
Introduction to Player/Stage

Dario Cazzaro, Luca Invernizzi

Motion Lab, UCSB

October 9, 2008

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 1 / 63

Introduction Interfaces and Drivers

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 2 / 63

Introduction Interfaces and Drivers

Interfaces and Drivers

In Player, there are 2 kind of entities you need to control an external
device:

Interfaces: which describe a standard way to exchange data with the
device

Drivers: which take care of the low level communication with the
hardware

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 3 / 63

Introduction Interfaces and Drivers

User’s clients only need to connect to the Player interface, without any
knowledge of the underlying hardware

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 4 / 63

Introduction Interfaces and Drivers

Example: to connect to a laser scanner, you have to:

define the binding between the laser interface and the driver (eg. the
sicklms200) in the Player configuration file

connect to the laser interface and get range data from it

In this way you can use your client on different robots with different
devices, changing only the bindings between the standard interfaces and
the actual drivers

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 5 / 63

Introduction Player configuration files

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 6 / 63

Introduction Player configuration files

Configuration files

A Player configuration file is composed of one or more driver sections, like
this one:

robot.cfg

driver(
name "sicklms200"
provides ["laser:0"]

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 7 / 63

Introduction Player configuration files

Configuration files

Here are some useful options to put in a driver section

name The name of an existing driver

provides This option lists the interfaces provided by this driver

requires This option lists the interfaces that this driver needs

ad-hoc Other driver-dependent options

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 8 / 63

Introduction Player configuration files

Interfaces addresses are a 5 value string:

key:host:robot:interface:index

Where only interface and index are mandatory.

key is needed to map interfaces of the same kind into different
devices

host is the network name of the host providing the interface

robot is the port of the host providing the interface

interface is the name

index is needed to choose between interfaces of the same kind

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 9 / 63

Introduction Player configuration files

Configuration files

Some drivers provide interfaces of the same kind, so you can use the key
value to map them into different devices

robot.cfg

driver
(
name "p2os"
provides ["odometry:::position2d:0"

"compass:::position2d:1"
"gyro:::position2d:2"]

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 10 / 63

Introduction Player configuration files

Configuration files

Some algorithms are implemented as drivers, so they can be used like
devices through standard interfaces.

robot.cfg

driver
(
name "vfh"
provides ["position2d:1"]
requires ["position2d:0" "laser:0"]

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 11 / 63

Introduction The Stage simulator

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 12 / 63

Introduction The Stage simulator

The Player architecture

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 13 / 63

Introduction The Stage simulator

Working with Stage

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 14 / 63

Introduction The Stage simulator

In order to create a simulated world, you have to load the stage plugin,
which is configured in the worldfile

robot.cfg

driver
(
name "stage"
provides ["simulation:0"]
plugin "libstageplugin"
worldfile "square.world"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 15 / 63

Introduction The Stage simulator

World files

A worldfile contains a description of every object which take part in the
simulated world

square.world

world
(

name "[filename of worldfile]"
interval_real 100
interval_sim 100
gui_interval 100
resolution 0.01

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 16 / 63

Introduction The Stage simulator

Populate the world

Before adding a robot to the world, you have to describe its model

square.world

include "circlebot.inc"
circlebot
(
name "myrobot"
color "red"
pose [-0.5 0.5 0]

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 17 / 63

Introduction The Stage simulator

Once you have defined your model in the worldfile, you can define a stage
driver and attach it to all the interfaces you need. Back in the Player
configuration file:

robot.cfg

driver
(
name "stage"
provides ["position2d:0" "laser:0"]
model "myrobot"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 18 / 63

Introduction User’s clients

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 19 / 63

Introduction User’s clients

User’s clients

After setting up the configuration files, you have to start the Player server

user@host$ player robot.cfg

and then you will be able to connect your client to Player

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 20 / 63

Introduction User’s clients

User’s clients

Example: C++ client

client.cpp

#include <iostream>
#include <libplayerc++/playerc++.h>

int main(int argc, char *argv[]){
using namespace PlayerCc;

PlayerClient robot("localhost");
SonarProxy sp(&robot,0);
Position2dProxy pp(&robot,0);

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 21 / 63

Introduction User’s clients

User’s clients

client.cpp

for(;;){
double turnrate = dtor(10), speed = 0.1;

// read from the proxies
robot.Read();

// print out sonars for fun
std::cout << sp << std::endl;

// command the motors
pp.SetSpeed(speed, turnrate);

}
}

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 22 / 63

Player/Stage drivers Introduction

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 23 / 63

Player/Stage drivers Introduction

Drivers

Do you remember what’s a driver?

It’s an abstraction layer, that provides a standard interface of high-level
commands.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 24 / 63

Player/Stage drivers Introduction

Drivers

Do you remember what’s a driver?
It’s an abstraction layer, that provides a standard interface of high-level
commands.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 24 / 63

Player/Stage drivers Driving the robot around: the position driver

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 25 / 63

Player/Stage drivers Driving the robot around: the position driver

Moving the robot

Suppose you want to move your robot.

You should consider one of the three positioning interfaces:

position1d: moving on a line

position2d: moving on a plane

position3d: moving in a space

Either one of these gives the robot the wanted new ”ability” of moving

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 26 / 63

Player/Stage drivers Driving the robot around: the position driver

Moving the robot

Suppose you want to move your robot.
You should consider one of the three positioning interfaces:

position1d: moving on a line

position2d: moving on a plane

position3d: moving in a space

Either one of these gives the robot the wanted new ”ability” of moving

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 26 / 63

Player/Stage drivers Driving the robot around: the position driver

Moving the robot

Suppose you want to move your robot.
You should consider one of the three positioning interfaces:

position1d: moving on a line

position2d: moving on a plane

position3d: moving in a space

Either one of these gives the robot the wanted new ”ability” of moving

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 26 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example

In fact, if you connect with one of the robots in the lab (in this example,
pod), you’ll find that they give you this output.

user@host$ playerv -h pod -p 6665
PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Note that :0

: a robot can offer more than one driver of the same kind
(e.g. a collision avoidance driver would provide the same position2d
interface, since it’s a smarter positioning system). That number is the way
to select the wanted driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 27 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example

In fact, if you connect with one of the robots in the lab (in this example,
pod), you’ll find that they give you this output.

Command line

user@host$ playerv -h pod -p 6665

PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Note that :0

: a robot can offer more than one driver of the same kind
(e.g. a collision avoidance driver would provide the same position2d
interface, since it’s a smarter positioning system). That number is the way
to select the wanted driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 27 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example

In fact, if you connect with one of the robots in the lab (in this example,
pod), you’ll find that they give you this output.

Command line

user@host$ playerv -h pod -p 6665
PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Note that :0

: a robot can offer more than one driver of the same kind
(e.g. a collision avoidance driver would provide the same position2d
interface, since it’s a smarter positioning system). That number is the way
to select the wanted driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 27 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example

Command line

user@host$ playerv -h pod -p 6665
PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Note that :0

: a robot can offer more than one driver of the same kind
(e.g. a collision avoidance driver would provide the same position2d
interface, since it’s a smarter positioning system). That number is the way
to select the wanted driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 27 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example

Command line

user@host$ playerv -h pod -p 6665
PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Note that :0 : a robot can offer more than one driver of the same kind
(e.g. a collision avoidance driver would provide the same position2d
interface, since it’s a smarter positioning system). That number is the way
to select the wanted driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 27 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player

-d 9

positioning_example_1.cfg

user@host$ playerv

-h localhost -p 6665

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player

-d 9

positioning_example_1.cfg
user@host$ playerv

-h localhost -p 6665

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player -d 9 positioning_example_1.cfg
user@host$ playerv -h localhost -p 6665

These parameters are optional

, to make player more verbose, or use a
remote robot

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player -d 9 positioning_example_1.cfg
user@host$ playerv -h localhost -p 6665

These parameters are optional, to make player more verbose

, or use a
remote robot

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player -d 9 positioning_example_1.cfg
user@host$ playerv -h localhost -p 6665

These parameters are optional, to make player more verbose, or use a
remote robot

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part II)

To easily drive the robot around, you have to:

launch the Player Server with a proper configuration file (shown
later)

launch the Player Viewer, which is an easy utility to peek at the
robot sensors and give commands to it

Command line

user@host$ player -d 9 positioning_example_1.cfg
user@host$ playerv -h localhost -p 6665

Let’s see a video

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 28 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot)

, and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file).

In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["simulation:0"]
plugin "libstageplugin"
worldfile "positioning_example_1.world"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot), and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file).

In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["simulation:0"]
plugin "libstageplugin"
worldfile "positioning_example_1.world"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot), and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file).

In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["position2d:0"]
provides ["laser:0"]
model "robot0"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot), and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file).

In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["simulation:0"]
plugin "libstageplugin"
worldfile "positioning_example_1.world"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot), and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file). In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["position2d:0"]
provides ["laser:0"]
model "robot0"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the configuration file:

it tells Player to load the Stage driver (since we are simulating the
robot), and where to find the environment and robot configuration

it tells Player to simulate robot0 (which configuration is in the
same configuration file). In particular, it should provide its
positioning and laser capabilities

positioning example 1.cfg

driver
(

name "stage"
provides ["position2d:0"]
provides ["laser:0"]
model "robot0"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 29 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

It imports a robot type configuration

It imports a laser type configuration

It loads an environment bitmap map

positioning example 1.world

include "circlebot.inc"
include "urglaser.inc"

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

It imports a robot type configuration

It imports a laser type configuration

It loads an environment bitmap map

positioning example 1.world

include "circlebot.inc"
include "urglaser.inc"

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

It imports a robot type configuration

It imports a laser type configuration

It loads an environment bitmap map

positioning example 1.world

include "circlebot.inc"
include "urglaser.inc"

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

It imports a robot type configuration

It imports a laser type configuration

It loads an environment bitmap map

positioning example 1.world
map
(
bitmap "./bitmaps/lab-gmapping.png"
size [6 6]
name "map"

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

. . .
It create a circlebot robot

,which is going to be red in Stage, with a
good localization system.The robot will be centered in (2,2) and it
will have a laser

positioning example 1.world

circlebot
(
name "robot0"
color "red"
localization "gps"
localization_origin [0 0 0]
pose [2 2 0]
urg_laser(laser_sample_skip 1)

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

. . .
It create a circlebot robot ,which is going to be red in Stage

, with a
good localization system.The robot will be centered in (2,2) and it
will have a laser

positioning example 1.world

circlebot
(
name "robot0"
color "red"
localization "gps"
localization_origin [0 0 0]
pose [2 2 0]
urg_laser(laser_sample_skip 1)

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

. . .
It create a circlebot robot ,which is going to be red in Stage, with a
good localization system

.The robot will be centered in (2,2) and it
will have a laser

positioning example 1.world

circlebot
(
name "robot0"
color "red"
localization "gps"
localization_origin [0 0 0]
pose [2 2 0]
urg_laser(laser_sample_skip 1)

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

. . .
It create a circlebot robot ,which is going to be red in Stage, with a
good localization system.The robot will be centered in (2,2)

and it
will have a laser

positioning example 1.world

circlebot
(
name "robot0"
color "red"
localization "gps"
localization_origin [0 0 0]
pose [2 2 0]
urg_laser(laser_sample_skip 1)

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part III)

Let’s look at the world file, that defines the environment and the robots
configuration:

. . .
It create a circlebot robot ,which is going to be red in Stage, with a
good localization system.The robot will be centered in (2,2) and it
will have a laser

positioning example 1.world

circlebot
(
name "robot0"
color "red"
localization "gps"
localization_origin [0 0 0]
pose [2 2 0]
urg_laser(laser_sample_skip 1)

)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 30 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Now that we have a running simulation of a simple robot, how can we can
connect to it in our program?

Suppose we want to write our program in C++: we will use the
playerc++ library
There are also libraries for C, Python, Ada. . .

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 31 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Now that we have a running simulation of a simple robot, how can we can
connect to it in our program?
Suppose we want to write our program in C++: we will use the
playerc++ library

There are also libraries for C, Python, Ada. . .

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 31 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Now that we have a running simulation of a simple robot, how can we can
connect to it in our program?
Suppose we want to write our program in C++: we will use the
playerc++ library
There are also libraries for C, Python, Ada. . .

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 31 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

#inc lude <i o s t r e a m >
#inc lude <libplayerc++/playerc++.h>
#inc lude < s t d l i b . h>
using namespace PlayerCc ;
using namespace s t d ;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

#inc lude <i o s t r e a m >
#inc lude <libplayerc++/playerc++.h>
#inc lude < s t d l i b . h>
using namespace PlayerCc ;
using namespace s t d ;

The namespace PlayerCc contains all Player classes. It does not,
however contain some Player structures.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

#inc lude <i o s t r e a m >
#inc lude <libplayerc++/playerc++.h>
#inc lude < s t d l i b . h>
using namespace PlayerCc ;
using namespace s t d ;

i n t main (i n t argc , char ∗ a r g v []) {
PlayerClient r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
Position2dProxy posp(& robot , 0) ;

The PlayerClient class is the interface between our program and the player
server. It’s able to connect to it and read the data it sends us (the
constructor accepts the parameters hostname and port of the Player
server).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

i n t main (i n t argc , char ∗ a r g v []) {
PlayerClient r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
Position2dProxy posp(& robot , 0) ;

To move the robot, we have to get access to the Position2dProxy class,
that’s a proxy to the positioning driver. It takes, as arguments, a handle to
one initialized PlayerClient class, and the driver index (that :0 we spoke
about before).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

i n t main (i n t argc , char ∗ a r g v []) {
PlayerClient r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
Position2dProxy posp(& robot , 0) ;

posp . RequestGeom () ;
r o b o t . Read () ;

Then we need to populate the Position2dProxy class with the necessary
geometric informations on the robot (e.g. wheel radius. . .), so we request
them.

To receive them, however, we need to read the data that the server has
sent to our program.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

i n t main (i n t argc , char ∗ a r g v []) {
PlayerClient r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
Position2dProxy posp(& robot , 0) ;

posp . RequestGeom () ;
r o b o t . Read () ;

Then we need to populate the Position2dProxy class with the necessary
geometric informations on the robot (e.g. wheel radius. . .), so we request
them.
To receive them, however, we need to read the data that the server has
sent to our program.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

posp . RequestGeom () ;
r o b o t . Read () ;

posp . SetMotorEnable (1) ;
posp . GoTo (0 . 5 , 1 . 0 , 0) ;

Now we can enable the motors (that’s only necessary when working with
real robots).

Finally, we can order the robot to go to the point (0.5, 1.0) with final
heading equal 0 radians.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

posp . RequestGeom () ;
r o b o t . Read () ;

posp . SetMotorEnable (1) ;
posp . GoTo (0 . 5 , 1 . 0 , 0) ;

Now we can enable the motors (that’s only necessary when working with
real robots).
Finally, we can order the robot to go to the point (0.5, 1.0) with final
heading equal 0 radians.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

positioning example 1.cc

posp . SetMotorEnable (1) ;
posp . GoTo (0 . 5 , 1 . 0 , 0) ;

f o r (; ;) {
cout <<” p o s i t i o n (”<<posp . GetXPos () \

<<” , ”<<posp . GetYPos()<<”) ”<<e n d l ;
r o b o t . Read () ;

}
}

If we want to get informations about the robot position, we need to keep
reading what the server sends us

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 32 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Since the positioning system is fundamental, let’s give out some final
considerations on it:

it is possible to tune the maximum error allowed when reaching a
target in the .cfg file (e.g., if we don’t care about the robot final
heading, we can use the directive angle epsilon 360)

there are a bunch of possible way to control the robot position: the
lowest level is controlling its heading and speed (e.g. SetSpeed(1,0))

in the .cfg file we analyzed before, the robot knows its initial position
(since it equips an ideal gps). However, this is not the case of the
robots in the lab: those robots usually starts up believing to be in the
origin of their own local reference system

it is also possible to update the position with odometry, and set its
error range (the error itself is stochastic).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 33 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Since the positioning system is fundamental, let’s give out some final
considerations on it:

it is possible to tune the maximum error allowed when reaching a
target in the .cfg file (e.g., if we don’t care about the robot final
heading, we can use the directive angle epsilon 360)

there are a bunch of possible way to control the robot position: the
lowest level is controlling its heading and speed (e.g. SetSpeed(1,0))

in the .cfg file we analyzed before, the robot knows its initial position
(since it equips an ideal gps). However, this is not the case of the
robots in the lab: those robots usually starts up believing to be in the
origin of their own local reference system

it is also possible to update the position with odometry, and set its
error range (the error itself is stochastic).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 33 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Since the positioning system is fundamental, let’s give out some final
considerations on it:

it is possible to tune the maximum error allowed when reaching a
target in the .cfg file (e.g., if we don’t care about the robot final
heading, we can use the directive angle epsilon 360)

there are a bunch of possible way to control the robot position: the
lowest level is controlling its heading and speed (e.g. SetSpeed(1,0))

in the .cfg file we analyzed before, the robot knows its initial position
(since it equips an ideal gps). However, this is not the case of the
robots in the lab: those robots usually starts up believing to be in the
origin of their own local reference system

it is also possible to update the position with odometry, and set its
error range (the error itself is stochastic).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 33 / 63

Player/Stage drivers Driving the robot around: the position driver

A practical example (part IV)

Since the positioning system is fundamental, let’s give out some final
considerations on it:

it is possible to tune the maximum error allowed when reaching a
target in the .cfg file (e.g., if we don’t care about the robot final
heading, we can use the directive angle epsilon 360)

there are a bunch of possible way to control the robot position: the
lowest level is controlling its heading and speed (e.g. SetSpeed(1,0))

in the .cfg file we analyzed before, the robot knows its initial position
(since it equips an ideal gps). However, this is not the case of the
robots in the lab: those robots usually starts up believing to be in the
origin of their own local reference system

it is also possible to update the position with odometry, and set its
error range (the error itself is stochastic).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 33 / 63

Player/Stage drivers The localization driver

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 34 / 63

Player/Stage drivers The localization driver

Finding out our position

Now we know how to move, at least in a very basic fashion.
But, where is our robot?

If we have some kind of global positioning system, fine. We’ll
probably need to do some sensor fusion with the odometry readings,
in order to lower the positioning error. However, Player does not
know how to do that, so you’ll have to find a third-party library (see
http://babel.isa.uma.es/mrpt/index.php/Main_Page), or
implement it yourself.

If we have the map, the odometry from the wheels and a laser/sonar,
we’ll find our position on the map by performing a pattern matching
with the sensor readings: we’ll need to find the position where those
readings ”makes sense”

If we have just the laser/sonar and the odometry, we have to perform
a simultaneous localization and mapping (SLAM) algorithm, in order
to build the map and perform the localization

Now we’ll analyze this situation.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 35 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers The localization driver

Finding out our position

But, where is our robot?

If we have some kind of global positioning system, fine. We’ll
probably need to do some sensor fusion with the odometry readings,
in order to lower the positioning error. However, Player does not
know how to do that, so you’ll have to find a third-party library (see
http://babel.isa.uma.es/mrpt/index.php/Main_Page), or
implement it yourself.

If we have the map, the odometry from the wheels and a laser/sonar,
we’ll find our position on the map by performing a pattern matching
with the sensor readings: we’ll need to find the position where those
readings ”makes sense”

If we have just the laser/sonar and the odometry, we have to perform
a simultaneous localization and mapping (SLAM) algorithm, in order
to build the map and perform the localization

Now we’ll analyze this situation.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 35 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers The localization driver

Finding out our position

But, where is our robot?

If we have some kind of global positioning system, fine. We’ll
probably need to do some sensor fusion with the odometry readings,
in order to lower the positioning error. However, Player does not
know how to do that, so you’ll have to find a third-party library (see
http://babel.isa.uma.es/mrpt/index.php/Main_Page), or
implement it yourself.

If we have the map, the odometry from the wheels and a laser/sonar,
we’ll find our position on the map by performing a pattern matching
with the sensor readings: we’ll need to find the position where those
readings ”makes sense”

If we have just the laser/sonar and the odometry, we have to perform
a simultaneous localization and mapping (SLAM) algorithm, in order
to build the map and perform the localization

Now we’ll analyze this situation.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 35 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers The localization driver

Finding out our position

But, where is our robot?

If we have some kind of global positioning system, fine. We’ll
probably need to do some sensor fusion with the odometry readings,
in order to lower the positioning error. However, Player does not
know how to do that, so you’ll have to find a third-party library (see
http://babel.isa.uma.es/mrpt/index.php/Main_Page), or
implement it yourself.

If we have the map, the odometry from the wheels and a laser/sonar,
we’ll find our position on the map by performing a pattern matching
with the sensor readings: we’ll need to find the position where those
readings ”makes sense”

If we have just the laser/sonar and the odometry, we have to perform
a simultaneous localization and mapping (SLAM) algorithm, in order
to build the map and perform the localization

Now we’ll analyze this situation.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 35 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers The localization driver

Finding out our position

But, where is our robot?

If we have some kind of global positioning system, fine. We’ll
probably need to do some sensor fusion with the odometry readings,
in order to lower the positioning error. However, Player does not
know how to do that, so you’ll have to find a third-party library (see
http://babel.isa.uma.es/mrpt/index.php/Main_Page), or
implement it yourself.

If we have the map, the odometry from the wheels and a laser/sonar,
we’ll find our position on the map by performing a pattern matching
with the sensor readings: we’ll need to find the position where those
readings ”makes sense”

If we have just the laser/sonar and the odometry, we have to perform
a simultaneous localization and mapping (SLAM) algorithm, in order
to build the map and perform the localization

Now we’ll analyze this situation.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 35 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers The localization driver

Finding out our position

The amcl driver implements the Adaptive Monte-Carlo Localization
algorithm.

from the Player documentation

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 36 / 63

Player/Stage drivers The localization driver

Finding out our position

The amcl driver implements the Adaptive Monte-Carlo Localization
algorithm.

from the Player documentation

At the conceptual level, the amcl driver maintains a probability distribution
over the set of all possible robot poses, and updates this distribution using
data from odometry, sonar and/or laser range-finders. The driver requires
a pre-defined map of the environment against which to compare observed
sensor values.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 36 / 63

Player/Stage drivers The localization driver

Finding out our position

The amcl driver implements the Adaptive Monte-Carlo Localization
algorithm.

from the Player documentation

At the implementation level, the amcl driver represents the probability
distribution using a particle filter. The filter is adaptive because it
dynamically adjusts the number of particles in the filter: when the robot’s
pose is highly uncertain, the number of particles is increased; when the
robot’s pose is well determined, the number of particles is decreased. The
driver is therefore able make a trade-off between processing speed and
localization accuracy.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 36 / 63

Player/Stage drivers The localization driver

Finding out our position II

t = 1 sec, approx 100,000 particles

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 37 / 63

Player/Stage drivers The localization driver

Finding out our position II

t = 40 sec, approx 1,000 particles

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 37 / 63

Player/Stage drivers The localization driver

Finding out our position II

t = 80 sec, approx 100 particles

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 37 / 63

Player/Stage drivers The localization driver

Finding out our position III

If the robot’s initial pose is specified as being completely unknown,
the driver’s estimate will usually converge to correct pose. This
assumes that the particle filter starts with a large number of particles
(to cover the space of possible poses), and that the robot is driven
some distance through the environment (to collect observations).

If the robot’s initial pose is specified accurately, but incorrectly, or if
the robot becomes lost (e.g., by picking it up and replacing it
elsewhere) the driver’s estimate will not converge on the correct pose.
Such situations require the use of more advanced techniques that
have not yet been implemented.

When the number of particles in the filter is large, data may arrive
from the sensors faster than it can be processed. When this happens,
data is queued up for later processing, but the driver continues to
generate an up-to-date estimate for the robot pose.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 38 / 63

Player/Stage drivers The localization driver

Finding out our position III

If the robot’s initial pose is specified as being completely unknown,
the driver’s estimate will usually converge to correct pose. This
assumes that the particle filter starts with a large number of particles
(to cover the space of possible poses), and that the robot is driven
some distance through the environment (to collect observations).

If the robot’s initial pose is specified accurately, but incorrectly, or if
the robot becomes lost (e.g., by picking it up and replacing it
elsewhere) the driver’s estimate will not converge on the correct pose.
Such situations require the use of more advanced techniques that
have not yet been implemented.

When the number of particles in the filter is large, data may arrive
from the sensors faster than it can be processed. When this happens,
data is queued up for later processing, but the driver continues to
generate an up-to-date estimate for the robot pose.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 38 / 63

Player/Stage drivers The localization driver

Finding out our position III

If the robot’s initial pose is specified as being completely unknown,
the driver’s estimate will usually converge to correct pose. This
assumes that the particle filter starts with a large number of particles
(to cover the space of possible poses), and that the robot is driven
some distance through the environment (to collect observations).

If the robot’s initial pose is specified accurately, but incorrectly, or if
the robot becomes lost (e.g., by picking it up and replacing it
elsewhere) the driver’s estimate will not converge on the correct pose.
Such situations require the use of more advanced techniques that
have not yet been implemented.

When the number of particles in the filter is large, data may arrive
from the sensors faster than it can be processed. When this happens,
data is queued up for later processing, but the driver continues to
generate an up-to-date estimate for the robot pose.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 38 / 63

Player/Stage drivers The localization driver

Finding out our position IV

configuration

driver (name "amcl" provides ["localize:0"

"position2d:1"

]
requires ["odometry:::position2d:0" "laser:0"
"laser:::map:0"]
)

localize : this interface provides a (sort of) representative sample of
the current pose hypotheses, weighted by likelihood.

position2d (optional): this interface provides just the most-likely
hypothesis, formatted as position data, which you can (at your peril)
pretend came from a perfect odometry system

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 39 / 63

Player/Stage drivers The localization driver

Finding out our position IV

configuration

driver (name "amcl" provides ["localize:0" "position2d:1"]
requires ["odometry:::position2d:0" "laser:0"
"laser:::map:0"]
)

localize : this interface provides a (sort of) representative sample of
the current pose hypotheses, weighted by likelihood.

position2d (optional): this interface provides just the most-likely
hypothesis, formatted as position data, which you can (at your peril)
pretend came from a perfect odometry system

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 39 / 63

Player/Stage drivers Generating a map

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 40 / 63

Player/Stage drivers Generating a map

Moving in an unknown environment

Amcl solves the localization problem, but it needs a map.
How to obtain the map?

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

Player/Stage drivers Generating a map

Moving in an unknown environment

Amcl solves the localization problem, but it needs a map.
How to obtain the map?
Player/Stage does not implement a proper slam algorithm (it used to
have one, but it not being developed anymore, and the results are quite
bad).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

Player/Stage drivers Generating a map

Moving in an unknown environment

Amcl solves the localization problem, but it needs a map.
How to obtain the map?
Player/Stage does not implement a proper slam algorithm (it used to
have one, but it not being developed anymore, and the results are quite
bad).
However, many slam algorithms have been implemented and are freely
available on the internet (see http://www.openslam.org/).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

http://www.openslam.org/

Player/Stage drivers Generating a map

Moving in an unknown environment

Amcl solves the localization problem, but it needs a map.
How to obtain the map?
Player/Stage does not implement a proper slam algorithm (it used to
have one, but it not being developed anymore, and the results are quite
bad).
However, many slam algorithms have been implemented and are freely
available on the internet (see http://www.openslam.org/).
But, as far as I know, none works natively with Player/Stage.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

http://www.openslam.org/

Player/Stage drivers Generating a map

Moving in an unknown environment

We have created a script that make it possible to use GMapping using
Player logfile. It does that offline, since GMapping is quite slow, but
it’s also possible to perform slam online.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

Player/Stage drivers Generating a map

Moving in an unknown environment

We have created a script that make it possible to use GMapping using
Player logfile. It does that offline, since GMapping is quite slow, but
it’s also possible to perform slam online.
Otherwise, have a look in the Mobile Robot Programming Toolkit
(http://babel.isa.uma.es/mrpt/index.php/Main_Page). You’ll find
several nice demos of (under-documented) C++ classes to perform slam

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 41 / 63

http://babel.isa.uma.es/mrpt/index.php/Main_Page

Player/Stage drivers Generating a map

Moving in an unknown environment II

Player/Stage generated map of the lab

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 42 / 63

Player/Stage drivers Generating a map

Moving in an unknown environment II

Gmapping generated map of the lab

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 42 / 63

Player/Stage drivers Using the map

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 43 / 63

Player/Stage drivers Using the map

Unfolding the map

The map interface provides access to maps. Depending on the underlying
driver, the map may be provided as an occupancy grid, or as a set of
segments (or both).

In all our examples, we’ll use the occupancy grid approach.
In either case, the map is retrieved by request only (that means you have
to request it from the Player server like we did before with position2d).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 44 / 63

Player/Stage drivers Using the map

Unfolding the map

The map interface provides access to maps. Depending on the underlying
driver, the map may be provided as an occupancy grid, or as a set of
segments (or both).
In all our examples, we’ll use the occupancy grid approach.

In either case, the map is retrieved by request only (that means you have
to request it from the Player server like we did before with position2d).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 44 / 63

Player/Stage drivers Using the map

Unfolding the map

The map interface provides access to maps. Depending on the underlying
driver, the map may be provided as an occupancy grid, or as a set of
segments (or both).
In all our examples, we’ll use the occupancy grid approach.
In either case, the map is retrieved by request only (that means you have
to request it from the Player server like we did before with position2d).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 44 / 63

Player/Stage drivers Using the map

Unfolding the map II

Map driver declaration in the .cfg file has been heavily modified in the last
version of Player/Stage: if you plan to use it, just copy the proper .cfg
section of one of the examples files in your Player/Stage version.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 45 / 63

Player/Stage drivers Using the map

Unfolding the map III

Let’s briefly see how to get the map.

Playerc++ library and map handling

P l a y e r C l i e n t r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
MapProxy mapp(& robot , 0) ;

Map proxy class instantiation is similar to the position2d proxy class we’ve
seen before.

Here’s how to get the map from the server

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 46 / 63

Player/Stage drivers Using the map

Unfolding the map III

Let’s briefly see how to get the map.

Playerc++ library and map handling

P l a y e r C l i e n t r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
MapProxy mapp(& robot , 0) ;

mapp . RequestMap () ;
r o b o t . Read () ;

Map proxy class instantiation is similar to the position2d proxy class we’ve
seen before.
Here’s how to get the map from the server

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 46 / 63

Player/Stage drivers Using the map

Unfolding the map III

Playerc++ library and map handling

i n t iMapWidth = mapp . GetWidth () ;
i n t iMapHeight = mapp . GetHe ight () ;

d o u b l e fMapRes = mapp . G e t R e s o l u t i o n () ;
f o r (i n t i =0; i <iMapWidth ; i ++){

f o r (i n t j =0; j<iMapHeight ; j ++){
cout <<(mapp . GetCell (i , j)>0?”X” : ” ”) ;

}
cout <<e n d l ;

}

Here a sample code that gets the map width, height (both in cells) and
resolution (meters

cells). Then, it prints on the console the map (as an
occupancy grid)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 46 / 63

Player/Stage drivers Dodging an obstacle

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 47 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles

Now we can pinpoint our location and move toward our objective.

But we are still going to blindly collide with anything that stands in our
way.
What about avoiding it?

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 48 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles

Now we can pinpoint our location and move toward our objective.
But we are still going to blindly collide with anything that stands in our
way.
What about avoiding it?

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 48 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles II

Player can do that for you. In particular, it has the vfh driver.

From Player documentation

The vfh driver implements the Vector Field Histogram Plus local
navigation method . VFH+ provides real-time obstacle avoidance and
path following capabilities for mobile robots. Layered on top of a
laser-equipped robot, vfh works great as a local navigation system .

It is possible to configure it very deeply (min turnrate, safety dist . . .) It is
completely transparent: it provides a standard position2d interface

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 49 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles II

Player can do that for you. In particular, it has the vfh driver.

From Player documentation

The vfh driver implements the Vector Field Histogram Plus local
navigation method . VFH+ provides real-time obstacle avoidance and
path following capabilities for mobile robots. Layered on top of a
laser-equipped robot, vfh works great as a local navigation system .

It is possible to configure it very deeply (min turnrate, safety dist . . .) It is
completely transparent: it provides a standard position2d interface

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 49 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles II

Player can do that for you. In particular, it has the vfh driver.

From Player documentation

The vfh driver implements the Vector Field Histogram Plus local
navigation method . VFH+ provides real-time obstacle avoidance and
path following capabilities for mobile robots. Layered on top of a
laser-equipped robot, vfh works great as a local navigation system .

It is possible to configure it very deeply (min turnrate, safety dist . . .)

It is
completely transparent: it provides a standard position2d interface

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 49 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles II

Player can do that for you. In particular, it has the vfh driver.

From Player documentation

The vfh driver implements the Vector Field Histogram Plus local
navigation method . VFH+ provides real-time obstacle avoidance and
path following capabilities for mobile robots. Layered on top of a
laser-equipped robot, vfh works great as a local navigation system .

It is possible to configure it very deeply (min turnrate, safety dist . . .) It is
completely transparent: it provides a standard position2d interface

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 49 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles III

Basic configuration

driver (name "vfh"
requires ["position:1" "laser:0"]
provides ["position:0"]
)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 50 / 63

Player/Stage drivers Dodging an obstacle

for more information see http://cgi.cse.unsw.edu.au/~cs4411/
wiki/index.php?title=Path_Planning

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 51 / 63

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning

Player/Stage drivers Dodging an obstacle

Avoiding obstacles IV

Vfh is good in an ample environment, with few narrow passages.

That
implicitly means that is bad in ”crowded” environments.
The last version of Player/Stage offers the nd driver, that has an
overall better behaviour, even if sometimes the robot heading trembles.
And Joey has found a way to improve it.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 52 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles IV

Vfh is good in an ample environment, with few narrow passages. That
implicitly means that is bad in ”crowded” environments.

The last version of Player/Stage offers the nd driver, that has an
overall better behaviour, even if sometimes the robot heading trembles.
And Joey has found a way to improve it.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 52 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles IV

Vfh is good in an ample environment, with few narrow passages. That
implicitly means that is bad in ”crowded” environments.
The last version of Player/Stage offers the nd driver, that has an
overall better behaviour, even if sometimes the robot heading trembles.

And Joey has found a way to improve it.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 52 / 63

Player/Stage drivers Dodging an obstacle

Avoiding obstacles IV

Vfh is good in an ample environment, with few narrow passages. That
implicitly means that is bad in ”crowded” environments.
The last version of Player/Stage offers the nd driver, that has an
overall better behaviour, even if sometimes the robot heading trembles.
And Joey has found a way to improve it.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 52 / 63

Player/Stage drivers Planning the path

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 53 / 63

Player/Stage drivers Planning the path

Path planning

Obstacle avoidance is not sufficient, since it’s a greedy algorithm

, and can
get trapped in a not through passage

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 54 / 63

Player/Stage drivers Planning the path

Path planning

Obstacle avoidance is not sufficient, since it’s a greedy algorithm, and can
get trapped in a not through passage

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 54 / 63

Player/Stage drivers Planning the path

Path planning II

Player/Stage offers the driver wavefront, that implements the
wavefront algorithm for global path planning.

It’s usually layered on the top of vfh
For more information on the algorithm see

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?
title=Path_Planning

http://playerstage.sourceforge.net/doc/Player-2.1.0/
player/group__driver__wavefront.html

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 55 / 63

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html

Player/Stage drivers Planning the path

Path planning II

Player/Stage offers the driver wavefront, that implements the
wavefront algorithm for global path planning.
It’s usually layered on the top of vfh

For more information on the algorithm see

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?
title=Path_Planning

http://playerstage.sourceforge.net/doc/Player-2.1.0/
player/group__driver__wavefront.html

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 55 / 63

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html

Player/Stage drivers Planning the path

Path planning II

Player/Stage offers the driver wavefront, that implements the
wavefront algorithm for global path planning.
It’s usually layered on the top of vfh
For more information on the algorithm see

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?
title=Path_Planning

http://playerstage.sourceforge.net/doc/Player-2.1.0/
player/group__driver__wavefront.html

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 55 / 63

http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://cgi.cse.unsw.edu.au/~cs4411/wiki/index.php?title=Path_Planning
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__driver__wavefront.html

Player/Stage drivers Planning the path

Path planning III

Basic configuration

driver (name "vfh"
provides ["6665:position2d:1"]
requires ["6665:position2d:0" "6665:laser:0"]
distance epsilon 0.3
angle epsilon 5
)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 56 / 63

Player/Stage drivers Planning the path

Path planning III

Basic configuration

driver (name "vfh"
provides ["6665:position2d:1"]
requires ["6665:position2d:0" "6665:laser:0"]
distance epsilon 0.3
angle epsilon 5
)
driver (name "wavefront"
provides ["6665:planner:0"]
requires ["output::6665:position2d:1"
"input::6665:position2d:1" "6665:map:0"]
safety dist 0.1
distance epsilon 0.5
angle epsilon 10
)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 56 / 63

Player/Stage drivers Planning the path

Path planning III

Basic configuration

driver (name "vfh"
provides ["6665:position2d:1"]
requires ["6665:position2d:0" "6665:laser:0"]
distance epsilon 0.3
angle epsilon 5
)
driver (name "wavefront"
provides ["6665:planner:0"]
requires ["output::6665:position2d:1"
"input::6665:position2d:1" "6665:map:0"]
safety dist 0.1
distance epsilon 0.5
angle epsilon 10
)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 56 / 63

Player/Stage drivers Planning the path

Path planning IV

Playerc++ library and map handling

P l a y e r C l i e n t r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
P l a n n e r P r o x y p l a n p (& robot , 0) ;
p l a n p . SetGoa lPose (1 0 , 2 0 , 0) ;
p l a n p . S e t E n a b l e (t r u e) ;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 57 / 63

Player/Stage drivers Using the laser

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 58 / 63

Player/Stage drivers Using the laser

Of course, it is possible to get the laser readings and configure the laser.

Playerc++ library and map handling

P l a y e r C l i e n t r o b o t (” l o c a l h o s t ” , 6 6 6 5) ;
L a s e r P r o x y l a s p (& robot , 0))) ;
f o r (i n t i =0; i < (i n t) l a s p . GetCount ();++ i) {

l a s p . GetRange (i) ;
}

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 59 / 63

Player/Stage drivers The lab erratic robots

Outline

1 Introduction
Interfaces and Drivers
Player configuration files
The Stage simulator
User’s clients

2 Player/Stage drivers
Introduction
Driving the robot around: the position driver
The localization driver
Generating a map
Using the map
Dodging an obstacle
Planning the path
Using the laser
The lab erratic robots

3 References

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 60 / 63

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

Player/Stage drivers The lab erratic robots

The erratic driver provides the following device interfaces:

”odometry” position2d: This interface returns odometry data, and
accepts velocity commands.

power: Returns the current battery voltage (12 V when fully charged).

aio: Returns data from analog and digital input pins

ir: Returns ranges from IR sensors, assuming they’re connected to the
analog input pins

laser: Returns ranges from laser sensors

ptz : control of the servos that pan and tilt

For more information see:
http://www.videredesign.com/robots/era_mobi.htm

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 61 / 63

http://www.videredesign.com/robots/era_mobi.htm

References

There are a lot of other drivers (e.g. drawing on the Stage interface. . .).
In the next slide there are reference for them.

Sadly, the set of available drivers changes in different versions of stage
(but it’s not expanded: several important drivers have been dropped in the
last version of Player/Stage)
For example: the graphic driver is not supported yet, and the map driver
has changed completely (and that includes its configuration file)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 62 / 63

References

There are a lot of other drivers (e.g. drawing on the Stage interface. . .).
In the next slide there are reference for them.
Sadly, the set of available drivers changes in different versions of stage
(but it’s not expanded: several important drivers have been dropped in the
last version of Player/Stage)

For example: the graphic driver is not supported yet, and the map driver
has changed completely (and that includes its configuration file)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 62 / 63

References

There are a lot of other drivers (e.g. drawing on the Stage interface. . .).
In the next slide there are reference for them.
Sadly, the set of available drivers changes in different versions of stage
(but it’s not expanded: several important drivers have been dropped in the
last version of Player/Stage)
For example: the graphic driver is not supported yet, and the map driver
has changed completely (and that includes its configuration file)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 62 / 63

References

Reference

http://playerstage.sourceforge.net/doc/Player-2.0.0/
player/modules.html

http://playerstage.sourceforge.net/doc/Player-2.1.0/
player/modules.html

http://playerstage.sourceforge.net/doc/Player-2.0.0/
player/group__drivers.html

http://playerstage.sourceforge.net/doc/Player-2.1.0/
player/group__drivers.html

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 9, 2008 63 / 63

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/modules.html
http://playerstage.sourceforge.net/doc/Player-2.0.0/player/modules.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/modules.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/modules.html
http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__drivers.html
http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group__drivers.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__drivers.html
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group__drivers.html

	Introduction
	Interfaces and Drivers
	Player configuration files
	The Stage simulator
	User's clients

	Player/Stage drivers
	Introduction
	Driving the robot around: the position driver
	The localization driver
	Generating a map
	Using the map
	Dodging an obstacle
	Planning the path
	Using the laser
	The lab erratic robots

	References

