
Introduction to Player/Stage
Part II

Dario Cazzaro, Luca Invernizzi

Motion Lab, UCSB

October 16, 2008

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 1 / 51

Compiling

Outline

1 Compiling

2 Standard Template Library

3 Connecting to the real robots

4 Simulating a wireless network

5 Solving the multi-hop dynamic routing problem

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 2 / 51

Compiling

Compiling user clients

To compile a Player client you only need to include Player libraries and link
your program with them. So, in your source code:

myclient.cpp

#include <libplayerc++/playerc++.h>

To compile and link it:

user@host$ gcc -o myclient ‘pkg-config --cflags playerc++‘
‘pkg-config --libs player c++‘ myclient.cpp

To run it:

user@host$./myclient

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 3 / 51

Standard Template Library

Outline

1 Compiling

2 Standard Template Library

3 Connecting to the real robots

4 Simulating a wireless network

5 Solving the multi-hop dynamic routing problem

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 4 / 51

Standard Template Library

Standard Template Library

The Standard Template Library (STL) is a C++ library which provides lots
of data structures and algorithms you may need.
You can use library’s algorithms instead of implementing them yourselves,
avoiding boring coding-nights and time wasting errors.
Almost always, the STL algorithms are very efficient, both about time and
memory use.
To make the STL as generic as possible, almost every component in it is a
template.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 5 / 51

Standard Template Library

What is a template?

Templates are a C++ feature that allow classes to work on different data
types without being rewritten for each one.
When you instantiate a template class object, you have to define the data
types you want your class will work on.

For example, a pair is a simple container that lets you memorize a couple
of objects. These objects may be of any type, both simple data or complex
class objects.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 6 / 51

Standard Template Library

What is a template?

Templates are a C++ feature that allow classes to work on different data
types without being rewritten for each one.
When you instantiate a template class object, you have to define the data
types you want your class will work on.
For example, a pair is a simple container that lets you memorize a couple
of objects. These objects may be of any type, both simple data or complex
class objects.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 6 / 51

Standard Template Library

What is a template?

To declare a pair object, you must define the types of the data you want
to put in it. If you want a couple of integer, just pass int as parameters to
the template:

pair < int , int > oldpair;

If you want to store a char and a double:

pair < char , double > newpair;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 7 / 51

Standard Template Library

What is a template?

To declare a pair object, you must define the types of the data you want
to put in it. If you want a couple of integer, just pass int as parameters to
the template:

pair < int , int > oldpair;

If you want to store a char and a double:

pair < char , double > newpair;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 7 / 51

Standard Template Library

What is a template?

First, let’s assign some values to the pairs:

oldpair.first = 3;
oldpair.second = 14;
newpair.first = ’e’;
newpair.second = 2.71828183;

Now, these two objects have the same names for their member data and
functions:

cout << firstpair.first << secondpair.first;

Warning: this doesn’t mean we can assign to an object any type we want,
but only the type which it was declared with!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 8 / 51

Standard Template Library

What is a template?

First, let’s assign some values to the pairs:

oldpair.first = 3;
oldpair.second = 14;
newpair.first = ’e’;
newpair.second = 2.71828183;

Now, these two objects have the same names for their member data and
functions:

cout << firstpair.first << secondpair.first;

Warning: this doesn’t mean we can assign to an object any type we want,
but only the type which it was declared with!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 8 / 51

Standard Template Library

What is a template?

First, let’s assign some values to the pairs:

oldpair.first = 3;
oldpair.second = 14;
newpair.first = ’e’;
newpair.second = 2.71828183;

Now, these two objects have the same names for their member data and
functions:

cout << firstpair.first << secondpair.first;

Warning: this doesn’t mean we can assign to an object any type we want,
but only the type which it was declared with!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 8 / 51

Standard Template Library

Containers

Containers are data structure used to store collection of data.
The STL provides many kinds of container, according to the data access
method and the time/memory complexity to perform operations.
When you create a container, you must declare the type of the data you’ll
put in it.
They includes:

Sequence containers

Vector
List
Deque

Associative containers

Set
Map

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 9 / 51

Standard Template Library

Containers

Containers are data structure used to store collection of data.
The STL provides many kinds of container, according to the data access
method and the time/memory complexity to perform operations.
When you create a container, you must declare the type of the data you’ll
put in it.
They includes:

Sequence containers

Vector
List
Deque

Associative containers

Set
Map

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 9 / 51

Standard Template Library

Containers

Containers are data structure used to store collection of data.
The STL provides many kinds of container, according to the data access
method and the time/memory complexity to perform operations.
When you create a container, you must declare the type of the data you’ll
put in it.
They includes:

Sequence containers

Vector
List
Deque

Associative containers

Set
Map

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 9 / 51

Standard Template Library

Vector

The vector class implements a dynamic array, which behaves like a C array,
but has the ability to resize itself if it’s full.
So, when you initialize a vector, you don’t have to worry about its size
since it grows automatically when needed.
To access data, both for reading and writing, you can use the usual
operator “[]”

Usage example

#include <vector>
...
vector<int> myvector;
for(int i=0; i<20; i++) myvector[i] = i;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 10 / 51

Standard Template Library

Vector

The vector class implements a dynamic array, which behaves like a C array,
but has the ability to resize itself if it’s full.
So, when you initialize a vector, you don’t have to worry about its size
since it grows automatically when needed.
To access data, both for reading and writing, you can use the usual
operator “[]”

Usage example

#include <vector>
...
vector<int> myvector;
for(int i=0; i<20; i++) myvector[i] = i;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 10 / 51

Standard Template Library

Vector

Do you want a Matrix? It’s simple: create a vector of vectors!

Usage example

#include <vector>
...
vector<vector<int> > myvector;
for(int i=0; i<20; i++) myvector[i][i] = i;

Warning: remember the space char between the “>” markers; the
compiler could mistake them for the “>>” operator!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 11 / 51

Standard Template Library

Vector

Do you want a Matrix? It’s simple: create a vector of vectors!

Usage example

#include <vector>
...
vector<vector<int> > myvector;
for(int i=0; i<20; i++) myvector[i][i] = i;

Warning: remember the space char between the “>” markers; the
compiler could mistake them for the “>>” operator!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 11 / 51

Standard Template Library

Vector

Do you want a Matrix? It’s simple: create a vector of vectors!

Usage example

#include <vector>
...
vector<vector<int> > myvector;
for(int i=0; i<20; i++) myvector[i][i] = i;

Warning: remember the space char between the “>” markers; the
compiler could mistake them for the “>>” operator!

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 11 / 51

Standard Template Library

Iterators

An iterator is an object which points to an element of a container.
You can ask a container for an iterator and then use it to navigate through
the data set

Usage example

#include <vector>
...
vector<int> myvector;
vector<int>::iterator i;
for(i = myvector.begin(); i != myvector.end(); i++)
(*i) = 1;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 12 / 51

Standard Template Library

Iterators

An iterator is an object which points to an element of a container.
You can ask a container for an iterator and then use it to navigate through
the data set

Usage example

#include <vector>
...
vector<int> myvector;
vector<int>::iterator i;
for(i = myvector.begin(); i != myvector.end(); i++)
(*i) = 1;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 12 / 51

Standard Template Library

Iterators

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 13 / 51

Standard Template Library

Deque

A Deque is a container which looks like a vector, but it has better
performances.
They both support random access to elements (with the operator “[]”),
but the deque also supports constant time insertion and removal of
elements at the beginning and at the end of the sequence.

Usage example

#include <deque>
...
deque<int> mydeque;
mydeque.push back(1); // [1]
mydeque.push front(2); // [2 1]
mydeque.push back(3); // [2 1 3]
mydeque.pop front(); // [1 3]
int a = mydeque.back(); // a = 3

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 14 / 51

Standard Template Library

Deque

A Deque is a container which looks like a vector, but it has better
performances.
They both support random access to elements (with the operator “[]”),
but the deque also supports constant time insertion and removal of
elements at the beginning and at the end of the sequence.

Usage example

#include <deque>
...
deque<int> mydeque;
mydeque.push back(1); // [1]
mydeque.push front(2); // [2 1]
mydeque.push back(3); // [2 1 3]
mydeque.pop front(); // [1 3]
int a = mydeque.back(); // a = 3

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 14 / 51

Standard Template Library

Deque

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 15 / 51

Standard Template Library

Map

A Map is an associative container which lets you refer to an element using
a key.
As always, you can set both the type of the data and the type of the key.
Since the keys uniquely identify the elements, there cannot be multiple
elements with the same key.

Usage example

#include <map>
...
map<string, int> ages;
map<string, int>::iterator i;
ages[‘‘John’’] = 9;
ages[‘‘Tom’’] = 30;
i = ages.find(‘‘Matt’’);
for(i = ages.begin(); i!=ages.end(); i++)
cout << (*i).first << (*i).second;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 16 / 51

Standard Template Library

Map

A Map is an associative container which lets you refer to an element using
a key.
As always, you can set both the type of the data and the type of the key.
Since the keys uniquely identify the elements, there cannot be multiple
elements with the same key.

Usage example

#include <map>
...
map<string, int> ages;
map<string, int>::iterator i;
ages[‘‘John’’] = 9;
ages[‘‘Tom’’] = 30;
i = ages.find(‘‘Matt’’);
for(i = ages.begin(); i!=ages.end(); i++)
cout << (*i).first << (*i).second;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 16 / 51

Standard Template Library

Algorithms

The STL also provides many useful algorithms, especially designed to be
used on STL collections.
Most of them are applied to a couple of iterators: the beginning() end the
end() iterators of the collection (or a subset of it).

They includes:

find

count

reverse

unique

sort

merge

min and max

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 17 / 51

Standard Template Library

Algorithms

The STL also provides many useful algorithms, especially designed to be
used on STL collections.
Most of them are applied to a couple of iterators: the beginning() end the
end() iterators of the collection (or a subset of it).
They includes:

find

count

reverse

unique

sort

merge

min and max

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 17 / 51

Standard Template Library

Algorithms

Usage example

#include <vector>
#include <algorithm>
...
vector<int> v;
//fill the vector in some way
sort(v.begin(), v.end());

unique(v.begin(), v.end());
vector<int>::iterator i;
i = find(v.begin(), v.end(), value);
if (binary search(v.begin(), v.end(), value))
cout << ‘‘found!’’;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 18 / 51

Standard Template Library

Algorithms

Usage example

#include <vector>
#include <algorithm>
...
vector<int> v;
//fill the vector in some way
sort(v.begin(), v.end());
unique(v.begin(), v.end());

vector<int>::iterator i;
i = find(v.begin(), v.end(), value);
if (binary search(v.begin(), v.end(), value))
cout << ‘‘found!’’;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 18 / 51

Standard Template Library

Algorithms

Usage example

#include <vector>
#include <algorithm>
...
vector<int> v;
//fill the vector in some way
sort(v.begin(), v.end());
unique(v.begin(), v.end());
vector<int>::iterator i;
i = find(v.begin(), v.end(), value);

if (binary search(v.begin(), v.end(), value))
cout << ‘‘found!’’;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 18 / 51

Standard Template Library

Algorithms

Usage example

#include <vector>
#include <algorithm>
...
vector<int> v;
//fill the vector in some way
sort(v.begin(), v.end());
unique(v.begin(), v.end());
vector<int>::iterator i;
i = find(v.begin(), v.end(), value);
if (binary search(v.begin(), v.end(), value))
cout << ‘‘found!’’;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 18 / 51

Standard Template Library

Player/Stage example

In this example, we’ll use STL containers to store Player map data

#include <set>
#include <algorithm>
#include <libplayerc++/playerc++.h>
...
MapProxy mp = new MapProxy(robot,0);
set< pair< int, int > > s;
pair< int, int> p;
for (int j = 0; j < mp->GetHeight(); j++)
for (int i = 0; i < mp->GetWidth(); i++){
p.first = mp->GetCellIndex(i, j);
p.second = mp->GetCellIndex(i+1, j);
s.insert(p);
}

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 19 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Sky is the limit

Being all objects dynamically allocated, you don’t have to worry about
memory. So you can nest all these data structure as much as you want.

map < pair< string , int>, pair< vector< vector<int> >,
list<double> > > hugedatastructure;

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 20 / 51

Standard Template Library

Notes and References

When you use the STL always put this line into your C++ code

using namespace std;

to tell the compiler you are using the standard namespace.

Here are some useful websites where you can find further information:

www.sgi.com/tech/stl/ Complete reference of the STL

www.cppreference.com/wiki/stl/start Another good reference

www.cs.brown.edu/ jak/proglang/cpp/stltut/tut.html A brief tutorial

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 21 / 51

http://www.sgi.com/tech/stl/
http://www.cppreference.com/wiki/stl/start
http://www.cs.brown.edu/~jak/proglang/cpp/stltut/tut.html

Standard Template Library

Notes and References

When you use the STL always put this line into your C++ code

using namespace std;

to tell the compiler you are using the standard namespace.

Here are some useful websites where you can find further information:

www.sgi.com/tech/stl/ Complete reference of the STL

www.cppreference.com/wiki/stl/start Another good reference

www.cs.brown.edu/ jak/proglang/cpp/stltut/tut.html A brief tutorial

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 21 / 51

http://www.sgi.com/tech/stl/
http://www.cppreference.com/wiki/stl/start
http://www.cs.brown.edu/~jak/proglang/cpp/stltut/tut.html

Connecting to the real robots

Outline

1 Compiling

2 Standard Template Library

3 Connecting to the real robots

4 Simulating a wireless network

5 Solving the multi-hop dynamic routing problem

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 22 / 51

Connecting to the real robots

Connecting to the real robots

Connect your laptop to the wireless network (called ”motionlab”)

On linux

sudo iwconfig wlan0 essid "motionlab"
sudo dhclient wlan0

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 23 / 51

Connecting to the real robots

Connecting to the real robots

Log in the robot operating system

On linux, mac, windows

ssh erratic@192.168.1.12

username: erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 24 / 51

Connecting to the real robots

Connecting to the real robots

Log in the robot operating system

On linux, mac, windows

ssh erratic@192.168.1.12

username: erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 24 / 51

Connecting to the real robots

Connecting to the real robots

Log in the robot operating system

On linux, mac, windows

ssh erratic@192.168.1.12

username: erratic

hostname or ip address: 192.168.1.12

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 24 / 51

Connecting to the real robots

Connecting to the real robots
advanced options

Log in the robot operating system

On linux, mac, windows

ssh erratic@pod

username: erratic

hostname or ip address: pod
To use the hostname you have to manually add it to the local
hostname list on your pc , since there the DNS does not provide them

on linux and mac

sudo echo "192.168.1.12 pod" >> /etc/hosts

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 24 / 51

Connecting to the real robots

Connecting to the real robots
advanced options

Log in the robot operating system

On linux, mac, windows

ssh -Y erratic@pod

username: erratic

hostname or ip address: pod
To use the hostname you have to manually add it to the local
hostname list on your pc , since there the DNS does not provide them

on linux and mac

sudo echo "192.168.1.12 pod" >> /etc/hosts

use this option if you want to activate graphics forwarding (e.g. if you
want to use directly the stereo camera)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 24 / 51

Connecting to the real robots

Connecting to the real robots
Activating Player Server

Now that you have logged in the robot, execute:

On the robot shell

player ~/player/config/erratic.cfg

This command activates the Player server on the robot (listening on the
default port 6665, on the wireless interface).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 25 / 51

Connecting to the real robots

Checking the connection

To check that everything is working as it should, try a simple connection
to the robot

Command line

user@host$ playerv -h pod -p 6665

PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 26 / 51

Connecting to the real robots

Checking the connection

To check that everything is working as it should, try a simple connection
to the robot

Command line

user@host$ playerv -h pod -p 6665
PlayerViewer 2.0.5
Connecting to [pod:6665]
calling connect
done

Available devices: pod:6665
position2d:0 stage ready
laser:0 stage ready

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 26 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).

To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).
To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).
To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).
To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).
To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other

You’ll probably want to connect the robot to the player server that’s
running on your laptop (e.g, if you’re using both simulated and real robots
at the same time).
To do that, you have three possible choices:

telling Player on localhost to connect to the robot

using the passthrough driver

using port forwarding

We’ll go briefly through them

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 27 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

In this example, we run the vfh driver (i.e. obstacle avoidance) on
localhost, telling Player to get the position and the laser readings from
pod.

Player configuration

driver
(
name "vfh"
provides ["localhost:6665:position2d:1"]
requires ["pod:6665:position2d:0" "pod:6665:laser:0"]

)

Player connects to pod to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 28 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

In this example, we run the vfh driver (i.e. obstacle avoidance) on
localhost, telling Player to get the position and the laser readings from
pod.

Player configuration

driver
(
name "vfh"
provides ["localhost:6665:position2d:1"]
requires ["pod:6665:position2d:0" "pod:6665:laser:0"]

)

Player connects to pod to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 28 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

In this example, we run the vfh driver (i.e. obstacle avoidance) on
localhost, telling Player to get the position and the laser readings from
pod.

Player configuration

driver
(
name "vfh"
provides ["localhost:6665:position2d:1"]
requires ["pod:6665:position2d:0" "pod:6665:laser:0"]

)

Player connects to pod to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 28 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 29 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

Pros:

It’s easy: just a change in the configuration file

Cons:

It’s transparent: if a client wants to read the laser, it will have to
connect directly to the robot.

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 30 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

Pros:

It’s easy: just a change in the configuration file

Cons:

It’s transparent: if a client wants to read the laser, it will have to
connect directly to the robot.

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 30 / 51

Connecting to the real robots

Players that talk to each other
telling Player on localhost to connect to the robot

Pros:

It’s easy: just a change in the configuration file

Cons:

It’s transparent: if a client wants to read the laser, it will have to
connect directly to the robot.

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 30 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

In the last version of Player the developer have implemented a driver
that works as a proxy: the passthrough driver

Player configuration

driver (
name "passthrough"
provides ["position2d:0"]
requires ["position2d:0"]
remote host "pod"
remote port 6665
remote index 0
access "a"
)

Player connects to pod to get the data

(in read-write mode)

Player provides the same driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 31 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

In the last version of Player the developer have implemented a driver
that works as a proxy: the passthrough driver

Player configuration

driver (
name "passthrough"
provides ["position2d:0"]
requires ["position2d:0"]
remote host "pod"
remote port 6665
remote index 0
access "a"
)

Player connects to pod to get the data

(in read-write mode)

Player provides the same driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 31 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

In the last version of Player the developer have implemented a driver
that works as a proxy: the passthrough driver

Player configuration

driver (
name "passthrough"
provides ["position2d:0"]
requires ["position2d:0"]
remote host "pod"
remote port 6665
remote index 0
access "a"
)

Player connects to pod to get the data (in read-write mode)

Player provides the same driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 31 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

In the last version of Player the developer have implemented a driver
that works as a proxy: the passthrough driver

Player configuration

driver (
name "passthrough"
provides ["position2d:0"]
requires ["position2d:0"]
remote host "pod"
remote port 6665
remote index 0
access "a"
)

Player connects to pod to get the data

(in read-write mode)

Player provides the same driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 31 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 32 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

Pros:

It’s easy: just a change in the configuration file

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

Cons:

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 33 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

Pros:

It’s easy: just a change in the configuration file

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

Cons:

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 33 / 51

Connecting to the real robots

Players that talk to each other
using the passthrough driver

Pros:

It’s easy: just a change in the configuration file

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

Cons:

It’s inconvenient: you have to change the configuration file each time
you switch from real robot to the simulated one (or keep two
synchronized files, and that could be error prone)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 33 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

This method requires a little more setup time, but it’s a good way to avoid
the need to change the configuration file in order to switch from
simulation to the real robots and vice-versa.
The configuration of the localhost is always this:

Player configuration

driver (
name "vfh"
provides ["6665:position2d:1"]
requires ["6666:position2d:0" "6666:laser:0"]

)

Player connects to localhost on port 6666 to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 34 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

This method requires a little more setup time, but it’s a good way to avoid
the need to change the configuration file in order to switch from
simulation to the real robots and vice-versa.
The configuration of the localhost is always this:

Player configuration

driver (
name "vfh"
provides ["6665:position2d:1"]
requires ["6666:position2d:0" "6666:laser:0"]

)

Player connects to localhost on port 6666 to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 34 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

This method requires a little more setup time, but it’s a good way to avoid
the need to change the configuration file in order to switch from
simulation to the real robots and vice-versa.
The configuration of the localhost is always this:

Player configuration

driver (
name "vfh"
provides ["6665:position2d:1"]
requires ["6666:position2d:0" "6666:laser:0"]

)

Player connects to localhost on port 6666 to get the data

Player provides the vfh driver on localhost

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 34 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Player configuration

driver (
name "vfh"
provides ["6665:position2d:1"]
requires ["6666:position2d:0" "6666:laser:0"]

)

To simulate the robot, we just start another player with this configuration
file:

Player configuration

driver (
name "stage"
model "robot1"
provides ["6666:position2d:0" "6666:laser:0]
)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 34 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.

This can be done through port forwarding

.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

When we’re dealing with a real robot, we would like to proxy the robot
Player port on localhost:6666.
This can be done through port forwarding.

Console command

user@host$ ssh -N -L 6666:pod:6665 erratic@pod

Forwarding

from port 6665 on host pod

to localhost port 6666

without asking for a shell

and logging in host pod with user erratic

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 35 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Simulating

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 36 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Working with hardware

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 36 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Pros:

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

It’s convenient: the Player configuration file does not change

Cons:

It’s not so easy: it needs a proper setup

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 37 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Pros:

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

It’s convenient: the Player configuration file does not change

Cons:

It’s not so easy: it needs a proper setup

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 37 / 51

Connecting to the real robots

Players that talk to each other
using port forwarding

Pros:

It’s opaque: the client doesn’t know if the robot is real or not: it
always connects to localhost

It’s convenient: the Player configuration file does not change

Cons:

It’s not so easy: it needs a proper setup

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 37 / 51

Simulating a wireless network

Outline

1 Compiling

2 Standard Template Library

3 Connecting to the real robots

4 Simulating a wireless network

5 Solving the multi-hop dynamic routing problem

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 38 / 51

Simulating a wireless network

Simulating the wireless

Player does not have a built-in network simulation (it does have a wifi
driver, but that provides only signal strength).
In order to work at the same time with simulated and real robots, we
developed a server that simulates wireless range-limited communication,
and its client-side library.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 39 / 51

Simulating a wireless network

Simulating the wireless
Server

The server is easy to start:

Command line

./wireless <listening ip> <listening port> <player port>

The server uses the tcp protocol (i.e. the communication is reliable – so
you don’t have to deal with reordering the packets, packet losses..)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 40 / 51

Simulating a wireless network

Simulating the wireless
The graphical interface

Failed communication

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 41 / 51

Simulating a wireless network

Simulating the wireless
The graphical interface

Successful communication

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 41 / 51

Simulating a wireless network

Simulating the wireless
Server

To configure the server, just have a look at the file wireless_config.h:

#define WIRELESS_RANGE 2: communication radius in meters

#define GRAPHICS_ACTIVE 1: the server will draw the
communication radii of each robot upon communication (in blue if
the communication has taken place, in red if it has failed)

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 42 / 51

Simulating a wireless network

Simulating the wireless
Client - sending

This is how you send a message:

C++ code

w i r e l e s s c l i e n t . w r i t e t o (dest , ” h i ”) ;

Destination can be:

a robot nickname

”all” for broadcasting

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 43 / 51

Simulating a wireless network

Simulating the wireless
Client - receiving

This is how you check if there is a message, and receive it:

C++ code

i f (w i r e l e s s c l i e n t −>receive(b u f f e r) > 0) {
p r i n t f (” message r e c e i v e d : %s ” , b u f f e r) ;

} e l s e {
p r i n t f (” no message ”) ;

}

The receive () function is non blocking (there is a thread in the client
library dedicated to handling the tcp socket, so you don’t have to).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 44 / 51

Solving the multi-hop dynamic routing problem

Outline

1 Compiling

2 Standard Template Library

3 Connecting to the real robots

4 Simulating a wireless network

5 Solving the multi-hop dynamic routing problem

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 45 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms

If you’re deploying an algorithm implementation on real robot that have to
travel far away or in different rooms, you’ll have to deal with range-limited
communication.

A way to ease up that problem is to use a routing protocol, so to obtain a
wireless multi-hop ad-hoc network. You’ll also want your routing to be
dynamic, since your robots are going to move.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 46 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms

If you’re deploying an algorithm implementation on real robot that have to
travel far away or in different rooms, you’ll have to deal with range-limited
communication.
A way to ease up that problem is to use a routing protocol, so to obtain a
wireless multi-hop ad-hoc network. You’ll also want your routing to be
dynamic, since your robots are going to move.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 46 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms
Example

RED 67−→ BLUE

Suppose that node Red wants to send a message to node Blue. Sadly, the
nodes are not 1-hop neighbours, so it can’t send it the message directly

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 47 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms
Example

RED 7−→ GREEN1

Red then decide to forward the message to the only node in its range. Red
knows that that robot is in contact with blue because the routing table

built by the routing software tell it so.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 47 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms
Example

GREEN1 7−→ GREEN2

Green1 decides to forward the packet to Green2 because its instance of the
routing algorithm (that, being proactive, was flooding the network to test
all the possible connections it could make) tells it that that route is more

reliable

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 47 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms
Example

GREEN2 67−→ BLUE

Finally, the packet reaches its destination

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 47 / 51

Solving the multi-hop dynamic routing problem

Routing algorithms

The Optimized Link State Routing Protocol (OLSR,
http://en.wikipedia.org/wiki/OLSR) is an IP routing protocol
specified in rfc3626 (http://www.ietf.org/rfc/rfc3626.txt) which
is optimized for mobile ad-hoc networks.

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 48 / 51

http://en.wikipedia.org/wiki/OLSR
http://www.ietf.org/rfc/rfc3626.txt

Solving the multi-hop dynamic routing problem

Routing algorithms

It has been implemented in two daemons, available for linux:

olsrd: http://www.olsr.org/

batmand: http://www.open-mesh.net/batman/

These daemons basically monitor each possible path throughput and
reliability, and choose the best path for each packet. The beauty of it it’s
that, since it works at networking leve l of the OSI Reference Model,
it’s completely transparent (with respect to the programmer).

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 49 / 51

http://www.olsr.org/
http://www.open-mesh.net/batman/

Solving the multi-hop dynamic routing problem

Routing algorithms

AODV is but one of the existing algorithms to solve this problem: for
example, there’s AODV, used in the ZigBee networking protocols suite.
That protocol is reactive, since it searches network paths only upon request
See https://www.open-mesh.net/batman/doc/batmand_howto.pdf
for a discussion over those algorithms

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 50 / 51

https://www.open-mesh.net/batman/doc/batmand_howto.pdf

Solving the multi-hop dynamic routing problem

The End

Dario Cazzaro, Luca Invernizzi (Motion Lab, UCSB) Introduction to Player/Stage October 16, 2008 51 / 51

	Compiling
	Standard Template Library
	Connecting to the real robots
	Simulating a wireless network
	Solving the multi-hop dynamic routing problem

