Smooth Nearness Diagram Navigation

IROS
Nice, France, September 22-26, 2008

Joseph W. Durham

Mechanical Engineering
Center for Control, Dynamical Systems and Computation

University of California at Santa Barbara
http://motion.mee.ucsb.edu

Ack: Francesco Bullo, NSF
Motivation & Approach

- Motivation
 - Smooth navigation through cluttered, potentially dynamic environments

- Approach
 - Built on Nearness Diagram+ method
 - “Gap”-based

- J. Minguez, J. Osuna, and L. Montano, “A 'divide and conquer' strategy based on situations to achieve reactive collision avoidance in troublesome scenarios,” ICRA, 2004
Motion Control Framework

- SND Navigation
 - Local, reactive planner
 - Inputs:
 - Rangefinder data
 - Goal direction
 - Outputs
 - Safe direction
 - Linear speed
Brief Comparison

• ND+
 - Gap and valley based
 - 6 motion laws
 - Avoidance to closest left and right obstacle point

• SND
 - Gap and valley based
 - 1 motion law
 - Weighted avoidance of all obstacle points
Gaps and Regions

- **Gap**: Discontinuity in measured distance or obstacle next to max range measurement
 - Also classified as right or left
- **Region**: Between two consecutive gaps

Rising Gaps

- Rising gap: Right gap on right side of region, left gap on left side of region
 - Region dependent
 - Indicate a potential path into area robot cannot currently see
Valley: A region with at least one rising gap
 - If region has two rising gaps, closest to θ_{goal} is used
 - Only consider valleys wide enough for robot

Best valley (V_{best}): Valley closest to θ_{goal}
Headings from Best Valley

- Safe rising gap, θ_{srg}
 - Deflected around obstacle creating gap

$$\theta_{srg} = \theta_{rg} \pm \sin\left(\frac{R + D_s}{D_{rg}}\right)$$

- Valley bisector, θ_{mid}

$$\theta_{mid} = \theta_{rg} \pm \frac{\text{dist}(\theta_{rg}, \theta_{og})}{2}$$

$R = \text{robot radius}$
$D_s = \text{safety buffer around robot}$
$D_{rg} = \text{distance to obstacle at rising gap}$
ND+ Method

- “Divide and conquer” strategy
 - 4 binary conditions defining 6 situations
- Robot behavior defined for each situation
- Smooth transitions between some pairs of behaviors

- J. Minguez, J. Osuna, and L. Montano, “A 'divide and conquer' strategy based on situations to achieve reactive collision avoidance in troublesome scenarios,” ICRA, 2004
SND Desired Heading

Three choices for desired heading, θ_{des}:

$$\theta_{des} = \begin{cases}
\theta_{goal} & \text{if } \theta_{goal} \in V_{best} \\
\theta_{srg} & \text{elif } \text{dist}(\theta_{srg}, \theta_{rg}) < \text{dist}(\theta_{mid}, \theta_{rg}) \\
\theta_{mid} & \text{else}
\end{cases}$$
SND Obstacle Avoidance

- For each obstacle point
 - Threat measure:
 \[t_i = \text{sat}_{[0,1]} \left(\frac{D_s + R - D_i}{D_s} \right) \]
 - Deflection angle:
 \[\delta_i = t_i \cdot \text{dist} \left(\theta_i + \pi, \theta_{des} \right) \in [-\pi, \pi] \]
 - If robot is touching \(i^{\text{th}} \) obstacle, \(\theta_{des} + \delta_i \) points directly away from obstacle
SND Obstacle Avoidance II

- Net threat measure:
 \[T_{total} = \sum_{i=1}^{N} t_i^2 \]

- Net deflection angle:
 \[\Delta_{avoid} = \sum_{i=1}^{N} \frac{t_i^2}{T_{total}} \delta_i \]

- Final trajectory:
 \[\theta_{traj} = \theta_{des} + \Delta_{avoid} \]
 \[v_{limit} = \left(1 - \text{max} \left(t_i \ldots t_N \right) \right) \cdot v_{max} \]
Smoothness Conjecture

• For a rangefinder with infinitesimal resolution:

\[T_{\text{total}}(x, y) = \oint t(\alpha, x, y)^2 \, d\alpha \]

• Reminiscent of formula for area of visibility space:

\[A_{\text{visible}}(x, y) = \oint r(\alpha, x, y)^2 \, d\alpha \]

• Visibility area is Locally Lipschitz continuous in non-convex polygonal environment with holes

Testing Setup

- Player/Stage Robotics Software
 - Open-source tools for robotics
 - Easy portability from simulation to hardware
 - Implemented both ND+ and SND
 - Version 2.0.3
- Videre Designs “Erratic” mobile robot platform
- Hokuyo URG laser rangefinder
Simulations
Simulation Trajectories

SND

ND+

Smooth Nearness Diagram Navigation
Experiments

SND

ND+

Smooth Nearestness Diagram Navigation
Summary

• Smooth Nearness Diagram Navigation
 – Adapted from ND+ method
 – Based on gaps
 – Single motion law for all situations
 – Improved smoothness in angular heading
 – Single parameter: size of safety buffer

• Future directions
 – Explore proofs of smoothness
 – When is SND guaranteed to find a safe path?
Thank you

Questions?