi di questa espressione siano ortogonali:

$$
u_{\|} \perp u_{\perp} \perp[\xi, u]=\left[\xi, u_{\perp}\right] .
$$

Ognuno di essi possiede inoltre un significato peculiare:
\square In particolare è solamente il primo a dare contributo verso $\frac{\mathrm{d}}{\mathrm{d} t}\|\xi\|$.
Infatti proiettando l'equazione lungo vers $[\xi]$, si ottiene

$$
<\frac{\mathrm{d}}{\mathrm{~d} t} \xi, \operatorname{vers}[\xi]>=<u_{\|}, \operatorname{vers}[\xi]>
$$

[^13]

Figura 4.1: Grafico della funzione $\alpha(x), x \in[0, \pi]$.
e valutando entrambi i membri ${ }^{4}$ si ottiene

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|\xi\|=<u, \operatorname{vers}[\xi]> \tag{4.13}
\end{equation*}
$$

Si noti inoltre come questa eguaglianza sia in completo accordo con quanto affermato dal Lemma di Gauss 7 a pagina 22. Infatti sostituendo nella relazione

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|g\|_{S O(3)}=<\dot{g}, Y_{g}\left(g, I_{3}\right)>_{T_{g} S O(3)}
$$

i valori del versore geodesico e del prodotto scalare in $T_{g} S O(3)$, si riottiene la 4.13 !

Si definisca:

$$
\alpha(x)=\frac{x}{2} \cot \left(\frac{x}{2}\right), \quad \text { per } \quad x \in[0, \pi] .
$$

Se ne può osservare il grafico in Figura 4.1. La componente u_{\perp} dà un effetto ridotto sull'evoluzione di ξ :

$$
\dot{\xi}_{\perp}=\alpha(\|\xi\|) u_{\perp}
$$

dove $\dot{\xi}_{\perp}$ è la componente lungo u_{\perp} di $\dot{\xi}$ e $\alpha(\|\xi\|)$ è minore di uno.

[^14]Essere al punto $g \in S O(3)$ con velocità $U \in \mathfrak{s o}(3)$, equivale a dire: vado da I_{3} a g e poi da $g \mathrm{mi}$ sposto di $\exp (U \mathrm{~d} t)$.
Ciò equivale a comporre i due spostamenti $\exp (\xi \times) \mathrm{e} \exp (U \mathrm{~d} t)$.
Ma allora è chiaro che nell'espressione finale dello stato ci deve essere un termine della forma $[(\xi \times), U] \in \mathfrak{s o}(3)$.

Dim: La dimostrazione è costituita da una serie di noiosi calcoli basati sulla formula di Rodriguez 4.7.

Abbiamo già mostrato che per vers $[\xi \times]$ costante vale:

$$
g^{T} \frac{\mathrm{~d}}{\mathrm{~d} t} g=\operatorname{vers}[(\xi \times)] \frac{\mathrm{d}}{\mathrm{~d} t}\|\xi\|
$$

vedi equazione 4.11.
Rimane da calcolare $\frac{\mathrm{d}}{\mathrm{d} t} g$ quando $\|\log (g)\|=\|\xi\|$ è costante. Utilizzeremo in seguito una eguaglianza valida in $\mathfrak{s o}(3)$ per versori:

$$
X \dot{X} X=0, \quad \forall X(t) \in \mathfrak{s o}(3):\|X(t)\|_{\mathfrak{s o}}(3)=1
$$

Si parta dunque dalla formula di Rodrigues 4.7 e si derivi rispetto al tempo. Sia $X=\operatorname{vers}[\xi \times] \in \mathfrak{s o}(3)$, si ha:

$$
\begin{aligned}
\dot{g} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left[I+\sin (\|\xi\|) X+(1-\cos (\|\xi\|)) X^{2}\right] \\
& =\sin (\|\xi\|) \dot{X}+(1-\cos (\|\xi\|))(X \dot{X}+\dot{X} X)
\end{aligned}
$$

A noi interessa una espressione di $g^{T} \dot{g}$ e pertanto moltiplichiamo a sinistra per g^{T} e sostituiamo ancora la formula di Rodrigues:

$$
\begin{aligned}
g^{T} \dot{g}= & {\left[I+X \sin (\|\xi\|)+X^{2}(1-\cos (\|\xi\|))\right]^{T} } \\
& \cdot[\sin (\|\xi\|) \dot{X}+(1-\cos (\|\xi\|))(X \dot{X}+\dot{X} X)]
\end{aligned}
$$

A questo punto, dopo aver distribuito, si eliminano i termini eguali ed opposti in $X^{2} \dot{X}$, si elidono i termini in $X \dot{X} X$ e si raccolgono a fattor comune itermini in $X \dot{X}$.

Ricordando inoltre che $\dot{X} X-X \dot{X}=[\dot{X}, X]$, si ha

$$
g^{T} \dot{g}=\sin (\|\xi\|) \dot{X}+(1-\cos (\|\xi\|))[\dot{X}, X]
$$

Infine aggiungendo l'addendo legato alla variazione di $\|\xi\|$:

$$
\begin{equation*}
g^{T} \dot{g}=\|\dot{\xi}\| X+\sin \|\xi\| \dot{X}+(1-\cos \|\xi\|)[\dot{X}, X] \tag{4.14}
\end{equation*}
$$

Siamo qui giunti ad una espressione in cuil la matrice g non è più presente: $g^{T} \dot{g} \equiv$ $(u \times)$. Sostituendo e passando da $\mathfrak{s o}(3)$ a \mathbb{R}^{3}

$$
u=\|\dot{\xi}\| \operatorname{vers}[\xi]+\sin \|\xi\| \frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi]+(1-\cos \|\xi\|)\left[\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi], \operatorname{vers}[\xi]\right]
$$

da cui si ottengono le due:

$$
\begin{align*}
u_{\|} & =\|\dot{\xi}\| \operatorname{vers}[\xi] \\
u_{\perp} & =\sin \|\xi\| \frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi]+(1-\cos \|\xi\|)\left[\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi], \operatorname{vers}[\xi]\right] \tag{4.15}
\end{align*}
$$

Nella seconda equazione, noi vogliamo $\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{vers}[\xi]$ in funzione di u_{\perp}, e pertanto, moltiplicando a sinistra per vers $[\xi]$, si ha

$$
\begin{equation*}
[u, \operatorname{vers}[\xi]]=\sin \|\xi\|\left[\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi], \operatorname{vers}[\xi]\right]-(1-\cos \|\xi\|) \frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi] \tag{4.16}
\end{equation*}
$$

Si moltiplichi 4.16 per $1-\cos \|\xi\|$ e la si sottragga alla 4.15 moltiplicata per $\sin (\|\xi\|)$. Si ottiene

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{vers}[\xi]=-\frac{1}{2}\left[u_{\perp}, \operatorname{vers}[\xi]\right]+\frac{\sin \|\xi\|}{2(1-\cos \|\xi\|)} u_{\perp}
$$

Dato che $\frac{\mathrm{d}}{\mathrm{d} t} \xi=\left(\frac{\mathrm{d}}{\mathrm{d} t}\|\xi\|\right) \operatorname{vers}[\xi]+\|\xi\| \frac{\mathrm{d}}{\mathrm{d} t} \operatorname{vers}[\xi]$, si ha:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \xi & =u_{\|}+\frac{\|\xi\| \sin \|\xi\|}{2(1-\cos \|\xi\|)} u_{\perp}+\frac{1}{2}[\xi, u] \\
& =u_{\|}+\frac{\|\xi\|}{2} \cot \left(\frac{\|\xi\|}{2}\right) u_{\perp}+\frac{1}{2}[\xi, u]
\end{aligned}
$$

grazie ad una identità trigonometrica.

Si noti come il risultato intermedio 4.14 sia contenuto anche nel [$\mathrm{Gu}, 1988$].

4.5 Metrica Riemanniana in $S O(3)$

In questa sezione siamo interessati a descrivere la struttura di varietà Riemanniana del gruppo di Lie $S O(3)$; faremo costante riferimento ai concetti introdotti nel Capitolo 3.

In particolare, partendo dalle caratteristiche algebriche e geometriche di base, vogliamo qui riassumere brevemente tutta la ricca struttura di cui lo spazio $S O(3)$ gode. Ripetiamo allora con ordine tutta la costruzione logica della Sezione 3.2.1:
i) Il gruppo di Lie $S O(3)$ è compatto, connesso e non ha sottogruppi normali oltre a $\left\{I_{3}\right\}$ e $S O(3)$ stesso.
ii) A norma della Proposizione 12, la forma di Killing è definita negativa in $\mathfrak{s o}(3)$.
iii) Moltiplicando la forma di Killing per un fattore di scala negativo si ottiene una forma bilineare, simmetrica e definita positiva in $\mathfrak{s o}(3)$ (ovvero un prodotto interno in $\mathfrak{s o (3)}$), che in più gode della proprietà di Ad invarianza.
iv) Pochi calcoli mostrano come:

$$
\kappa(X, Y) \triangleq \operatorname{tr}\left\{\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right\} \equiv-\frac{1}{4}<X, Y>_{s o}(3)
$$

v) Data una forma bilineare in $\mathfrak{g}=T_{e_{G}} G$, otteniamo una campo di forme bilineari in $T G$ grazie alla mappa tangente della translazione a sinistra: per ogni \dot{g}_{1} e \dot{g}_{2} in $T_{g} S O(3)$, si definisca il prodotto scalare in $T_{g} S O(3)$, come:

$$
\begin{aligned}
\Phi_{g}\left(\dot{g_{1}}, \dot{g_{2}}\right) & \triangleq \Phi_{I_{3}}\left(\left(\mathrm{~d} L_{g^{T}}\right)_{g} \circ \dot{g_{1}},\left(\mathrm{~d} L_{g^{T}}\right)_{g} \circ \dot{g_{2}}\right) \\
& =\Phi_{I_{3}}\left(g^{T} \dot{g}_{1}, g^{T} \dot{g}_{2}\right) \\
& =<g^{T} \dot{g}_{1}, g^{T} \dot{g}_{2}>_{\mathfrak{s o}}(3) .
\end{aligned}
$$

Questa struttura Riemanniana è invariante a sinistra per costruzione. Se inoltre la forma bilineare di partenza era Ad invariante, allora la metrica bilineare risultante è anche invariante a destra e pertanto biinvariante (vedi [Fegan, 1991, pagina 35]).
vi) Essendo inoltre partiti con una forma definita positiva, otteniamo infine una metrica Riemanniana per $S O(3)$.

Osservazione 17 (Significato della metrica invariante) Avere a disposizione una metrica biinvariante, significa essere in grado di definire determinate grandezze e concetti indipendentemente dalla scelta del sistema di riferimento.

Data l'interpretazione della rappresentazione aggiunta come cambio di sistema di riferimento, una metrica invariante rispetto alla mappa Ad è una metrica che non dipende dalla particolare scelta del sistema di riferimento in cui si effettuano i calcoli.

Tutto questo procedimento, sebbene richieda un notevole approfondimento teorico, si può ritenere assai naturale. Proprio questa sua canonicità permette alla
fine di eseguire effettivamente i calcoli e di verificare come i concetti di geodesica, di distanza tra punti e di versore geodesico, siano assai concreti ed estremamente significativi.

Infatti grazie all'eguaglianza tra curve geodesiche e curve esponenziali (vedi Teorema 7 a pagina 31), valgono i seguenti fatti:

- Siano dati $g_{1}, g_{2} \in S O(3)$, allora la curva geodesica che li unisce ha la forma:

$$
\begin{aligned}
\gamma: \quad[0,1] & \mapsto S O(3) \\
t & \mapsto g_{1} \exp \left[t \log \left(g_{1}^{T} g_{2}\right)\right]
\end{aligned}
$$

- Il versore geodesico $Y_{g}\left(g, I_{3}\right) \in T_{g} S O(3)$, ha l'espressione:

$$
Y_{g}\left(g, I_{3}\right)=-\operatorname{vers}[\log (g)]
$$

In generale valgono poi anche:

- Per ogni $\dot{g}_{1} \in T_{g} S O(3)$, si ha per definizione:

$$
\begin{align*}
\left\|\dot{g}_{1}\right\|_{g} S O(3) & =\sqrt{\Phi_{g_{1}}\left(\dot{g}_{1}, \dot{g}_{1}\right)} \\
& =\sqrt{<g^{T} \dot{g}_{1}, g^{T} \dot{g}_{1}>_{\mathfrak{s o}(3)}} \tag{4.17}
\end{align*}
$$

- Il gruppo $S O(3)$ rispetto ad una generica varietà Riemanniana, ha un elemento $e_{S O(3)}=I_{3}$ rispetto al quale si può definire una norma:

Definizione 12 Dato un punto $g \in S O(3)$, si definisce la sua norma come:

$$
\|g\|_{S O(3)} \triangleq \operatorname{dist}\left(g, I_{3}\right)
$$

Andiamo ora a calcolare esattamente quanto vale $\operatorname{dist}\left(g_{1}, g_{2}\right)$:
Eseguiamo ora i semplici calcoli. Ricordiamo che data la matrice di rotazione $g \in S O(3)$, sappiamo ricostruirne l'asse di rotazione vers $[\log (g)]$ e l'angolo di rotazione minima $\|\log (g)\|_{\text {so }}(3)$.

Siano dati dunque $g_{1}, g_{2} \in S O(3)$. Sia

$$
(\xi \times)=\log g_{1}^{T} g_{2}
$$

Allora possiamo costruire la curva $\gamma:[0,\|\xi\|] \mapsto S O(3)$

$$
\gamma(s)=g_{1} \mathrm{e}^{t \operatorname{ver}[\dot{\xi} \times]}
$$

in modo che tale curva per costruzione unisca g_{1} a g_{2}.

Come dimostrato in Proposizione 7 questa curva è il segmento geodesico a lunghezza minima tra i due punti. Inoltre, essendo γ una curva esponenziale, si può calcolarne esplicitamente la derivata (vedi equazione 4.11):

$$
\dot{\gamma}(s)=\gamma(s) \operatorname{vers}[\xi \times],
$$

e quindi secondo la definizione:

$$
\begin{aligned}
\operatorname{dist}\left(g_{1}, g_{2}\right) & =\int_{0}^{\|\xi\|}\|\gamma(s) \operatorname{vers}[\xi \times]\|_{T_{\gamma(s)} S O(3)} \mathrm{d} s \\
& =\int_{0}^{\|\xi\|}\|\operatorname{vers}[\xi \times]\|_{\mathfrak{s o}(3)} \mathrm{d} s \\
& =\int_{0}^{\|\xi\|} \mathrm{d} s=\|\xi\|=\left\|\log g_{1}^{T} g_{2}\right\|=\left\|g_{1}^{T} g_{2}\right\|_{S O(3)} .
\end{aligned}
$$

Dunque la distanza tra due punti in $S O(3)$ è data dall'ampiezza dell'angolo minimo (quello stesso della definizione di \log) che occorre percorrere per giungere da un assetto all'altro (Proprio quello che ci aspettavamo!).

In particolare vale per la norma:

$$
\begin{equation*}
\|g\|_{S O(3)} \triangleq \operatorname{dist}\left(g, I_{3}\right)=\|\log (g)\|_{\mathfrak{s o}(3)} \tag{4.18}
\end{equation*}
$$

e si può finalmente dare un significato intuitivo alle equazioni:

$$
\lim _{t \rightarrow \infty} g(t)=g_{1} \quad \Leftrightarrow \quad \lim _{t \rightarrow \infty} \operatorname{dist}\left(g(t), g_{1}\right)=0
$$

con $g, g_{1} \in S O(3)$.
Osservazione 18 Questi ultimi passaggi riguardanti la valutazione di $\operatorname{dist}(p, q)$, sono ridondanti in quanto dalla definizione stessa di metrica in $S O(3)$ risulta:

$$
\|g\|_{S O(3)} \triangleq\|\log (g)\|_{\mathfrak{s o}(3)} .
$$

Essi comunque aggiungono un pò di intuizione ai passaggi teorici descritti nel Capitolo 3.

Capitolo 5

Strategie di controllo su varietà Riemanniane

In questo Capitolo descriviamo delle strategie di controllo per sistemi definiti su una varietà Riemanniana. Partendo da determinate ipotesi sulla varietà e sul sistema da controllare, deriviamo leggi di controllo di tipo geodesico, minimale e adattativo.

Particolarizziamo inoltre tali strategie a sistemi definiti sulle varietà $S O(3)$ $e \mathbb{S}^{2}$.

5.1 Formulazione del problema di controllo

Ci riproponiamo ora di applicare gli eleganti concetti mostrati nelle Sezioni precedenti al problema del controllo.

Sia data una varietà Riemanniana M e un sistema dinamico in forma affine

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i}, \quad x \in M \tag{5.1}
\end{equation*}
$$

Si dice stato del sistema il punto $x \in M$ e ingressi del sistema, o controlli, le $u_{i} \in \mathbb{R}, i=1, \ldots, m$.

Nel seguito ci riferiremo a tale sistema dinamico con la notazione $\left(f, g_{i}\right)$.
Scopo della legge di controllo è la regolazione dello stato x : cioè con la notazione stabilizzazione del sistema 5.1 intendiamo il seguente obbiettivo:

Preso un punto $p \in M$ a piacere, vogliamo costruire una legge di retroazione dallo stato della forma $u_{i}=u_{i}(x)$, tale che per il sistema a catena chiusa valga:

$$
\lim _{t \rightarrow \infty} x=p, \quad \Leftrightarrow \quad, \lim _{t \rightarrow \infty} \operatorname{dist}(x, p)=0
$$

dove la nozione di distanza in M è appunto legata alla struttura della varietà stessa (vedi Capitolo 3).

Prima di poter enunciare la nostra strategia di controllo, abbiamo bisogno di descrivere brevemente i recenti risultati ottenuti in letteratura nel controllo di sistemi nonlineari.

Definizione 13 Sia dato il sistema nonlineare affine 5.1, si dice distribuzione di controllabilità lo span lineare dei campi vettore g_{i}. In formule

$$
\Delta_{C}(x) \triangleq \operatorname{span}\left\{g_{i}(x)\right\}_{i=1, \ldots, m}
$$

In letteratura assume molta importanza la sua chiusura involutiva del sottospazio vettoriale Δ_{C}.

Definizione 14 Si dice Lie algebra di controllabilità la chiusura involutiva di Δ_{C}, e la si denota con il simbolo

$$
\overline{\Delta_{C}}(x) .
$$

Si può a questo punto introdurre la famosa condizione LARC^{1} sul rango della Lie algebra di controllabilità:

$$
\overline{\Delta_{C}}(x)=T_{x} M, \quad \forall x \in M
$$

Si noti (sin da [Hermann and Krener, 1977] per arrivare a [Sontag, 1990], [Isidori, 1989] e [Nijmeijer and Van der Schaft, 1990]), che tale condizione di rango assicura solamente proprietà molto deboli di accessibilità.

Solo nel caso di sistemi privi di drift $(f(x)=0)$, tali proprietà di accessibilità si riflettono in analoghe proprietà di controllabilità.

In particolare poi noi siamo interessati al problema della stabilizzazione del sistema $\left(f, g_{i}\right)$. Sul'argomento esiste un notevole risultato di [Brockett, 1983]:

Teorema 9 (Condizione necessaria per la stabilizzabilità) Sia dato il sistema

$$
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i}, \quad x \in \mathbb{R}^{n}, \quad u_{i} \in \mathbb{R}
$$

[^15]Se esiste un controllo continuo

$$
\begin{aligned}
u: \mathbb{R}^{n} & \mapsto \mathbb{R}^{m} \\
x & \mapsto u(x)=\left[u_{1}(x), \ldots, u_{m}(x)\right]^{T}
\end{aligned}
$$

tale che il sistema in catena chiusa

$$
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i}(x) \triangleq h(x)
$$

sia asintoticamente stabile $\lim _{t \rightarrow \infty} x(t)=0$.
Allora la mappa

$$
\begin{aligned}
\mathbb{R}^{n} \times \mathbb{R}^{m} & \mapsto \mathbb{R}^{n} \\
(v, w) & \mapsto f(v)+\sum_{i=1}^{m} g_{i}(v) w_{i}
\end{aligned}
$$

è suriettiva!
Tale teorema ha forti implicazioni nella nostra ricerca. Prima di proseguire diamo la seguente:

Definizione 15 Il sistema (f, g_{i}) si dice completamente controllabile se

$$
\operatorname{span}\left\{g_{i}(x)\right\}_{i=1, \ldots, m} \triangleq \Delta_{C}(x) \equiv T_{x} M, \quad \forall x \in M
$$

Supponiamo per un momento di non avere drift e reinterpretiamo il risultato appena enunciato:

Ogni qual volta il sistema $\left(0, g_{i}\right)$ non sia completamente controllabile, il nostro obbiettivo di controllo (stabilizzazione) non ammette soluzione!

Quando invece il drift è presente, il problema diviene assai più complicato.
Nel seguito, nello studio dei nostri modelli del 1° ordine, imporremo la completa controllabilità del sistema (nonostante la più debole condizione necessaria del Te orema di Brockett).

Infine nel Capitolo 9, tratteremo una classe di sistemi che senza più verificare la condizione di completa controllabilità, rientra nelle ipotesi del Teorema.

In quanto segue, adottiamo le seguenti due assunzioni sulla varietà M e sul sistema $\left(f, g_{i}\right)$:
\square La varietà Riemanniana M si assume completa.Il sistema dinamico $\left(f, g_{i}\right)$ si assume completamente controllabile.

5.1.1 Strategia geodesica

Siamo a questo punto pronti a definire la nostra strategia di controllo valida per sistemi completamente controllabili definiti su varietà complete.
Si consideri il seguente comportamento:
Si annulla completamente il drift e si applica un controllo che istante per istante è diretto lungo il versore geodesico $Y_{x}(x, p) \in T_{x} M$ da $x(t)$ a q ed ha intensità proporzionale alla distanza $\operatorname{dist}(x(t), q)$ tra lo stato e l'obbiettivo.

Conseguentemente, chiamiamo controllo geodesico il seguente

$$
\begin{equation*}
\sum_{i=1}^{m} g_{i}(x) u_{i}=-f(x)+K_{\mathrm{p}} \operatorname{dist}(x, p) Y_{x}(x, p) \tag{5.2}
\end{equation*}
$$

Si noti come la condizione di completa controllabilità permette di dimostrare facilmente l'esistenza e l'univocità del controllo $u=\left[u_{1}, \ldots, u_{m}\right]^{T} \in \mathbb{R}^{m}$, che risolve l'equazione 5.2.

È inoltre facile dimostrare come con una tale legge di controllo varranno globalmente i due seguenti fatti:

Traiettoria Geodesica: lo stato $x(t)$ rimane sempre lungo la geodesica minimale che unisce $x(0)$ a p.

Convergenza Esponenziale: la dinamica per la dist $(x), p)$ sarà:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{dist}(x(t), p)=-K_{\mathrm{p}} \operatorname{dist}(x(t), p)
$$

dove K_{p} è la costante reale positiva di proporzionalità.

5.1.2 Strategia minimale

Accontentandoci della convergenza esponenziale possiamo definire:
Si annulla il drift $f(x)$ solo lungo la direzione geodesica, lungo la quale si applica un controllo che istante per istante è ha intensità proporzionale alla distanza $\operatorname{dist}(x(t), q)$ tra lo stato e l'obbiettivo.

Chiamiamo controllo minimale il seguente

$$
\begin{equation*}
\sum_{i=1}^{m} g_{i}(x) u_{i}=\left[-<f(x), Y_{x}(x, p)>_{T_{x} M}+K_{\mathrm{p}} \operatorname{dist}(x, p)\right] Y_{x}(x, p) \tag{5.3}
\end{equation*}
$$

Si noti come anche in questo caso, la condizione di completa controllabilità permette di dimostrare facilmente l'esistenza e l'univocità del controllo 5.3.

In questo caso, dato un generico drift, il sistema evolverà lungo una traiettoria lasciata libera di vagare lungo le direzioni parallele alla sfera geodesica $S_{q}(\operatorname{dist}(x(t), p))$, di centro p e raggio $\operatorname{dist}(x(t), p)$. Viceversa per la componente lungo la direzione geodesica continua a valere:

Convergenza Esponenziale: la dinamica per la dist $(x(t), p)$ sarà:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{dist}(x(t), p)=-K_{\mathrm{p}} \operatorname{dist}(x(t), p)
$$

dove K_{p} è la costante reale positiva di proporzionalità.

Osservazione 19 (Convergenza esatta in tempo unitario) Interpretando il problema del controllo del sistema 5.1 nell'ambito del Motion Planning, si può formulare una strategia di controllo esatto in tempo unitario.

Basta infatti applicare lungo la direzione geodesica un controllo la cui intensità soddisfi la

$$
\int_{0}^{1}\|\dot{x}(\tau)\| \mathrm{d} \tau=\operatorname{dist}(x(0), q)
$$

Ciò vale per entrambe le strategie geodesica e minimale.

5.1.3 Strategia adattativa

In letteratura sono presenti vari schemi per la stabilizzazione di sistemi nonlineari con parametri incogniti. Tutti però si basano sull'idea esposta per la prima volta nel [Parks, 1966].

Il testo classico in materia di controllo adattativo è il [Sastry and Bodson, 1989]: seguendo la terminologia ivi contenuta, lo schema di controllo qui proposto è del tipo "diretto".

Intendiamo ora descrivere qualitativamente l'idea originaria di [Parks, 1966]. Assumiamo l'ipotesi fondamentale di dipendenza lineare del drift rispetto ai parametri incogniti e proviamo la stabilità alla Lyapunov ${ }^{2}$ del sistema in questione:

[^16]Schema Classico con Principio di Equivalenza Certa e con Funzione di Lyapunov: sia $x \in \mathbb{R}$ lo stato del sistema

$$
\dot{x}=\theta f(x)+u(x),
$$

dove indichiamo con $\hat{\theta}$ la stima corrente del parametro incognito θ.
Sia $V(x, \theta-\widehat{\theta})=\frac{1}{2} x^{2}+\frac{1}{2}[\theta-\widehat{\theta}]^{2}$ la nostra candidata funzione di Lyapunov e si scelga il controllo:

$$
u(x)=-f(x) \hat{\theta}-K_{\mathrm{p}} x
$$

Si noti che il primo addendo cerca di cancellare il drift, mentre il secondo è un classico controllo proporzionale. Questa scelta va sotto il nome di Principio di Equivalenza Certa.

Vale

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V & =x \dot{x}-[\theta-\hat{\theta}] \frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}=-K_{\mathrm{p}} x^{2}+x f(x)[\theta-\hat{\theta}]-[\theta-\hat{\theta}] \frac{\mathrm{d}}{\mathrm{~d} t} \hat{\theta} \\
& =-K_{\mathrm{p}} x^{2}+\left[x f(x)-\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\theta}\right][\theta-\hat{\theta}]
\end{aligned}
$$

Il trucco fondamentale consiste nel scegliere la legge di aggiornamento della stima $\widehat{\theta}$ della forma

$$
\dot{\hat{\theta}}=x f(x)
$$

in modo da ottenere una funzione di Lyapunov V con derivata semi-definita negativa.

Il lemma di Barbalat (o il principio di La Salle, a seconda delle condizioni) conclude la dimostrazione di stabilità asintotica dello stato x.

Vogliamo ora adattare questo schema al caso di sistemi dinamici definiti su di una generica varietà (non più quindi uno spazio Euclideo). In particolare dobbiamo specificare rispetto a quale scelta di coordinate locali, valga la dipendenza lineare del drift rispetto ai parametri incogniti (ipotesi fondamentale).

Ebbene la nostra scelta è ancora una volta per la parametrizzazione normale ${ }^{3}$!
Supponiamo quindi di esprimere il sistema 5.1 in coordinate normali ${ }^{4}$ (vedi Capitolo 3):

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) u_{i} \equiv \mathcal{A}(x) \theta+\sum_{i=1}^{m} g_{i}(x) u_{i} \tag{5.4}
\end{equation*}
$$

[^17]dove il drift $f(x)$ ammette una espressione lineare $\mathcal{A}(x) \in \mathbb{R}^{m \times k}$ nei parametri incogniti $\theta \in \mathbb{R}^{k}$:

E quindi possibile formulare uno schema classico (a Equivalenza Certa e funzione di Lyapunov) per il controllo adattativo del sistema 5.4 definito sulla varietà Riemanniana M !
Si consideri il seguente comportamento:
Sia $Y_{x(t)}(x(t), p) \in T_{x(t)} M$ il versore geodesico in $x(t)$ verso p. Si applichi un controllo a Equivalenza Certa secondo la strategia geodesica descritta precedentemente:

$$
\sum_{i=1}^{m} g_{i}(x) u_{i}=-\mathcal{A}(x) \hat{\theta}+K_{\mathrm{p}} \operatorname{dist}(x, p) Y_{x}(x, p)
$$

A norma del Lemma di Gauss 7, lungo la direzione geodesica il sistema si muoverà con intensità:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{dist}(x, p) & =<Y_{x}(x, p),-K_{\mathrm{p}} \operatorname{dist}(x, p) Y_{x}(x, p)+\mathcal{A}(x)[\theta-\hat{\theta}]>_{T_{x} M} \\
& =-K_{\mathrm{p}} \operatorname{dist}(x(t), p)+<Y_{x}(x, p), \mathcal{A}(x)[\theta-\hat{\theta}]>_{T_{x} M}
\end{aligned}
$$

Si noti come anche ora il drift residuo in $\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{dist}(x, p)$, mostri una dipendenza lineare in θ.
Scelta la funzione di Lyapunov

$$
V[\operatorname{dist}(x(t), p), \theta-\widehat{\theta}]=\frac{1}{2} \operatorname{dist}(x(t), p)^{2}+\frac{1}{2}\|\theta-\widehat{\theta}\|_{\mathbb{R}^{k}},
$$

essa evolve secondo la:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V=- & K_{\mathrm{p}} \operatorname{dist}(x(t), p)^{2}-[\theta-\hat{\theta}]^{T} \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{\theta} \\
& +\operatorname{dist}(x, p)<Y_{x}(x, p), \mathcal{A}(x)[\theta-\hat{\theta}]>_{T_{x} M} .
\end{aligned}
$$

Si noti che il terzo addendo dipende linearmente dai parametri $[\theta-\hat{\theta}]$: esiste pertanto $\mathcal{B}(x) \in \mathbb{R}^{k}$ tale che

$$
\begin{equation*}
\mathcal{B}(x)^{T}[\theta-\hat{\theta}] \equiv \operatorname{dist}(x, p)<Y_{x}(x, p), \mathcal{A}(x)[\theta-\hat{\theta}]>_{T_{x} M} \tag{5.5}
\end{equation*}
$$

La legge di aggiornamento della stima

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}=\mathcal{B}(x)
$$

permettel'eliminazione del terzo addendo di $\frac{\mathrm{d}}{\mathrm{d} t} V$ e rende $\dot{V}=-K_{\mathrm{p}} \operatorname{dist}(x(t), q)^{2}$ semi-definita negativa.
Tutto segue poi come nel caso reale.

Chiamiamo controllo adattativo per il sistema 5.4, il seguente

$$
\begin{align*}
\sum_{i=1}^{m} g_{i}(x) u_{i} & =-\mathcal{A}(x) \hat{\theta}+K_{\mathrm{p}} \operatorname{dist}(x, p) Y_{x}(x, p) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\theta} & =\mathcal{B}(x) \tag{5.6}
\end{align*}
$$

con \mathcal{B} definito dalla 5.5.
Nei paragrafi seguenti espliciteremo le leggi di controllo appena enunciate per i vari sistemi presi in considerazione.

5.2 Sistemi definiti in gruppi di Lie

Storicamente vi è sempre stato in letteratura un notevole interesse per sistemi dinamici definiti su gruppi.

Prima ancora che si riuscisse a spiegare l'idea di sistema nonlineare controllabile e/o osservabile (dando condizioni necessarie e sufficienti), era già presente in letteratura una assai completa"Teoria dei Sistemi definiti su Gruppi di Lie", si veda l'Introduzione ed i riferimenti ivi contenuti.

Anche alla luce delle teoria esposta in tali articoli, la nostra ipotesi di completa controllabilità è molto forte.

Noi vogliamo qui dimostrare come dati due punti del gruppo esiste sempre almeno una curva geodesica che li unisce.

In termini più precisi, vogliamo mostrare come un gruppo di Lie G compatto e semi-semplice sia metricamente completo rispetto alla struttura Riemanniana biinvariante indotta dalla forma di Killing (si veda la Sezione 4.5 per una descrizione completa di questo procedimento).

Ancora una volta tutto si basa sull'identità tra geodesiche della metrica e curve esponenziali (ovvero sottogruppi unidimensionali) nel gruppo di Lie con struttura Riemanniana G (vedi Teorema 7 a pagina 31):

Le curve geodesiche di G sono le sue curve esponenziali. Ma tali curve sono definite su tutto \mathbb{R}, cioè la curva

$$
\gamma(t)=g \exp (X t), \quad g \in G, \quad \text { e } \quad X \in \mathcal{L}(G)
$$

è naturalmente definita per ogni $t \in \mathbb{R}$ (si veda il Teorema 6 a pagina 26).
Questo equivale a dire che la varietà Riemanniana G è completa geodesicamente.

Quindi, a norma del Teorema di Hopf-Rinow, la varietà Riemanniana G è completa anche come spazio metrico.

In generale un sistema definito su di un gruppo di Lie si presenta nella forma:

$$
\begin{equation*}
\dot{g}=g U(t), \quad g \in G, \quad \text { e } \quad U \in \mathcal{L}(G) \tag{5.7}
\end{equation*}
$$

dove g è lo stato del sistema e $U(t)$ definito nell'algebra di Lie corrispondente $\mathcal{L}(G)$, è composto genericamente di controllo e drift.

Regolazione In questo caso siamo interessati ad una legge di controllo $U=$
$U(g)$, che porti $g(t)$ a convergere verso l'identità $e_{G} \in G$. Ovvero vorremmo che per il sistema a catena chiusa:

$$
\dot{g}=g U(g),
$$

valga:

$$
\lim _{t \rightarrow \infty} g(t)=e_{G}
$$

Si noti come la strategia geodesica esposta nelle Sezioni precedenti, pre-ve-da un controllo tale che U sia diretto lungo la direzione geodesica con intensità proporzionale alla distanza tra stato e identità.
In formule

$$
\begin{equation*}
U(g)=-K_{\mathrm{p}} \operatorname{dist}\left(g, e_{g}\right) \operatorname{vers}[\log (g)] \equiv-K_{\mathrm{p}} \log (g) \tag{5.8}
\end{equation*}
$$

Inseguimento Sia data una traiettoria $g_{\mathrm{d}}=g_{\mathrm{d}}(t) \in G$ desiderata. Noi vorremmo che $g(t)$ converga in qualche senso a g_{d}.
In questo caso, l'osservazione cruciale è che noi possiamo sfruttare la struttura di gruppo di G per riformulare questo task come un problema di regolazione.
Si dia la seguente
Definizione 16 Sia dato $g(t)$ lo stato del sistema 5.7 definito in G e sia g_{d} la traiettoria desiderata.
Allora definiamo l'errore $\eta \in G$ con

$$
\eta \triangleq g_{\mathrm{d}}^{-1} g \in G .
$$

Si noti come ovviamente:

$$
\|\eta\|_{G}=\operatorname{dist}\left(g, g_{\mathrm{d}}\right)=\operatorname{dist}\left(g_{\mathrm{d}}, g\right)
$$

Sarà dunque possibile riscrivere il sistema 5.7 in cui il nuovo stato è l'errore $\eta \in G$ e controllare verso l'identità e_{G} di G il nuovo stato!

Nel prossimo Capitolo daremo un esempio assai concreto ed esauriente di quanto sviluppato fin'ora.

5.3 Sistemi definiti sulla sfera

Si noti come sarebbe assai istruttivo, estendere la metodologia qui esposta al caso di \mathbb{S}^{n}.

Si veda la Sezione 3.1.1 a pagina 23, per la costruzione della struttura metrica di \mathbb{S}^{2} e per le espressioni di versore geodesico e di distanza tra punti.

Iniziamo notando che
i) Le geodesiche della sfera ${ }^{5} \mathbb{S}^{2}$ sono i cerchi di raggio massimo.
ii) $\grave{\text { È }}$ quindi ovvio come il dominio $[a, b] \subset \mathbb{R}$ di una geodesica $\gamma:[a, b] \mapsto$ \mathbb{S}^{2} sia sempre estendibile a tutto \mathbb{R}.
iii) \mathbb{S}^{2} è pertanto completa sia geodesicamente che metricamente.

Dati quindi due punti di \mathbb{S}^{2} esiste sempre almeno una geodesica (ovvero un cerchio di raggio massimo) che li unisca. In particolare, a meno che i due punti non siano opposti rispetto al centro, esiste un'unica geodesica minimale.

La sfera \mathbb{S}^{2} non ha struttura di gruppo e pertanto non esiste un punto privilegiato verso il quale guidare il sistema: scegliamo pertanto arbitrariamente un punto $p \in \mathbb{S}^{2} \subset \mathbb{R}^{3}$, verso il quale regolare lo stato del nostro sistema.

Ovvero sia $x=x(t) \in \mathbb{S}^{2}$ lo stato del nostro sistema dinamico: vogliamo orientare x lungo la direzione costante nel tempo $p \in \mathbb{S}^{2}$.

La strategia geodesica si legge in questo caso come:

$$
\begin{align*}
\dot{x} & =K_{\mathrm{p}} \operatorname{dist}(x, p) Y_{x}(x, p) \\
& =K_{\mathrm{p}} \arccos [\langle x, p\rangle] \operatorname{vers}[x,[p, x]] \in T_{x} \mathbb{S}^{2} . \tag{5.9}
\end{align*}
$$

Ricordando la definizione di errore di orientazione 3.1 (vedi sempre Sezione 3.1.1):

$$
e(x, p) \triangleq \arccos [<x, p>] \operatorname{vers}[x, p], \quad \in \mathbb{R}^{3}
$$

[^18]si può reinterpretare la legge geodesica nel seguente modo:
$$
\dot{x} \|[e(x, p), x] \quad \Rightarrow \quad \operatorname{vers}[\dot{x}]=[\operatorname{vers}[e(x, p)], x],
$$
dove il simbolo $\|$ significa parallelo.
Per quanto riguarda $\frac{\mathrm{d}}{\mathrm{d} t}\|e(x, p)\|$ si può verificare, tramite un noioso calcolo di derivata, come
$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|e(x, p)\|=-K_{\mathrm{p}}\|e(x, p)\|
$$

Capitolo 6

Inseguimento in $S O(3)$ con tre rotori

> Vogliamo qui applicare le strategie di controllo descritte nel Capitolo precedente, al caso del controllo dell'assetto di un satellite attuato da tre rotori d'inerzia.
> Essendo lo spazio in questione un gruppo, abbiamo a disposizione una nozione canonica di errore, rispetto alla quale formulare il problema dell'Inseguimento.

La dinamica del nostro satellite è descritta dalla 2.7 , che riportiamo qui per comodità:

$$
\left\{\begin{align*}
\dot{g} & =g Y(g)+g \sum_{i=1}^{3} X_{i} u_{i}(t) \tag{6.1}\\
Y(g) & =\left(J^{-1} g^{T} y_{0}\right) \times
\end{align*}\right.
$$

Cerchiamo una legge di controllo (vedi [Wen and Kreutz-Delgado, 1991]) che risolva il problema dell'inseguimento di una traiettoria in $S O(3)$ per un satellite con $m=3$ attuatori, avendo a disposizione come misura l'intero stato $g(t) \in S O(3)$.

Questo problema, formulato con un modello del 1° ordine, a conoscenza dell'autore non è stato affrontato in letteratura. Per un confronto con la letteratura esistente in materia, rimandiamo all'Introduzione e al Capitolo 9 sul modello completo di dinamica degli attuatori.

Si noti che, come descritto nell' Osservazione 3, il sistema con tre attuatori è completamente controllabile. Da un punto di vista algebrico, nell'equazione $\dot{g}=g U(t)$ è possibile assegnare il valore di $U(t) \in \mathfrak{s o}(3)$ del tutto a piacimento.

Sono dunque verificate le condizioni di
i) varietà completa,
ii) sistema completamente controllabile.

Sia quindi data una traiettoria $g_{\mathrm{d}}(t) \in S O(3)$ desiderata, e supponiamo di poterne facilmente ricavare la relativa velocità angolare istantanea espressa in coordinate solidali al satellite:

$$
\begin{equation*}
\dot{g}_{\mathrm{d}}(t)=g_{\mathrm{d}}(t) X_{\mathrm{d}}(t), \quad X_{\mathrm{d}}(t) \in \mathfrak{s o}(3) . \tag{6.2}
\end{equation*}
$$

Classicamente il problema dell'inseguimento consiste nel fare convergere a zero l'errore, ovvero la distanza tra $g(t)$ e $g_{\mathrm{d}}(t)$.
\grave{E} significativo osservare come in letteratura non vi sia uno comportamento standard sul come misurare tale distanza e sul come rappresentare l'errore di inseguimento. Rimandiamo al [Wen and Kreutz-Delgado, 1991] per una descrizione completa della letteratura sull'argomento.

Si noti inoltre come la scelta della parametrizzazione di $S O(3)$ vada poi ad influenzare in maniera determinante la formulazione della stessa legge di controllo. Spesso, cercando di generalizzare un'idea comunissima in teoria dei sistemi lineari, tale legge di controllo viene scelta di tipo proporzionale.

Quello che non appare chiaro in letteratura è: legge proporzionale si, ma a quale grandezza?

In base ai motivi descritti nelle Sezioni precedenti, si dà qui la seguente definizione:

Definizione 17 Sia $g_{\mathrm{d}}(t)$ la traiettoria desiderato in $S O(3)$ e sia $g(t)$ lo stato del nostro sistema 6.1.

Allora si definisce errore d'assetto e (t) :

$$
e(t) \triangleq g_{\mathrm{d}}^{T}(t) g(t) \in S O(3)
$$

Rispetto alla definizione di η della Sezione precedente, si noti la semplificazione dovuta alla proprietà di $S O(3)$ per cui

$$
g_{\mathrm{d}}^{-1} \equiv g_{\mathrm{d}}^{T} .
$$

Si noti inoltre che la matrice di rotazione $e(t)$ scelta è quella di cambiamento di base dalle coordinate solidali al corpo a quelle desiderate; questa è una scelta arbitraria, dovuta all'eguaglianza

$$
\left\|g_{\mathrm{d}}^{T}(t) g(t)\right\|_{S O(3)}=\left\|g^{T}(t) g_{\mathrm{d}}(t)\right\|_{S O(3)} \equiv \operatorname{dist}\left(g(t), g_{\mathrm{d}}(t)\right)
$$

Siamo quindi giunti a riformulare il problema di Inseguimento come probema di Regolazione per il nuovo stato $e(t) \in S O(3)$. Vogliamo infatti che per il nostro sistema valga:

$$
\lim _{t \rightarrow \infty} e(t)=I_{3} \quad \Leftrightarrow \quad \lim _{t \rightarrow \infty}\|e(t)\|_{S O(3)}=0 .
$$

6.1 Controllo con conoscenza dei parametri

La costruzione della legge di controllo avverrà per gradi. Come primo passo, supponiamo per semplicità che la traiettoria desiderata inizi da $g_{\mathrm{d}}(0)=g(0)$. Partiamo quindi con un errore d'assetto $e(0)=I_{3}$. Per seguire la traiettoria al variare del tempo sarà quindi necessario e sufficiente far si che:

$$
\begin{equation*}
Y(g)+\sum_{i=1}^{3} X_{i} u_{i}(t) \equiv X_{\mathrm{d}}(t) \tag{6.3}
\end{equation*}
$$

ovvero proiettando ${ }^{1}$ lungo le X_{i} :

$$
u_{i}(t)=<X_{\mathrm{d}}(t), X_{i}>-<Y(g), X_{i}>, \quad i=1,2,3
$$

Questa legge però non è più sufficiente ad assicurare l'inseguimento se si parte da una situazione in cui $e(0) \neq I_{3}$. L'errore evolve infatti secondo la seguente equazione:

$$
\begin{align*}
\dot{e}(t) & =\dot{g}_{\mathrm{d}}^{T} g+g_{\mathrm{d}}^{T} \dot{g} \\
& =-X_{\mathrm{d}}(t) g_{\mathrm{d}}^{T} g+g_{\mathrm{d}}^{T} g\left(Y(g)+\sum_{i=1}^{3} X_{i} u_{i}(t)\right) \\
& =-X_{\mathrm{d}} e(t)+e(t)\left(Y(g)+\sum_{i=1}^{3} X_{i} u_{i}\right) \\
& =e(t)\left(-\operatorname{Ad}_{e^{T}}\left(X_{\mathrm{d}}\right)+Y(g)+\sum_{i=1}^{3} X_{i} u_{i}\right) \tag{6.4}
\end{align*}
$$

e il controllo 6.3 non tiene conto del nuovo termine $-\operatorname{Ad}_{e^{T}}\left(X_{\mathrm{d}}\right)$.
Si noti che essendo X_{d} una grandezza espressa in coordinate assolute, $\operatorname{Ad}_{e^{T}}\left(X_{\mathrm{d}}\right)$ è la corrispondente grandezza espressa in coordinate solidali al sistema di riferimento dell'errore (vedi Sezione 4.1.1).

Si noti come a tutti gli effetti, l'equazione 6.4 costituisca l'equazione di stato del nostro nuovo sistema!

Al nuovo sistema, possiamo a questo punto applicare i concetti introdotti precedemente:
Proposizione 20 (Inseguimento di traiettorie in $S O(3)$) Sia dato il sis-tema satellite nella forma:

$$
\dot{g}=g Y(g)+g \sum_{i=1}^{3} X_{i} u_{i}(t)
$$

Sia $\dot{g}_{\mathrm{d}}(t)=g_{\mathrm{d}}(t) X_{\mathrm{d}}(t)$ l'equazione dinamica che descrive la traiettoria desiderata in $S O(3)$ e sia $e(t) \triangleq g_{\mathrm{d}}^{T}(t) g(t)$ l'errore d'assetto.

[^19]Allora un controllo della forma:

$$
\begin{equation*}
\sum_{i=1}^{3} X_{i} u_{i}(t)=\operatorname{Ad}_{e^{T}}\left[X_{\mathrm{d}}(t)\right]-Y(g)-K_{\mathrm{p}} \log \left[g_{\mathrm{d}}^{T}(t) g\right], \quad K_{\mathrm{p}} \in \mathbb{R}^{+} \tag{6.5}
\end{equation*}
$$

costringe l'errore d'assetto e(t) a decrescere lungo la traiettoria geodesica verso l'identità con legge esponenziale:

$$
\|e(t)\|_{S O(3)}=\|e(0)\|_{S O(3)} \mathrm{e}^{-K_{\mathrm{p}} t}
$$

Dim: Partendo dall'equazione di sistema 6.4 e sostituendo il controllo adottato 6.5 , si ha

$$
\begin{aligned}
\dot{e}(t) & =e(t)\left(-\operatorname{Ad}_{e^{T}}\left(X_{\mathrm{d}}\right)+Y(g)+\sum_{i=1}^{3} X_{i} u_{i}\right) \\
& =e(t)\left(-K_{\mathrm{p}} \log [e(t)]\right)
\end{aligned}
$$

Ma questa è esattamente la legge di equazione 5.8 a pagina 58 . Si puó applicare quindi il Lemma di Gauss e con esso tutti i risultati mostrati nel Capitolo precedente.

Si noti che la legge di controllo 6.5 ha la forma di una legge di retroazione nonlineare dallo stato. Infatti essa è scritta in funzione del solo stato $g(t)$ (e del segnale desiderato $\left.g_{\mathrm{d}}(t), X_{\mathrm{d}}(t)\right)$.

Osservazione 21 (Convergenza esatta in tempo unitario) Guardando al sistema 6.4 dal punto di vista del Motion Planning, è possibile scrivere un legge di controllo che porti ad un errore nullo in tempo unitario. Basta imporre:

$$
\sum_{i=1}^{3} X_{i} u_{i}(t)=\operatorname{Ad}_{e^{T}}\left[X_{\mathrm{d}}(t)\right]-Y(g)-\operatorname{vers}[\log (e)] u(t)
$$

con un qualunque $u(t) \in \mathbb{R}, t \in[0,1]$ tale che

$$
\int_{0}^{1} u(\tau) \mathrm{d} \tau=\|\log [e(0)]\|_{s \mathfrak{s o}}(3)=\|e(0)\|_{S O(3)}
$$

Il controllo 6.5 rappresenta l'applicazione della strategia geodesica 5.2 al modello 6.1.

Possiamo inoltre formulare per lo stesso modello la strategia minimale 5.3:

Proposizione 22 (Inseguimento "minimale" di traiettorie in $S O(3)$) Nelle stesse ipotesi della Proposizione 20, la strategia minimale assume l'espressione:

$$
\begin{aligned}
\sum_{i=1}^{3} X_{i} u_{i}(t)=- & K_{\mathrm{p}} \log (e)+ \\
& <\operatorname{Ad}_{e^{T}}\left[X_{\mathrm{d}}(t)\right]-Y(g), \operatorname{vers}[\log (e)]>\operatorname{vers}[\log (e)]
\end{aligned}
$$

Allora, sebbene la traiettoria seguita da e(t) non sia più una geodesica, continua a valere

$$
\|e(t)\|_{S O(3)}=\|e(0)\|_{S O(3)} \mathrm{e}^{-K_{\mathrm{p}} t}
$$

6.2 Controllo adattativo

Vogliamo qui applicare al modello 6.1 la strategia di controllo adattativo 5.6 esposta precedentemente.

Lo schema adattativo viene utilizzato nel caso in cui sia nota solo una stima $\widehat{Y}_{0}=\widehat{y}_{0} \times$ del momento angolare totale $Y_{0}=y_{0} \times$, supposto costante.

Ricordiamo dal Capitolo 2 come:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} y_{0}=\tau_{\text {esterne }}
$$

dove con $\tau_{\text {esterne }}$ si denota il momento meccanico totale applicato dalle forze esterne.

L'introduzione di uno schema adattativo sul parametro y_{0} permette di annullare gli effetti di instabilità dovuti alla forte ipotesi di disturbi esterni completamente nulli.

Valga per tutto il resto la notazione $\forall X \in \mathfrak{s o}(3), X^{\vee} \in \mathbb{R}^{3}$, dove $\cdot^{\vee}: \mathfrak{s o}(3) \mapsto$ \mathbb{R}^{3} è l'operatore inverso di $(\cdot \times): \mathbb{R}^{3} \mapsto \mathfrak{s o}(3)$.

Proposizione 23 (Inseguimento adattativo di traiettorie in $S O(3)$) Sia dato il sistema satellite nella forma:

$$
\left\{\begin{array}{l}
\dot{g}=g Y(g)+g \sum_{i=1}^{3} X_{i} u_{i}(t) \\
Y(g)=\left(J^{-1} g^{T} y_{0}\right) \times
\end{array}\right.
$$

Sia $g_{\mathrm{d}}(t)=g_{\mathrm{d}}(t) X_{\mathrm{d}}(t)$ la traiettoria desiderata, $e(t) \triangleq g_{\mathrm{d}}^{T}(t) g(t)$ l'errore d'assetto, e si denoti con $\widetilde{y}_{0} \triangleq y_{0}-\widehat{y}_{0} \in \mathbb{R}^{3}$ l'errore di stima.

Allora il controllo ${ }^{2}$

$$
\begin{align*}
\sum_{i=1}^{3} X_{i} u_{i}(t) & =\operatorname{Ad}_{e^{T}}\left[X_{\mathrm{d}}(t)\right]-\hat{Y}(g)-K_{\mathrm{p}} \log [e(t)], \quad K_{\mathrm{p}} \in \mathbb{R}^{+} \tag{6.6}\\
\hat{Y}(g) & =\left(J^{-1} g^{T} \widehat{y}_{0}\right) \times
\end{align*}
$$

e la legge di aggiornamento della stima

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{y}_{0}=\Gamma g J^{-1} \log [e]^{\vee}, \quad \forall \Gamma=\Gamma^{T}>0 \tag{6.7}
\end{equation*}
$$

stabilizzano asintoticamente l'errore dello stato e(t) a zero e l'errore della stima \tilde{y}_{0} ad una costante.

Dim: Sostituendo il controllo 6.6, nella equazione d'errore 6.4, si ottiene

$$
\begin{equation*}
\dot{e}(t)=e(t)\left(-K_{\mathrm{p}} \log [e(t)]+\Delta Y(g)\right) \tag{6.8}
\end{equation*}
$$

dove $\Delta Y(g)=Y(g)-\widehat{Y}(g)=\left(J^{-1} g^{T} \widetilde{y}_{0}\right) \times$.
Costruiamo quindi la candidata funzione di Lyapunov per il nostro sistema in $S O(3) \times \mathbb{R}^{3}:$

$$
\begin{equation*}
V\left(e, \widetilde{y}_{0}\right) \triangleq \frac{\Delta}{2}\|e\|_{S O(3)}^{2}+\frac{1}{2} \widetilde{y}_{0} \Gamma^{-1} \widetilde{y}_{0} \tag{6.9}
\end{equation*}
$$

e cerchiamo una legge di aggiornamento della stima \widehat{y}_{0} tale da assicurare stabilità.
Data

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2}\|e(t)\|_{S O(3)}^{2}=\|e(t)\|_{S O(3)} \frac{\mathrm{d}}{\mathrm{~d} t}\|e(t)\|_{S O(3)}, \tag{6.10}
\end{equation*}
$$

come varia $\|e\|_{S O(3)}$, se $e(t)$ obbedisce alla dinamica 6.8?
La risposta risiede nel Lemma di Gauss 7. Infatti nel punto $\log [e] \in \mathfrak{s o}(3)$ il segmento geodesico di centro I_{3} e direzione vers $[\log (e)]$ e la sfera geodesica di centro I_{3} e raggio $\|e(t)\|_{S O(3)}$ sono ortogonali. È quindi solo la lungo direzione vers $[\log (e(t))]$ che la norma $\|e(t)\|_{S O(3)}$ varia.

Quindi lo spostamento $-K_{\mathrm{p}} \log [e(t)]+\Delta Y(g)$ contribuisce 3 solo con la sua componente lungo il raggio geodesico:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|e\|_{S O(3)}=<-K_{\mathrm{p}} \log [e(t)]+\Delta Y(g), \operatorname{vers}[\log (e)]>_{s o}(3)
$$

[^20]Ricordando che $\|e\|_{S O(3)} \equiv\|\log [e]\|_{\text {so }}(3)$, la derivata della candidata funzione di Lyapunov vale:

$$
\begin{aligned}
\dot{V}\left(e, \tilde{y}_{0}\right) & =\|e\|_{S O(3)} \frac{\mathrm{d}}{\mathrm{~d} t}\|e\|_{S O(3)}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}<\tilde{y}_{0}, \Gamma^{-1} \widetilde{y}_{0}>_{\mathbb{R}^{3}} \\
& =<-K_{\mathrm{p}} \log [e]+\Delta Y(g), \log [e]>_{\mathfrak{s o}(3)}+<\widetilde{y}_{0}, \Gamma^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \widetilde{y}_{0}>_{\mathbb{R}^{3}} \\
& =-K_{\mathrm{p}}\|e(t)\|_{S O(3)}^{2}+<\Delta Y(g), \log [e]>_{\mathfrak{s o}(3)}+<\widetilde{y}_{0}, \Gamma^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \widetilde{y}_{0}>_{\mathbb{R}^{3}}
\end{aligned}
$$

Sceglieremo ora la legge di aggiornamento $\frac{\mathrm{d}}{\mathrm{d} t} \tilde{y}_{0}$ in modo tale da elidere il secondo addendo della \dot{V}. Si noti che:

$$
\begin{aligned}
<\Delta Y(g), \log [e]>_{\mathfrak{s o}}(3) & =<\left(J^{-1} g^{T} \widetilde{y}_{0}\right) \times, \log [e]>_{\mathfrak{s o}}(3) \\
& =<J^{-1} g^{T} \widetilde{y}_{0}, \log [e]^{\vee}>_{\mathbb{R}^{3}} .
\end{aligned}
$$

Ricordando che $<A x, y>_{\mathbb{R}^{3}}=<x, A^{T} y>_{\mathbb{R}^{3}}$

$$
\begin{aligned}
\dot{V}\left(e, \widetilde{y}_{0}\right)=-K_{\mathrm{p}}\|e(t)\|_{S O(3)}^{2} & +<\widetilde{y}_{0}, g J^{-1} \log [e]^{\vee}>_{\mathbb{R}^{3}} \\
& +<\tilde{y}_{0}, \Gamma^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{y}_{0}>_{\mathbb{R}^{3}}
\end{aligned}
$$

La legge di aggiornamento 6.7 fornisce

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \widetilde{y}_{0}=-\Gamma g^{T} J^{-1} \log [e]^{\vee}, \quad \in \mathbb{R}^{3}
$$

ottenendo

$$
\dot{V}\left(e, \tilde{y}_{0}\right)=-K_{\mathrm{p}}\|e\|_{S O(3)}^{2} .
$$

La nostra funzione di Lyapunov è pertanto semi-definita negativa, il che implica la stabilità del sistema esteso $(e, \tilde{\theta}) \in S O(3) \times \mathbb{R}^{3}$.

Applichiamo a questo punto il Principio di Invariaza di La Salle. Questo afferma la convergenza dello stato esteso al massimo insieme invariante contenuto nell'insieme $\operatorname{Null}(\dot{V}) \triangleq\left\{\left(e, \tilde{y}_{0}\right): \dot{V}\left(e, \tilde{y}_{0}\right)=0\right\}$.

Quindi possiamo subito affermare che:

$$
\lim _{t \rightarrow \infty}\|e(t)\|_{S O(3)}=0
$$

ovvero

$$
\lim _{t \rightarrow \infty} e(t)=I_{3} .
$$

Inoltre, data la legge di aggiornamento 6.7, si ha che

$$
\lim _{t \rightarrow \infty} \frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{y}_{0}=0, \quad \Rightarrow \quad \lim _{t \rightarrow \infty} \tilde{y}_{0}=\operatorname{costante} \in \mathbb{R}^{3}
$$

La matrice peso Γ svolge semplicemente il ruolo di parametro/guadagno della legge di aggiornamento. Si noti che al variare di Γ varia il valore iniziale della funzione di Lyapunov V : in particolare per "alti" valori di Γ il valore iniziale di V diminuisce, mentre la sua derivata rimane formalmente uguale.

Da ciò si deduce come alti K_{p} e Γ permettono un più veloce inseguimento.
Infine si noti come anche per il parametro Γ sia possibile dare leggi di aggiornamento, che tengano in considerazione la presenza e l'intensità di eventuali disturbi esterni.

Sicuramente il difetto più evidente della legge di controllo 6.6 è la sua discontinuità.

Infatti, ogni qual volta $\|g\|_{S O(3)}$ raggiunge il valore di π, logaritmo non è più univocamente definito. Inoltre se $g \in S O(3)$ passa dal rappresentare una rotazione attorno ad un asse x di $(\pi-\epsilon)$ a rappresentare una rotazione attorno a $-x$ di $(\pi-\epsilon)$, il logaritmo passa evidentemente dal valore:

$$
(\pi-\epsilon) x \longmapsto-(\pi-\epsilon) x,
$$

attraversando evidentemente una discontinuità.
Tra i vari rimedi possibili, vi sono le seguente alternative:
i) Scegliere una legge non proporzionale, bensì della forma:

$$
\sum_{i=1}^{3} X_{i} u_{i}(t)=-K_{\mathrm{p}} \beta(\|e\|) \operatorname{vers}[\log (e)]+\left(\operatorname{Ad}_{\mathrm{e}^{\mathrm{T}}}\left[\mathrm{X}_{\mathrm{d}}(\mathrm{t})\right]-\widehat{\mathrm{Y}}(\mathrm{~g})\right)
$$

con $\beta: \mathbb{R} \mapsto \mathbb{R}^{+}$funzione crescente, $\beta(0)=0$ e con un asintoto verticale a π :

$$
\beta(\|e\|) \rightarrow \infty, \quad \text { quando } \quad\|e\| \rightarrow \pi
$$

Ad esempio ${ }^{4} \beta(\|e\|)=\tan (\|e\|)$.
In altri termini, noi possiamo alzare una "barriera" nella zona di discontinuità del logaritmo, cioè nella frontiera di $\exp (\mathfrak{s o}(3))$.

[^21]ii) Si supponga di avere a disposizione una maggiorazione della forma $\left\|\widetilde{y}_{0}\right\|<M$, valida per un qualche M reale positivo.

In queste ipotesi, la scelta più semplice è certamente quella di fissare:

$$
K_{\mathrm{p}}>\frac{\lambda_{\max }\left(J^{-1}\right) M}{\pi},
$$

oppure

$$
\lambda_{\max }\left(\Gamma^{-1}\right)<\frac{\pi^{2}-\|e\|^{2}}{M},
$$

dove con $\lambda_{\max }(A)$ indichiamo l'autovalore massimo in modulo della matrice A.

Entrambe queste strategie sfruttano l'espressione esplicita del sistema dinamico 6.10 o della funzione di Lyapunov 6.9, per trovare valori sufficientemente alti dei guadagni K_{p} e Γ.
In realtà anche senza una stima della forma $\left\|\tilde{y}_{0}\right\|<M$, è chiaro come al crescere dei guadagni si superi un limite oltre al quale il sistema converge sempre senza attraversare la zona di discontinuità.

Si noti inoltre come sia impossibile costruire su $S O(3)$ un campo vettore continuo e dotato di un unico punto di equilibrio (vedi [Wen and Kreutz-Delgado, 1991]).

Osservazione 24 Si noti come il controllo adattativo esposto in questa Sezione faccia riferimento alla strategia geodesica 5.2. Sarebbe possibile, sebbene assai poco interessante, riscrivere l'intera Sezione sostituendo una legge di tipo minimale 5.3.

Osservazione 25 Si noti come la possibilità di eseguire l'inseguimento adattativo sia dovuta al fatto che il parametro incognito y_{0} compare linearmente nel drift.

Visto che il tensore d'inerzia J ha lo stesso comportamento, è possibile (pur se con maggiori complicazioni formali) scrivere anche una legge di controllo adattativo per J.

Capitolo 7

Regolazione in \mathbb{S}^{2} con due rotori

Vogliamo qui applicare le strategie di controllo descritte nei Capitoli precedenti, al caso del controllo in \mathbb{S}^{2} dell'orientazione di un asse di un satellite attuato da due rotori d'inerzia.

Il sistema in questo caso è descritto dalla 2.10, che riportiamo per comodità:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}=-\pi_{2}\left[u_{1}+<x_{1}, y(g)>\right]+\pi_{1}\left[u_{2}+<x_{2}, y(g)>\right], \tag{7.1}
\end{equation*}
$$

con π_{0} stato, e π_{1} e π_{2} direzioni che generano $T_{\pi_{0}} S^{2}$.
Ricordiamo la notazione:

$$
\pi_{i} \stackrel{\Delta}{=} g x_{i} . \in \mathbb{S}^{2}
$$

Cerchiamo in questo momento una legge di controllo tale da risolvere il problema della regolazione dell'orientazione di un asse di un satellite con due attuatori (rotori d'inerzia), avendo a disposizione come misura l'intero stato $g(t) \in S O(3)$ (vedi [Tsiotras and Longuski, 1993]).

Si noti che, come descritto nell' Osservazione 5, il sistema con tre attuatori è completamente controllabile. Da un punto di vista algebrico, nell'equazione $\dot{\pi_{0}}=f\left(u_{1}, u_{2}\right) \in T_{\pi_{0}} \mathbb{S}^{2}$ è possibile assegnare il valore di $f\left(u_{1}, u_{2}\right)$ del tutto a piacimento.

Sono dunque verificate le condizioni di
i) varietà completa,
ii) sistema completamente controllabile.

Si noti inoltre che come spiegato diffusamente nel Capitolo precedente, il problema della parametrizzazione dello spazio \mathbb{S}^{2} è di notevole importanza nel
momento in cui si vada a formulare una strategia di controllo di tipo "proporzionale".

Nel nostro caso, pur senza esprimere l'intero sistema 7.1 in funzione delle coordinate normali ${ }^{1}$ di \mathbb{S}^{2}, scriveremo leggi di controllo che tengono conto della metrica dello spazio.

7.1 Controllo con conoscenza dei parametri

Applicando ora la strategia di controllo geodesico 5.9 al sistema 7.1, si ha il seguente risultato

Proposizione 26 (Regolazione in \mathbb{S}^{2}) Sia dato il modello di satellite con due rotori

$$
\dot{g}=g Y(g)+g X_{1} u_{1}+g X_{2} u_{2},
$$

sia l'equazione 7.1 la sua proiezione ${ }^{2}$ a \mathbb{S}^{2}, e sia $w_{0} \in \mathbb{S}^{2}$ la direzione desiderata.
Applicando il controllo:

$$
\begin{gather*}
{\left[\begin{array}{c}
u_{1} \\
u_{2}
\end{array}\right](g)=K_{\mathrm{p}} \operatorname{vers}\left[\begin{array}{c}
-<\pi_{2}(g), w_{0}> \\
<\pi_{1}(g), w_{0}>
\end{array}\right] \arccos \left[<\pi_{0}(g), w_{0}>\right]} \\
-\left[\begin{array}{c}
<x_{1}, y(g)> \\
<x_{2}, y(g)>
\end{array}\right] \tag{7.2}
\end{gather*}
$$

lo stato $\pi_{0}(g)$ ruota lungo la geodesica minimale di \mathbb{S}^{2} congiungente $\pi_{0}\left(g_{i}\right)$ e w_{0}, e la distanza $\operatorname{dist}\left(\pi_{0}(g), w_{0}\right)$ decresce esponenzialmente con costante K_{p}.

Osservazione 27 La tesi della Proposizione appena enunciata equivale ad imporre per l'errore di orientazione e $\left(\pi_{0}(g), w_{0}\right)$ (vedi definizione 3.1) la dinamica:

$$
\dot{e}=-K_{\mathrm{p}} e, \quad e \in \mathbb{R}^{3}
$$

Dim: Applicando l'ingresso 7.2 nel sistema 7.1

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}(g)= & \pi_{1}\left(K_{\mathrm{p}} \frac{<\pi_{1}, w_{0}>}{\left\|<\pi_{0}, w_{0}\right\|} \arccos \left[<\pi_{0}(g), w_{0}>\right]\right) \\
& -\pi_{2}\left(K_{\mathrm{p}} \frac{<\pi_{2}, w_{0}>}{\left\|<\pi_{0}, w_{0}\right\|} \arccos \left[<\pi_{0}(g), w_{0}>\right]\right) \\
= & K_{\mathrm{p}} \operatorname{vers}\left[<\pi_{1}, w_{0}>\pi_{1}+<\pi_{2}, w_{0}>\pi_{2}\right] \arccos \left[<\pi_{0}(g), w_{0}>\right] .
\end{aligned}
$$

[^22]Si noti poi come

$$
\begin{aligned}
{\left[\pi_{0}, w_{0}\right] } & =\pi_{0}\left[<w_{0}, \pi_{0}>\pi_{0}+<w_{0}, \pi_{1}>\pi_{1}+<w_{0}, \pi_{2}>\pi_{2}\right] \\
& =-<w_{0}, \pi_{2}>\pi_{1}+<w_{0}, \pi_{1}>\pi_{2}
\end{aligned}
$$

e

$$
\left[\left[\pi_{0}, w_{0}\right], \pi_{0}\right]=<w_{0}, \pi_{1}>\pi_{1}+<w_{0}, \pi_{2}>\pi_{2}
$$

Quindi ricordando la definizione di errore di orientazione 3.1, si ha

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}(g) & =K_{\mathrm{p}} \arccos \left[<\pi_{0}(g), w_{0}>\right]\left[\operatorname{vers}\left[\pi_{0}, w_{0}\right], \pi_{0}\right] \\
& =K_{\mathrm{p}}\left\|e\left(\pi_{0}, w_{0}\right)\right\| \operatorname{vers}\left[\left[e\left(\pi_{0}, w_{0}\right), \pi_{0}\right]\right] .
\end{aligned}
$$

L'ingresso applicato è quindi esattamente quello descritto in 5.9.
Ci rimane ora da dimostrare che la coppia di equazioni:

$$
\begin{cases}e\left(\pi_{0}, w_{0}\right) & =\arccos \left[<\pi_{0}, w_{0}>\right] \operatorname{vers}\left[\pi_{0}, w_{0}\right] \\ \frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0} & =K_{\mathrm{p}}\|e\| \operatorname{vers}\left[e, \pi_{0}\right], \quad w_{0} \in \mathbb{S}^{2}\end{cases}
$$

implicano $\dot{e}=-K_{\mathrm{p}} e$.
Calcoliamo separatamente la derivata di $\|e\|$ e vers $[e]$. Il modulo segue la:

$$
\begin{aligned}
\|\dot{e}\| & =\frac{\mathrm{d}}{\mathrm{~d} t} \arccos \left[<\pi_{0}, w_{0}>\right]=-\frac{<\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}, w_{0}>}{\sqrt{1-<\pi_{0}, w_{0}>^{2}}} \\
& =-K_{\mathrm{p}}\|e\| \frac{<\left[\operatorname{vers}[e], \pi_{0}\right], w_{0}>}{\sqrt{1-<\pi_{0}, w_{0}>^{2}}} \\
& =-K_{\mathrm{p}}\|e\| \frac{<\operatorname{vers}[e],\left[\pi_{0}, w_{0}\right]>}{\sqrt{1-<\pi_{0}, w_{0}>^{2}}} \\
& =-K_{\mathrm{p}}\|e\| \frac{\left\|\left[\pi_{0}, w_{0}\right]\right\|}{\sqrt{1-<\pi_{0}, w_{0}>^{2}}} \\
& =-K_{\mathrm{p}}\|e\|
\end{aligned}
$$

Ci basta ora dimostrare che il vers $[e]=\operatorname{vers}\left[\pi_{0}, w_{0}\right]$ è costante. Si consideri:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\pi_{0}, w_{0}\right] & =K_{\mathrm{p}}\|e\|\left[\left[\operatorname{vers}[e], \pi_{0}\right], w_{0}\right] \\
& =K_{\mathrm{p}}\|e\|\left[\left[\operatorname{vers}[e], w_{0}\right], \pi_{0}\right]
\end{aligned}
$$

dove nell'ultima passaggio è stata sostituita l'uguaglianza di Jacobi. Si vede come $\frac{\mathrm{d}}{\mathrm{d} t}\left[\pi_{0}, w_{0}\right]$ sia ortogonale a w_{0} e π_{0}. Esso evolve dunque lungo $\left[\pi_{0}, w_{0}\right]$, cioè in maniera tale da mantenere costante la direzione.

Osservazione 28 (Controllo Minimale) Nel controllo 7.2, la componente del drift $y(g)$ lungo $\left\{\pi_{1}, \pi_{2}\right\}$ viene annullata completamente. Per la convergenza a zero dell'errore però, sarebbe sufficiente annullare la componente di $y(g)$ lungo il raggio geodesico $\left[\operatorname{vers}[e], \pi_{0}\right]$.

In questo caso continuerebbe a valere $\frac{\mathrm{d}}{\mathrm{d} t}\|e\|=-K_{\mathrm{p}}\|e\|$, mentre non sarebbe più costante vers $[e]$.

7.2 Controllo adattativo

Vogliamo qui applicare al modello 7.1 la strategia di controllo adattativo 5.6 esposta precedentemente.

Facciamo riferimento alla Sezione 6.2 per una discussione sulla motivazioni che spingono a scrivere una legge di controllo che si adatti a lente variazioni del parametro y_{0}.
Proposizione 29 (Inseguimento adattativo di traiettorie in \mathbb{S}^{2}) Sia dato il modello di satellite con due rotori

$$
\dot{g}=g Y(g)+g X_{1} u_{1}+g X_{2} u_{2},
$$

sia l'equazione 7.1 la sua restrizione ${ }^{3}$ a \mathbb{S}^{2}, e sia $w_{0} \in \mathbb{S}^{2}$ la direzione desiderata.
Si denoti con $\tilde{y}_{0} \triangleq y_{0}-\widehat{y}_{0} \in \mathbb{R}^{3}$ l'errore di stima.
Il controllo ${ }^{4}$:

$$
\begin{gather*}
{\left[\begin{array}{c}
u_{1} \\
u_{2}
\end{array}\right](g)=K_{\mathrm{p}} \operatorname{vers}\left[\begin{array}{c}
-<\pi_{2}(g), w_{0}> \\
<\pi_{1}(g), w_{0}>
\end{array}\right] \arccos \left[<\pi_{0}(g), w_{0}>\right]} \\
-\left[\begin{array}{c}
<x_{1}, \widetilde{y}(g)> \\
<x_{2}, \widetilde{y}(g)>
\end{array}\right] \tag{7.3}
\end{gather*}
$$

con $\widehat{y}(g)=J^{-1} g^{T} \widehat{y_{0}}$, e la legge di aggiornamento della stima

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{y}_{0}=g J^{-1} \frac{<\pi_{1}, w_{0}>x_{2}+<\pi_{2}, w_{0}>x_{1}}{\left\|\left[\pi_{0}, w_{0}\right]\right\|}\|e\| \tag{7.4}
\end{equation*}
$$

stabilizzano asintoticamente l'errore dello stato e(t) a zero e l'errore della stima \widetilde{y}_{0} ad una costante.

Dim: Sostituendo il controllo 7.3, nella equazione di stato 7.1, si ottiene (vedi Dimostrazione Proposizione precedente):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}(g)=K_{\mathrm{p}}\|e\| \operatorname{vers}\left[e, \pi_{0}\right]+<x_{2}, \widetilde{y}(g)>\pi_{1}+<x_{1}, \widetilde{y}(g)>\pi_{2}
$$

[^23]e si noti come il drift residuo dipenda linearmente dal parametro sconosciuto. Si scelga quindi come candidata funzione di Lyapunov:
$$
V\left(e, \widetilde{y}_{0}\right) \triangleq \frac{1}{2}\|e\|^{2}+\frac{1}{2}\left\|\widetilde{y}_{0}\right\|^{2}
$$
in modo di avere:
$$
\dot{V}=\|e\| \frac{\mathrm{d}}{\mathrm{~d} t}\|e\|+<\tilde{y}_{0}, \frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{y}_{0}>
$$

Calcoliamo ora $\frac{\mathrm{d}}{\mathrm{d} t}\|e\|=\frac{\mathrm{d}}{\mathrm{d} t} \arccos \left[\left\langle\pi_{0}, w_{0}\right\rangle\right]$.

$$
\begin{aligned}
\|\dot{e}\| & =\frac{\mathrm{d}}{\mathrm{~d} t} \arccos \left[<\pi_{0}, w_{0}>\right]=-\frac{<\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}, w_{0}>}{\sqrt{1-<\pi_{0}, w_{0}>^{2}}} \\
& =-K_{\mathrm{p}}\|e\|-\frac{<\pi_{1}, w_{0}><x_{2}, \widetilde{y}(g)>+<\pi_{2}, w_{0}><x_{1}, \widetilde{y}(g)>}{\left\|\left[\pi_{0}, w_{0}\right]\right\|} \\
& =-K_{\mathrm{p}}\|e\|-<g J^{-1} \frac{<\pi_{1}, w_{0}>x_{2}+<\pi_{2}, w_{0}>x_{1}}{\left\|\left[\pi_{0}, w_{0}\right]\right\|}, \tilde{y}_{0}>
\end{aligned}
$$

La legge di aggiornamento

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{y}_{0}=g J^{-1} \frac{<\pi_{1}, w_{0}>x_{2}+<\pi_{2}, w_{0}>x_{1}}{\left\|\left[\pi_{0}, w_{0}\right]\right\|}\|e\|
$$

permette quindi di avere $\dot{V}=-K_{\mathrm{p}}\|e\|^{2}$.
Il resto è come da dimostrazione in Sezione 6.2

Capitolo 8

Simulazioni

In questo Capitolo vengono presentate delle simulazioni per la verifica numerica degli algoritmi di controllo sviluppati nei Capitoli precedenti.

Nella simulazione di un'equazione differenziale definita su di una varietà quale $S O(3)$ occorre prevedere particolari accorgimenti per mantenere la stima dello stato effettivamente sulla varietà.

8.1 Regolazione adattativa in $S O(3)$

Abbiamo implementato sul programma Matlab la legge di controllo 5.6, per la Regolazione adattativa del sistema satellite con tre attuatori.

Si noti che simulare l'Inseguimento di una traiettoria non avrebbe aggiunto nulla all'interesse dell'esperimento, visto che tutto si sarebbe poi ridotto alla simulazione della Regolazione dell'errore $e \in S O(3)$, come definito in 6.4.

La simulazione del sistema dinamico in $S O(3) \times \mathbb{R}^{3}$ è stata realizzata tramite l'utilizzo di un apposito schema numerico per l'integrazione di sistemi di equazioni differenziali.

Il sistema da simulare è

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} g=g\left[-K_{\mathrm{p}} \log (g)-\left(J^{-1} g^{T} \widehat{y}_{0}\right) \times\right], \quad g \in S O(3) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{y}_{0}=\Gamma g J^{-1} \log (g)^{\vee} .
\end{array}\right.
$$

che può essere riformulato come

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x=f(x) \tag{8.1}
\end{equation*}
$$

con x stato esteso dell'intero sistema: $x=\left(g, \widehat{y}_{0}\right)$.

L'unico particolare teorico cui dedicare una certa attenzione è dovuto alla parametrizzazione di $S O(3)$: Come rappresentare la matrice di rotazione g nella implementazione al calcolatore di un schema numerico per l'integrazione dell'equazione 8.1 ?

Matrici di Rotazione Supponiamo di scegliere matrici ortogonali 3×3 per rappresentare $\hat{g} \in S O(3)$.

Sia ψ uno schema numerico per il calcolo di una stima $\widehat{x}(t+\epsilon)$ della soluzione di 8.1 con dato iniziale di $\widehat{x}(t)$:

$$
\widehat{x}(t) \stackrel{\psi}{\longmapsto} \widehat{x}(t+\epsilon),
$$

Si scelga per esempio il semplice schema di Eulero:

$$
\begin{equation*}
\widehat{x}(t+\epsilon) \approx \psi_{\text {Eulero }}[x(t), \epsilon] \triangleq \widehat{x}(t)+\epsilon f(\widehat{x}(t)) \tag{8.2}
\end{equation*}
$$

con il passo ϵ piccolo a piacere.
Si noti che ad ogni passo aggiorniamo la stima di entrambe le componenti dello stato esteso: $\widehat{x}=\left(\widehat{g}, \widehat{y}_{0}\right)$.
Il problema nasce con la prima componente: partendo da un $\widehat{g}(t) \in S O(3)$, deve valere ad ogni passo

$$
\begin{equation*}
\widehat{g}(t+\epsilon) \in S O(3) \tag{8.3}
\end{equation*}
$$

Ma qualunque sia lo schema numerico ψ, esso fornirà una stima di $g(t+\epsilon)$ che ad ogni passo si allontana dalla varietà $S O(3) \subset \mathbb{R}^{3 \times 3}$.

Parametrizzazione minimale Supponiamo ora di adottare una parametrizzazione minimale, cioè con solamente tre parametri.

Esempi di parametrizzazioni minimali per $g \in S O(3)$ sono le coordinate esponenziali e gli angoli di Eulero.
Ma allora, come spiegato in Sezione 4.3.1, tale parametrizzazione presenta necessariamente delle singolarità, ovvero dei punti in cui non vi é più corrispondenza biunivoca tra i tre parametri e l'elemento di $S O(3)$.
Vicino ai punti di singolarità siamo cioè costretti pertanto a cambiare parametrizzazione e a "passare" ad uno diverso insieme di parametri.

Questo è assai sgradevole e viene evitato tramite una parametrizzazione che faccia uso di almeno quattro parametri (cui va però associato un vincolo).

Alla luce di queste considerazioni, la nostra scelta di parametrizzazione di $S O(3)$, sarà per i quaternioni unitari (vedi Sezione 4.3.1).

Questa scelta è comune in letteratura (vedi [Walsh and Sastry, 1991] e [Wen and Kreutz-Delgado, 1991 per i seguenti vantaggi

Rispetto ad una qualunque parametrizzazione minimale, i quaternioni unitari non presentano singolarità. L'implementazione è pertanto fortemente facilitata.

Inoltre l'insieme dei quaternioni quaternioni continua a mantenere la struttura di gruppo e questo presenta notevoli vantaggi.

In termini tecnici, la mappa che associa ad un elemento di $S O(3)$ il corrispondente quaternione è un omomorfismi di gruppo tra $S O(3)$ e l'insieme dei quaternioni a norma unitaria.

Pertanto la moltiplicazione tra matrici e l'inversa di matrici mappano semplicemente nella moltiplicazione di quaternioni e l'operazione di coniugazione.

Rispetto alla parametrizzazione a matrici ortogonali, i quaternioni riducono notevolmente la ridondanza.
Mentre per $g \in \mathbb{R}^{3 \times 3}$ deve valere:

$$
g^{T} g=g g^{T}=I_{3},
$$

per il quaternione $Q \in \mathbb{R}^{4}$ che rappresenta g basta il semplice vincolo:

$$
\|Q\|_{\mathbb{R}^{4}}=1
$$

Ovvero la stima

$$
\widehat{Q}(t+\epsilon)
$$

rispetta la condizione di consistenza 8.3, solo quando la sua norma è unitaria.

A questo punto adottiamo un semplice schema che passo passo rinormalizza ad uno la stima di Q :

$$
\widehat{Q}(t+\epsilon)=\operatorname{vers}_{\mathbb{R}^{4}}(\psi[\widehat{Q}(t), \epsilon]) .
$$

Infine un'ultima osservazione sulla scelta dello schema numerico.
Dalla Sezione 4.3.1, ricordiamo che, se $\dot{g}=g \omega$ allora per il quaternione Q che rappresenta g, vale la

$$
\frac{\mathrm{d}}{\mathrm{~d} t} Q=\frac{1}{2}\left[\begin{array}{cccc}
0 & -\omega_{1} & -\omega_{2} & -\omega_{3} \\
\omega_{1} & 0 & \omega_{3} & -\omega_{2} \\
\omega_{2} & -\omega_{3} & 0 & \omega_{1} \\
\omega_{3} & \omega_{2} & -\omega_{1} & 0
\end{array}\right] Q
$$

Questa quindi è l'equazione differenziale che è stata effettivamente simulata.
La relativa semplicità dell'equazione suggerisce la scelta di uno schema numerico non troppo raffinato. All'atto della simulazione, un semplice schema di Eulero 8.2 sembra dare risultati soddisfacenti.

Errore nella stima del momento angolare

Figura 8.1: Modello del 1° ordine - Regolazione adattativa in $S O(3)$: stato ed errore di stima. Elevato guadagno nello stimatore.

8.1.1 Parametri

In maniera arbitraria abbiamo fissato i seguenti valori per i parametri del problema:

$$
\begin{array}{rl}
J & =\left[\begin{array}{ccc}
3.0 & 0.2 & 1.0 \\
0.2 & 2.63 & 0.2 \\
1.0 & 0.2 & 1.85
\end{array}\right], \\
\tilde{y}_{0} & =\left[\begin{array}{lll}
1.0 & 3.0 & 2.0
\end{array}\right]^{T} \\
\epsilon & = \\
T_{f} & = \\
K_{\mathrm{p}} & 0.02 \mathrm{sec} \\
\Gamma & 4 \mathrm{sec} \\
g(0) & = \\
y, & 10 \\
& =
\end{array}
$$

I risultati sono presentati in Figura 8.1 e Figura 8.2.
Si noti che sia lo stato che l'errore di stima convergono a zero asintoticamente.
In particolare la simulazione sembrerebbe mostrare che in realtà la convergenza dello stato esteso è di tipo esponenziale, vedi Figura 8.2.

Si noti inoltre l'andamento oscillatorio sia dello stato $g \in S O(3)$ sia \tilde{y}_{0}. Ciò è dovuto ad un eccessivo guadagno Γ. Si noti il miglioramento nella velocità di

Figura 8.2: Modello del 1° ordine - Regolazione adattativa in $S O(3)$: logaritmo naturale della norma dello stato e dell'errore di stima. Elevato guadagno nello stimatore.
convergenza ottenuto semplicemente settando il parametro scalare $\Gamma=3$, vedi Figure 8.3 e 8.4.

Figura 8.3: Modello del 1° ordine - Regolazione adattativa in $S O(3)$: stato ed errore di stima. Basso guadagno nello stimatore.

Figura 8.4: Modello del 1° ordine - Regolazione adattativa in $S O(3)$: logaritmo naturale della norma dello stato e dell'errore di stima. Basso guadagno nello stimatore.

Capitolo 9

Strategie per modelli del secondo ordine

Vogliamo qui estendere le strategie geodesiche proposte per modelli cinematici del 1° ordine (vedi Capitolo 5), al caso di modelli del 2° ordine completi di dinamica degli attuatori.

9.0.2 Modelli dinamici definiti su varietà

Partendo da sistemi definiti su varietà complete e che siano completamente controllabili:

$$
\dot{x}=f^{\prime}(x)+\sum_{i=1}^{m} g_{i}(x) u_{i},
$$

vorremo ora costruire leggi di retroazione dallo stato per la stabilizzazione del sistema nel caso in cui la dinamica degli attuatori non sia trascurabile.

Il sistema esteso avrà la forma:

$$
\left\{\begin{aligned}
\dot{x} & =f^{\prime}(x)+\sum_{i=1}^{m} g_{i}(x) v_{i}^{\prime}, \quad x \in M \\
\dot{v}^{\prime} & =u, \quad v, u \in \mathbb{R}^{n} .
\end{aligned}\right.
$$

Sia $G(x) u \triangleq \sum_{i=1}^{m} g_{i}(x) u_{i}$ e si definisca

$$
v=f^{\prime}(x)+\sum_{i=1}^{m} g_{i}(x) v_{i}^{\prime}=f^{\prime}(x)+G(x) v^{\prime}
$$

Mediante la seguente ridefinizione del drift $f^{\prime}(x)$

$$
f(x, v) \triangleq \mathrm{L}_{t} f^{\prime}(x)+\sum \mathrm{L}_{t} g_{i}(x) v_{i}^{\prime}, \quad \text { per } v^{\prime}=G(x)^{-1}\left[v-f^{\prime}(x)\right]
$$

questo modello si può riscrivere nella forma studiata in letteratura:

$$
\left\{\begin{align*}
\dot{x} & =v, \tag{9.1}\\
\dot{v} & =f(x, v)+\sum_{i=1}^{m} g_{i}(x) u_{i}, \quad v, u \in \mathbb{R}^{n}
\end{align*}\right.
$$

Per il resto del Capitolo, assumeremo che le due solite condizioni (vedi Capitolo 5) sulla varietà M e sui campi vettore g_{i} :
i) La varietà Riemanniana M si assume completa.
ii) Il sistema $\left(f^{\prime}, g_{i}\right)$ si assume completamente controllabile.

Si ricordi come la seconda condizione consiste nella condizione di rango massimo per la matrice $G(x)$: il numero di attuatori indipendenti è massimo.

9.1 Regolazione classica

Quanto fatto nei Capitoli precedenti per i nostri modelli del 1° ordine, è stata la generalizzazione del concetto di controllore proporzionale al caso di spazi curvi.

Prima di procedere nello studio dell'equazione 9.1 in una generica varietà, torniamo per un istante al caso Euclideo.

Qual'è la soluzione classica ai problemi di controllo del 1° e 2° ordine, per sistemi definiti in \mathbb{R}^{n} ?

Primo ordine Sia $x \in \mathbb{R}^{n}$ lo stato del sistema

$$
\dot{x}=f(x)+u
$$

dove u è il controllo. Allora è naturale associarvi la funzione di Lyapunov

$$
V \triangleq \frac{1}{2}\|x\|^{2}
$$

e

$$
\dot{V}=x^{T} \dot{x}=x^{T}(f(x)+u) .
$$

Da questa semplice eguaglianza, discende spontanea l'idea di controllore proporzionale con termine feedforward. Infatti, se $u=-x-f(x)$, allora

$$
\dot{V}=x^{T} u=-\|x\|^{2}
$$

Secondo ordine Si consideri ora il caso di sistemi, sempre in \mathbb{R}^{n}, della forma:

$$
\left\{\begin{aligned}
\dot{x} & =v \\
\dot{v} & =f(x, v)+u, \quad v, u \in \mathbb{R}^{n}
\end{aligned}\right.
$$

dove, come al solito si suppone il controllo $u \in \mathbb{R}^{n}$ libero di assumere qualunque valore (sistema completamente controllabile).
Per generalizzare il controllo costruito per il modello del 1° ordine, l'idea è che anche in questo caso, vi è una scelta naturale di funzione di Lyapunov. In particolare, appartenendo $(x, \dot{x}) \in \mathbb{R}^{n} \times T \mathbb{R}^{n}$, si ha

$$
\begin{aligned}
V & \triangleq \frac{1}{2}\|x\|_{\mathbb{R}^{n}}^{2}+\frac{1}{2}\|\dot{x}\|_{T \mathbb{R}^{n}}^{2} \\
& =\frac{1}{2}\|x\|^{2}+\frac{1}{2}\|v\|^{2}
\end{aligned}
$$

che evolve secondo la

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V & =x^{T} \dot{x}+v^{T} \dot{v} \\
& =x^{T} v+v^{T}(f(x, v)+u) \\
& =v^{T}(x+f(x, v)+u)
\end{aligned}
$$

Ma allora viene spontaneo pensare ad una legge composta di tre addendi:

$$
u_{\mathrm{drift}}=-f(x, v)
$$

per cancellare il drift,

$$
u_{\text {prop }}=-x
$$

per cancellare il primo addendo di $\frac{\mathrm{d}}{\mathrm{d} t} V$, e

$$
u_{\text {deriv }}=-v
$$

per rendere $\frac{\mathrm{d}}{\mathrm{d} t} V$ semi-definita negativa:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V & =v^{T}(x+f(x, v)+u) \\
& =v^{T}\left(x+f(x, v)+u_{\text {drift }}+u_{\text {prop }}+u_{\text {deriv }}\right) \\
& \equiv-\|v\|^{2}
\end{aligned}
$$

Bastano quindi questi semplici passaggi, per giungere all'idea di un controllo composto di un termine feedforward e di uno in controreazione di tipo proporzionale e derivativo (PD).

Ritorniamo dunque al problema della stabilizzazione di 9.1: il caso che intendiamo affrontare (peraltro l'unico interessante) è quello in cui lo stato $x \in M$ non è globalmente rappresentabile in \mathbb{R}^{n}. Pertanto, lo schema appena proposto può essere applicato solo localmente.

La soluzione adottata in letteratura (vedi Introduzione), consiste infatti dei seguenti passi:
i) scelta di coordinate locali per M,
ii) costruzione di una funzione di Lyapunov attraverso una opportuna norma nello spazio delle coordinate locali,
iii) controllo con termine di feedforward e termini proporzionale e derivativo.

Dato questo approccio, si hanno in generale tre svantaggi: In primo luogo la funzione di Lyapunov è definita solo localmente, ovvero solo dove la parametrizzazione locale non è singolare. In secondo luogo, il termine di controllo proporzionale, essendo espresso in funzione delle coordinate locali, è proporzionale ad un qualcosa che, genericamente, non ha un preciso significato geometrico. Infine, le leggi di controllo finali non sono globalmente stabilizzanti.

In quanto segue, restringeremo il nostro interesse al gruppo di Lie $S O(3)$ e proporremo una scelta di parametrizzazione locale della varietà che risente minimamente dei tre problemi appena citati.

In particolare daremo completa soluzione ai primi due, mentre, come già spiegato nell'Introduzione, la non globalità delle leggi di controllo deriva da proprietà strutturali delle varietà $S O(3)$.

Ci si conceda infine di sottolineare l'importanza di una scelta ragionata della funzione di Lyapunov per lo studio della stabilità:

Osservazione 30 In quanto segue, intendiamo parlare di stabilità di sistemi nonlineari nel senso di stabilità alla Lyapunov. Un sistema è dunque stabile se e solo se ammette una funzione di Lyapunov ${ }^{1}$.

In quest'ottica, risulta quindi naturale associare alla nozione di sistema stabile (asintoticamente stabile, esponenzialmente stabile ...), la coppia sistema, funzione di Lyapunov.

In quanto segue, cercheremo di associare funzioni di Lyapunov "naturali" a sistemi definiti su di una generica varietà Riemanniana.

[^24]
9.2 Regolazione su $S O(3) \times \mathbb{R}^{3}$

Cerchiamo allora di coniugare le due idee:
i) parametrizzazione della varietà $S O(3)$ tale da rispettarne le proprietà metriche,
ii) candidata funzione di Lyapunov globalmente definita grazie alla nozione di metrica Riemanniana.

Vogliamo ora mostrare che questo approccio ci conduce, come nel caso Euclideo, alla costruzione di un controllo costituito da un termine feedforward e da termini in controreazione proporzionale e derivativo.

Come spesso nei Capitoli precedenti, è il Lemma di Gauss lo strumento che ci permette di completare la prova di negatività per la candidata funzione di Lyapunov.

Riscriviamo l'equazione 9.1 nel caso lo stato x sia una $g \in S O(3)$:

$$
\left\{\begin{align*}
\dot{g} & =g(v \times), & & (v \times) \in \mathfrak{s o}(3) \tag{9.2}\\
\dot{v} & =f(g, v)+u, & & u \in \mathbb{R}^{3},
\end{align*}\right.
$$

dove, come al solito, il controllo u è libero di assumere qualunque valore in \mathbb{R}^{3} (vecchia ipotesi di completa controllabilità).

Come scegliere a questo punto la candidata funzione di Lyapunov da associare al nostro sistema in $S O(3) \times \mathbb{R}^{3}$?

Ancora una volta i concetti di geometria Riemanniana, ci forniscono una risposta più che soddisfacente: vista la struttura di $S O(3)$, (vedi Sezione 4.5), sappiamo che è naturalmente indotta una definizione di norma non solo in $S O(3)$, ma anche in $T_{g} S O(3)$. La candidata funzione di Lyapunov viene pertanto costruita nel seguente modo:

$$
\begin{equation*}
V(g, \dot{g}) \triangleq \frac{1}{2}\|g\|_{S O(3)}^{2}+\frac{1}{2}\|\dot{g}\|_{T_{g} S O(3)}^{2} \tag{9.3}
\end{equation*}
$$

Ricordando la definizione dei due addendi, si ottiene

$$
V=\frac{1}{2}<\log (g), \log (g)>_{s \mathfrak{s o}}(3)+\frac{1}{2}<v, v>_{\mathbb{R}^{3}}
$$

il che porge

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} V=<\log (g), \frac{\mathrm{d}}{\mathrm{~d} t} \log (g)>_{s o}(3)+<v,(f(g, v)+u)>_{\mathbb{R}^{3}} \tag{9.4}
\end{equation*}
$$

Il Lemma di Gauss fornisce:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=<\log (g),(v \times)>_{\mathfrak{s o}(3)}+<v,(f(g, v)+u)>_{\mathbb{R}^{3}}
$$

da cui segue:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=<v, \log (g)^{\vee}+f(g, v)+u>_{\mathbb{R}^{3}}
$$

Ora, come nel caso Euclideo, la scelta più corretta appare:

$$
\begin{aligned}
u & =u_{\text {drift }}+u_{\text {prop }}+u_{\text {deriv }} \\
& =-f(g, v)-\log (g)^{v}-v,
\end{aligned}
$$

sì da avere:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=-\|v\|^{2}=-\|\dot{g}\|_{T_{g} S O(3)}^{2}
$$

Il principio di La Salle completa la dimostrazione di stabilità asintotica per il sistema in catena chiusa.

Seguono due osservazioni:
\square Si noti come, nel passaggio $\|g\|_{S O(3)}=\|\log (g)\|_{\text {so }(3)}$, si scelga implicitamente di rappresentare il punto $g \in S O(3)$ tramite le sue coordinate esponenziali. Questo fatto si riflette nella singolarità della legge di controllo finale.
D'altro lato è possibile dimostrare, come già più volte citato, che non esistono leggi che rendono il sistema definito in $S O(3) \times \mathbb{R}^{3}$ globalmente asintoticamente stabile. Per una descrizione sulla letteratura, rimandiamo all'Introduzione.
\square Si noti come la dimostrazione per il sistema in $S O(3) \times \mathbb{R}^{3}$ assomigli moltissimo a quella per il sistema in $\mathbb{R}^{3} \times \mathbb{R}^{3}$ della Sezione precedente.

Anche in $S O(3)$, quindi, tramite una scelta di funzione di Lyapunov ispirata alla metrica della varietà e tramite una parametrizzazione canonica, si ottiene lo stesso tipo di controllo costituito da tre termini:
i) linearizzazione attraverso controreazione dallo stato, che permette la compensazione del drift interno,
ii) controllo proporzionale alla distanza e diretto lungo la direzione esponenziale (geodesica), vedi Capitolo 5,
iii) controllo derivativo, cioè proporzionale alla velocità dello stato g. Si noti al riguardo che, qualunque sia la varietà Riemanniana M in questione, il suo spazio tangente è uno spazio vettoriale dotato di prodotto scalare, e come tale fornisce facilmente una nozione di direzione e distanza favorita ${ }^{2}$.

9.2.1 Un'altro approccio

In questa Sezione faremo costante riferimento ai risultati presentati in Sezione 4.4.

Si ricordi che nel Capitolo 5, spinti da motivazioni geodesiche, eravamo giunti a costruire una legge di controllo ottimale per il sistema del 1° ordine definito in $S O(3)$:

$$
\dot{g}=g(u \times), \quad u \in \mathbb{R}^{3},
$$

dove il valore ottimo del controllo $u=u(g)$ era:

$$
u=-K_{\mathrm{p}} \log (g)^{\vee}
$$

L'idea ora è di imporre questo valore alla velocità v del sistema del 2° ordine 9.2.

Si interpreti dunque la vecchia legge di controllo $-K_{\mathrm{p}} \log (g)^{\vee} \stackrel{\Delta}{=} v_{\mathrm{d}}$ come un valore di velocità desiderata e si imponga alla velocità effettiva v del sistema del 2° ordine, il vincolo

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(v-v_{\mathrm{d}}\right) \equiv-K_{\mathrm{l}}\left(v-v_{\mathrm{d}}\right), \quad K_{\mathrm{l}}>0 \tag{9.5}
\end{equation*}
$$

Ora, il controllo $u \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} v-f(g, v)$ viene scelto tale da soddisfare la 9.5.
Svolgendo il vincolo, si ottiene:

$$
\begin{align*}
u & =\frac{\mathrm{d}}{\mathrm{~d} t} v_{\mathrm{d}}-K_{\mathrm{l}}\left(v-v_{\mathrm{d}}\right)-f(g, v) \\
& =-K_{1} K_{\mathrm{p}} \log (g)^{\vee}-K_{1} v-K_{\mathrm{p}} \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee}-f(g, v) \\
& \triangleq-K_{\text {prop }} \log (g)^{\vee}-K_{1} v-K_{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee}-f(g, v) \tag{9.6}
\end{align*}
$$

dove nell'ultimo passaggio abbiamo semplicemento ridefinito le costanti.

[^25]Si noti dunque che, dai ragionamenti "euristici" appena esposti, otteniamo una legge di controllo che consiste di quattro addendi: termine di compensazione feedforward, termine "proporzionale" proporzionale allo stato, termine "derivativo" proporzionale alla velocità v ed infine un quarto (inatteso) termine proporzionale a $\frac{\mathrm{d}}{\mathrm{d} t} \log (g)$.

Ebbene, questo termine altro non è che la velocità delle coordinate esponenziali $\xi \triangleq \log (g)^{\vee}$.

Si noti allora che questo quarto termine fornisce un contributo che si può assimilare a quello del termine "derivativo": entrambi sono infatti proporzionali a "velocità".

Vale quindi la pena di verificare l'effetto di tale termine quando inserito nella funzione di Lyapunov 9.3, si ha

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=<\log (g)^{\mathrm{v}}, v>+<v, \frac{\mathrm{~d}}{\mathrm{~d} t} v>
$$

dove per il sistema in catena chiusa (con il controllo 9.6) vale:

$$
\left\{\begin{array}{l}
\dot{g}=g(v \times) \\
\dot{v}=-K_{\text {prop }} \log (g)^{\vee}-K_{1} v-K_{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee}
\end{array}\right.
$$

Sostituendo si ottiene:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=-<v, v>-<v, \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee}>_{\mathbb{R}^{3}}
$$

avendo scelto tutte le costanti unitarie.
Per la valutazione del secondo addendo di $\frac{\mathrm{d}}{\mathrm{d} t} V$ basta sostituire il valore di $\frac{\mathrm{d}}{\mathrm{d} t} \xi \triangleq \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee}$ come calcolato in Sezione 4.4. L'equazione 4.12 fornisce:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \xi & =v_{\|}+\frac{\|\xi\|}{2} \cot \left(\frac{\|\xi\|}{2}\right) v_{\perp}+\frac{1}{2}[\xi, v] \\
& \triangleq v_{\|}+\alpha(\|g\|) v_{\perp}+\frac{1}{2}[\xi, v]
\end{aligned}
$$

dove ricordiamo che
$v_{\|} \triangleq \operatorname{pr}_{\text {span }\{\xi\}}(v)$ è la componente di v lungo ξ, $v_{\perp}=v-v_{\|}$è la componente perpendicolare,
$\|g\|_{S O(3)} \triangleq\|\xi\|_{\mathbb{R}^{3}}$
e che $0<\alpha<1$. (per un grafico di $\alpha(\cdot)$ si veda la Figura 4.1).
Allora si ha

$$
<v, \frac{\mathrm{~d}}{\mathrm{~d} t} \xi>=\left\|v_{\|}\right\|^{2}+\alpha(\|g\|)\left\|v_{\perp}\right\|^{2}
$$

e complessivamente, comprese le costanti di proporzionalità,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} V=-K_{1}\|v\|^{2}-K_{2}\left(\left\|v_{\|}\right\|^{2}+\alpha(g)\left\|v_{\perp}\right\|^{2}\right)
$$

Si noti che entrambi i termini derivativi danno un contributo simile nell'espressione finale di $\frac{\mathrm{d}}{\mathrm{d} t} V$.

L'unica differenza consiste nella presenza nel nuovo termine derivativo, di un fattore $\alpha<1$ che dà minor peso alla componente perpendicolare della velocità v.

Il principio di La Salle permette a questo punto di dimostrare la stabilità asintotica del sistema. Esso afferma che, per $t \rightarrow \infty$, vale la

$$
(g, v) \longrightarrow \Omega \subset \operatorname{Null}(\dot{V}) \triangleq\{(g, v): \dot{V}(g, v)=0\}
$$

dove Ω è il massimo insieme invariante contenuto in $\operatorname{Null}(\dot{V})$.
Si noti che in $\operatorname{Null}(\dot{V})$ vale:

$$
0 \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} v=-K_{\text {prop }} \log (g)^{\vee}-K_{1} v-K_{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \log (g)^{\vee} \equiv-K_{\text {prop }} \log (g)^{\vee}
$$

il che implica che, in Ω vale $\log (g)=0$.
Complessivamente vale

$$
\lim _{t \rightarrow \infty} g(t)=I_{3}
$$

Si noti che i due termini derivativi svolgono un ruolo intercambiabile. Basta infatti che uno solo dei coefficienti K_{1} oppure K_{2} sia strettamente maggiore di zero, per poter completare la dimostrazione di convergenza.

Quale argomento di ricerca per il futuro, sarà assai interessante confrontare qualità e difetti dei due controlli.

9.3 Regolazione adattativa in $S O(3) \times \mathbb{R}^{3}$

Vogliamo ora mostrare come sia possibile rendere la legge di controllo con termine feedforward e con termini in retroazione, capace di adattarsi ad un parametro incognito che si presenti linearmente nel drift.

In quanto segue si denoti $\operatorname{con} \theta \in \mathbb{R}^{k}$ il vettore di parametri incogniti e con $\hat{\theta}$ la sua stima.

Proposizione 31 Sia dato il sistema in $S O(3) \times \mathbb{R}^{3}$:

$$
\left\{\begin{array}{llrl}
\dot{g} & =g(v \times), & & (v \times) \in \mathfrak{s o}(3), \tag{9.7}\\
\dot{v} & =f(g, v)+u, & & u \in \mathbb{R}^{3},
\end{array}\right.
$$

dove il controllo u è libero di assumere qualunque valore in $\mathbb{R}^{3} e$ dove il drift $f \dot{e}$ della forma:

$$
f(g, v)=F(g, v) \theta, \quad \theta \in \mathbb{R}^{k} \quad F(g, v) \in \mathbb{R}^{3 \times k}
$$

Allora il controllo a Principio di Equivalenza Certa:

$$
\begin{equation*}
u=-K_{\mathrm{p}} \log (g)^{\vee}-K_{\mathrm{d}} v-F(g, v) \hat{\theta} \tag{9.8}
\end{equation*}
$$

e la legge di aggiornamento della stima:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}=F^{T}(g, v) v \tag{9.9}
\end{equation*}
$$

stabilizzano asintoticamente lo stato $g(t)$ in un intorno arbitrariamente piccolo dell'identità di $S O(3)$.

Dim: Tutto si riduce alla scelta della giusta candidata funzione di Lyapunov. Nel nostro caso, facciamo riferimento alle idee esposte nel Capitolo 5 a proposito di controllo adattativo.

In base a quelle idee, la candidata è:

$$
\begin{aligned}
V(g, \dot{g}, \hat{\theta}) & \triangleq \triangleq \frac{1}{2} K_{\mathrm{p}}\|g\|_{S O(3)}^{2}+\frac{1}{2}\|\dot{g}\|_{T_{g} S O(3)}^{2}+\frac{1}{2}\|\theta-\hat{\theta}\|_{\mathbb{R}^{k}}^{2} \\
& =\frac{1}{2} K_{\mathrm{p}}\|g\|_{S O(3)}^{2}+\frac{1}{2}\|v\|_{\mathbb{R}^{3}}^{2}+\frac{1}{2}\|\theta-\hat{\theta}\|_{\mathbb{R}^{k}}^{2},
\end{aligned}
$$

che derivata fornisce:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} V= & K_{\mathrm{p}}<\log (g), \frac{\mathrm{d}}{\mathrm{~d} t} \log (g)>_{\mathfrak{s o}}(3)+<v, \frac{\mathrm{~d}}{\mathrm{~d} t} v>_{\mathbb{R}^{3}}-<\theta-\widehat{\theta}, \frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}>_{\mathbb{R}^{k}} \\
= & K_{\mathrm{p}}<\log (g)^{\vee}, v>_{\mathfrak{s o}(3)}+<v,-K_{\mathrm{p}} \log (g)^{\vee}-K_{\mathrm{d}} v+F(g, v)[\theta-\hat{\theta}]>_{\mathbb{R}^{3}} \\
& -<[\theta-\hat{\theta}], \frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}>_{\mathbb{R}^{k}} \\
& -K_{\mathrm{d}}<v, v>_{\mathbb{R}^{3}}+<v, F(g, v)[\theta-\hat{\theta}]>_{\mathbb{R}^{3}}-<[\theta-\hat{\theta}], \frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}>_{\mathbb{R}^{k}} \\
= & -K_{\mathrm{d}}<v, v>_{\mathbb{R}^{3}}+<[\theta-\hat{\theta}], F^{T}(g, v) v-\frac{\mathrm{d}}{\mathrm{~d} t} \widehat{\theta}>_{\mathbb{R}^{k}} \\
\equiv & -K_{\mathrm{d}}<v, v>_{\mathbb{R}^{3}}
\end{aligned}
$$

dove nell'ultimo passaggio è stata sostituita la legge di aggiornamento 9.9.
Dato che la funzione di Lyapunov è semi-definita negativa, il sistema esteso 9.7, 9.9 è stabile.

Il principio di La Salle permette a questo punto di dimostrare la stabilità asintotica verso un intorno dell'identita di $S O(3)$. Esso afferma che, per $t \rightarrow \infty$, vale la

$$
(g, v, \widehat{\theta}) \longrightarrow \Omega \subset \operatorname{Null}(\dot{V}) \triangleq\{(g, v, \widehat{\theta}): \dot{V}(g, v, \widehat{\theta})=0\}
$$

dove Ω è il massimo insieme invariante contenuto in $\operatorname{Null}(\dot{V})$.
Si noti che in $\operatorname{Null}(\dot{V})$ vale:

$$
\begin{aligned}
0 & \equiv \frac{\mathrm{~d}}{\mathrm{~d} t} v=-K_{\mathrm{p}} \log (g)^{\vee}-K_{\mathrm{d}} v-F(g, v)[\theta-\hat{\theta}] \\
& \equiv-K_{\mathrm{p}} \log (g)^{\vee}--F(g, 0)[\theta-\hat{\theta}]
\end{aligned}
$$

e quindi:

$$
\log (g)^{\vee}=-\frac{F(g, 0)[\theta-\hat{\theta}]}{K_{\mathrm{p}}}
$$

Al crescere del parametro K_{p}, il valore di $\log (g)^{\vee}$ è limitato in un'intorno dell'origine.

Corrispondentemente g tende ad un intorno dell'identità $I_{3} \in S O(3)$.

Capitolo 10

Conclusione

Intendiamo qui discutere promettenti direzioni in cui sviluppare l'attività di ricerca futura.

La principale area di ricerca attuale è legata alla scrittura di un insieme completo di leggi di controllo per modello dinamico del satellite.

Applicando la definizione di errore di assetto introdotta nel Capitolo 5, dovrebbe essere possibile scrivere leggi per l'Inseguimento di traiettorie in $S O(3) \times \mathbb{R}^{3}$.

Inoltre l'introduzione di funzioni di Lyapunov con termini incrociati di primo e secondo grado, dovrebbe permettere di stabilire proprietà asintotiche più forti di quelle già dimostrate nel Capitolo 9 .

Vi è poi il problema della stabilizzazione in \mathbb{S}^{2} del sistema dinamico del satellite attuato da solo due rotori. In questo caso, il modello è naturalmente definito su di una varietà Riemanniana priva della struttura di gruppo.

Tuttavia, la dimostrazione di negatività della derivata della funzione di Lyapunov data per il caso $S O(3) \times \mathbb{R}^{3}$ si basa sul Lemma di Gauss e sulla parametrizzazione con coordinate normali di $S O(3)$.

Non dovrebbe essere impossibile quindi derivare leggi stabilizzanti per il modello dinamico del satellite con due rotori, definito nella varietà $\mathbb{S}^{2} \times \mathbb{R}^{2}$.

Restando invece nell'ambito della teoria dei gruppi di Lie matriciali, l'applicazione di strategie di controllo geodesiche e globali al caso di servomanipolatori, appare molto promettente.

La variabile di stato che rappresenta l'assetto e la posizione dell' "end-effector", è naturalmente definita come una matrice omogenea, ovvero come un elemento del gruppo di Lie $S E(3)$.

Supponendo che il servomanipolatore abbia almeno sei gradi di libertà, il modello che lo rappresenta, considerato da un punto di vista cinematico, risulta
essere completamente controllabile, a norma della definizione di Capitolo 5. Aggiungendo la dinamica degli attuatori, a meno di jacobiani peraltro noiosi, il modello del servomanipolatore rientra certamente nella classe di sistemi affrontati in Capitolo 9.

Quindi sarà possibile costruire delle leggi di controllo in $S E(3)$, che avranno una struttura molto simile a quelle formulate nel caso del satellite in $S O(3)$.

Come in $S O(3)$, esiste in $S E(3)$ un logaritmo matriciale e come per un generico gruppo di Lie, esiste una scelta ottima di parametrizzazione della varietà: le coordinate esponenziali.

Assai interessante si prospetta la possibilità di riuscire ad esprimere il sistema dinamico

$$
\dot{g}=g U, \quad g \in S E(3), \quad U \in \mathfrak{s e}(3)
$$

definito in $S E(3)$, in funzione delle sue coordinate esponenziali, in modo analogo a quanto realizzato per $S O(3)$ nella Sezione 4.4.

Tutti questi sono problemi aperti di ricerca, che ci riproponiamo di affrontare nel prossimo futuro.

Bibliography

[Arnold, 1989] Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. GTM 60. Springer Verlag, New York, NY, second edition.
[Boothby, 1975] Boothby, W. (1975). An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York.
[Brockett, 1972] Brockett, R. W. (1972). System theory on group manifolds and coset spaces. SIAM Journal of Control, 10(2):pp 265-284.
[Brockett, 1973] Brockett, R. W. (1973). Lie theory and control systems defined on spheres. SIAM Journal of Applied Mathematics, 25(2):pp 213-225.
[Brockett, 1983] Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In Brockett, R. W., Millman, R. S., and Sussmann, H. J., editors, Geometric Control Theory, pages pp 181-191, Boston.
[Brockett, 1990] Brockett, R. W. (1990). Some mathematical aspects of robotics. In Brockett, R. W., editor, Proceedings of Symposia in Applied Mathematics, volume 41, pages pp 16-40.
[Byrnes et al., 1991] Byrnes, C. I., Isidori, A., and Willems, J. C. (1991). Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automatic Control, AC-36:pp 1228-1240.
[Crouch, 1984] Crouch, P. (1984). Spacecraft attitude control and stabilization:application of geometric control theory to rigid body models. IEEE Trans. Automatic Control, AC-29:pp 321-331.
[Curtis, 1979] Curtis, M. (1979). Matrix Groups. Springer Verlag, New York, NY.
[Fegan, 1991] Fegan, H. (1991). Introduction to compact Lie Groups. World Scientific Publishing, Singapore.
[Gu, 1988] Gu, Y.-L. (1988). Analysis of orientation representations by lie algebra in robotics. In Proceedings of the IEEE Conference on Robotic Automation.
[Hahn, 1967] Hahn, W. (1967). Stability of Motion. Springer Verlag, New York, NY.
[Helgason, 1978] Helgason, S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York.
[Hermann and Krener, 1977] Hermann, R. and Krener, A. J. (1977). Nonlinear controllability and observability. IEEE Trans. Automatic Control, AC22:pp 728-740.
[Isidori, 1989] Isidori, A. (1989). Nonlinear control systems: an introduction. Springer-Verlag, Berlin, 2nd edition.
[Jurdjevic and Sussmann, 1972] Jurdjevic, V. and Sussmann (1972). Control systems on lie groups. J. Differential Equations, 12(2):pp 313-329.
[Klingenberg, 1982] Klingenberg, W. (1982). Riemannian Geometry. de Gruyter, Berlin.
[Koditschek, 1988] Koditschek, D. E. (1988). Application of a new lyapunoc function to global adaptive attitude tracking. In Proceedings of the IEEE Conference on Decision and Control, pages 63-68, Austin, Texas.
[Krener and Isidori, 1983] Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers. Systems $\&$ control letters, 3:47-52.
[Krener and Responderek, 1985] Krener, A. and Responderek, W. (1985). Nonlinear observers with linearizable error dynamics. SIAM J. of control and optim., $23(2): 197-216$.
[Lian et al., 1993] Lian, K.-Y., Wang, L.-S., and Fu, L.-C. (1993). Global attitude representation and its lie bracket. In Proceedings of the American Control Conference, San Francisco, California.
[Murray et al., 1994] Murray, R., Li, Z., and Sastry, S. S. (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, Florida.
[Murray and Sastry, 1993] Murray, R. M. and Sastry, S. S. (1993). Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Automatic Control, AC-May.
[Naimark and Stern, 1982] Naimark, M. A. and Stern, A. I. (1982). Theory of Group Representations. Springer Verlag, New York, NY.
[Nicosia and Tomei, 1992] Nicosia, S. and Tomei, P. (1992). Nonlinear observer and output feedback attitude control of spacecraft. IEEE Trans. Aerospace and Electronic System, AES-28:pp 970-977.
[Nijmeijer and Van der Schaft, 1990] Nijmeijer, H. and Van der Schaft, A. (1990). Nonlinear dynamical control systems. Springer-Verlag.
[Parks, 1966] Parks, P. C. (1966). Lyapunov redesign of model reference adaptive control systems. IEEE Trans. Automatic Control, AC-11:pp 362-367.
[Pomet, 1992] Pomet, J.-B. (1992). Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems \& Control Letters, 18:pp 147-158.
[Sarti et al., 1993] Sarti, A., Walsh, G., and Sastry, S. S. (1993). Steering leftinvariant control system on matrix lie groups. In Proceedings of the IEEE Conference on Decision and Control.
[Sastry and Bodson, 1989] Sastry, S. S. and Bodson, M. (1989). Adaptive Control: Stability, Convergence and Robustness. Prentice Hall, Englewood Cliffs, NJ.
[Singh, 1987] Singh, S. S. (1987). Nonlinear adaptive attitude control of spacecraft. IEEE Trans. Aerospace and Electronic System, AES-23:pp 371-380.
[Slotine and Benedetto, 1990] Slotine, J.-J. E. and Benedetto, M. D. D. (1990). Hamiltonian adaptive control of spacecraft. IEEE Trans. Automatic Control, AC-35:pp 848-852.
[Sontag, 1990] Sontag, E. D. (1990). Mathematical Control Theory. TAM 6. Springer Verlag, New York, NY.
[Teel et al., 1992] Teel, A., Murray, R., and Walsh, G. (1992). Nonholonomic control systems: From steering to stabilization with sinusoids. In Proceedings of the IEEE Conference on Decision and Control, pages 1603-1609, Tucson, Arizona.
[Tsiotras and Longuski, 1993] Tsiotras, P. and Longuski, Y. M. (1993). On attitude stabilization of symmetric spacecraft with two control torques. In Proceedings of the American Control Conference, San Francisco, California.
[Varadarajan, 1984] Varadarajan, V. (1984). Lie Groups, Lie Algebras, and their Representation. GTM 102. Springer Verlag, New York, NY.
[Walsh et al., 1993] Walsh, G., Sarti, A., and Sastry, S. S. (1993). Algorithms for steering on the group of rotations. In Proceedings of the American Control Conference, San Francisco, California.
[Walsh and Sastry, 1991] Walsh, G. C. and Sastry, S. S. (1991). On reorienting rigid linked bodies using internal motions. In Proceedings of the IEEE Conference on Decision and Control, Brighton, England.
[Warner, 1989] Warner, F. W. (1989?). Foundations of Differentiable Manifolds and Lie Groups. GTM 94. Springer Verlag, New York, NY, second edition.
[Wen and Kreutz-Delgado, 1991] Wen, J. T.-Y. and Kreutz-Delgado, K. (1991). The attitude control problem. IEEE Trans. Automatic Control, AC36:pp 1148-1162.
[Zeitz, 1987] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems. Systems \& Control letters, 9:149-156.

[^0]: ${ }^{1}$ Si noti come nei testi anglosassoni sia d'uso indicare il prodotto esterno di V con il simbolo \times. Nel nostro caso adotteremo la notazione dell'[Arnold, 1989], che è per altro standard nei testi di teoria dei gruppi ed algebre di Lie

[^1]: ${ }^{2}$ Si noti come in Meccanica dei Continui si adotti la convenzione $\mathbf{m}={ }^{\mathbf{a}} \mathbf{m}$ e $\mathbf{M}={ }^{5} \mathbf{m}$. Qui viceversa preferiamo sempre indicare esplicitamente il sistema di riferimento.

[^2]: ${ }^{1}$ Si dice struttura differenziale, o atlas regolare completo, un insieme completo di carte locali compatibili $\left(U_{i}, \phi_{i}\right)$.

[^3]: ${ }^{2}$ Si noti che la definizione qui data è in un certo senso euristica. Per una trattazione più esatta e comprensiva del concetto di geodesica, è necessaria la definizione di derivazione covariante in varietà Riemanniane. Si veda [Boothby, 1975, Capitolo VII].

[^4]: ${ }^{3}$ Attenzione a non confondere Exp mappa esponenziale di una generica varietà Riemanniana con exp mappa esponenziale dei gruppi di Lie.

[^5]: ${ }^{4}$ In un paio di occasioni invece, sarà necessario specificare esattamente l'operazione rispetto la quale lo spazio ha struttura di gruppo.

[^6]: ${ }^{5}$ Leggi come: le geodesiche associate alla metrica biinvariante di $S O(3)$ sono massimali!

[^7]: ${ }^{6}$ Da ciò seguirà l'espansione in serie dell'operatore Ad.

[^8]: ${ }^{7}$ Non-additività delle coordinate esponenziali

[^9]: ${ }^{8}$ Un gruppo di Lie si dice compatto se è compatto come spazio topologico, cioè se è chiuso (il limite di ogni successione convergente appartiene allo spazio) e se può essere ricoperto da un'insieme finito di palle di raggio ϵ piccolo a piacere.

 Per quanto segue supporremo che se la Lie algebra $\mathcal{L}(G)$ è compatta se e solo se G lo è.

[^10]: ${ }^{9}$ Se l'algebra di Lie non è semi-semplice, ma solamente compatta, esiste sempre una scelta canonica di forma bilineare, definita positiva. La costruzione risulta comunque più complessa. Vedi [Boothby, 1975, pag 245]

[^11]: ${ }^{1}$ Per una dimostrazione che la forma bilineare bilineare 4.1 è definita positiva (e quindi non degenere) si veda la Sezione 4.5. Si noti inoltre come tale definizione corrisponda esattamente alla scelta di:

 $$
 <X, Y>_{\mathfrak{s o}(3)} \equiv-\frac{1}{4} \kappa(X, Y)
 $$

[^12]: ${ }^{2}$ In teoria dei gruppi di Lie una tale metrica si dice biinvariante.

[^13]: ${ }^{3}$ Leggi geodesiche della metrica biinvariante!

[^14]: ${ }^{4}$ Derivando entrami i membri di $\xi^{T} \xi=\|\xi\|^{2}$ si ottiene l'espressione sostituita a primo membro.

[^15]: ${ }^{1}$ Dall’inglese: Lie algebra rank condition.

[^16]: ${ }^{2}$ Per una trattazione classica della stabilità alla Lyapunov, si veda [Hahn, 1967].

[^17]: ${ }^{3}$ Ovvero esponenziale nel caso di varietà con struttura di gruppo.
 ${ }^{4}$ In quanto segue denoteremo, con lieve abuso di notazione, le coordinate normali di $x \in M$ con il simbolo $x \in \mathbb{R}^{m}$. Stesso dicansi per la f e le g_{i} : con tali simboli intenderemo la loro espressione in coordinate locali.

[^18]: ${ }^{5}$ La struttura Riemanniana della sfera è quella naturalmente indotta dal prodotto scalare in \mathbb{R}^{3}

[^19]: ${ }^{1}$ Ricordiamo l'ipotesi di ortonormalità della base $\left\{X_{1}, X_{2}, X_{3}\right\}$ di $\mathfrak{s o}(3)$

[^20]: ${ }^{2}$ Controllo a principio di equivalenza certa.
 ${ }^{3}$ Il risultato appena ottenuto, può essere dimostrato facendo riferimento all'espressione del sistema 6.8 in coordinate esponenziali.

[^21]: ${ }^{4}$ Vedi [Slotine and Benedetto, 1990]

[^22]: ${ }^{1}$ Si noti comunque l'interesse che una tale formulazione possa avere.
 ${ }^{2}$ Per i particolari si veda il Capitolo 2.

[^23]: ${ }^{3}$ Per i particolari si veda il Capitolo 2.
 ${ }^{4}$ Controllo a principio di equivalenza certa.

[^24]: ${ }^{1}$ Si notino al riguardo le varie formulazioni del teorema inverso della funzione di Lyapunov, [Hahn, 1967].

[^25]: ${ }^{2}$ Si ricordi che, secondo le notazioni del Capitolo 2, la norma di un vettore tangente $X_{p} \in$ $T_{p} M$ ha l'espressione $\Phi_{p}\left(X_{p}, X_{p}\right)^{1 / 2}$

