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Overview

@ Contraction metric

@ Construction of contraction metric
@ Mesh-free collocation for matrix-valued functions

@ Examples

© Verification
@ Interpolation with CPA (continuous piecewise affine) functions

@ Examples

@ Periodic orbit
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1. Contraction metric: Basin of Attraction

System of autonomous ordinary differential equations
&= flx)

1

. Ve Z

xeR", feC'(R",R") where 0 > 1, n € N.
Flow S;& := x(t), solution of (1)
Equilibrium

e equilibrium zg (f(zo) = 0),

@ basin of attraction A(zg) := {€ € R™ | S g zo} Q

Periodic orbit
@ periodic orbit Q@ = {Syz |t € [0,T)} with 2 = Sz
@ basin of attraction A(Q2) = {¢ € R™ | dist(S;&, 2) t=op 0}
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Methods to determine basin of attraction

@ Set oriented methods (cell mapping)
@ Invariant manifolds (boundary of basin of attraction)
@ Lyapunov function (distance to attractor)

e Contraction metric (distance between adjacent solutions)
[Borg 1960, Hartman & Olech 1962, Krasovskii 1963, Kravchuk,
Leonov & Ponomarenko 1992, Lohmiller & Slotine 1998, Forni &
Sepulchre 2014, Bullo 2023]
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Riemannian metric

Definition (Riemannian metric)

A matrix-valued function M € C'(R",S"*") (symmetric n x n matrices)
is called Riemannian metric if M (z) is a positive definite matrix for each
z € R™.

Note: (v, w) () = vT M (x)w defines a point-dependent scalar product
for v,w € R". M(x) = I gives Euclidean metric.

Definition (Orbital derivative)

For M € C'(R™,S™ "), the orbital derivative is defined component-wise

(M(x))ij = VMi(x) - f(x)
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Sufficient condition (with contraction metric)

e ¥ # K C R" is positively invariant, compact and connected
® Riemannian metric M € C*(R",S"*")

Df (z)T M (z) + M (x)Df (z) + M(z) < O forallz e K
Then

e Existence and uniqueness of an exponentially asymptotically stable
equilibrium xg € K

e K C A(xo) (basin of attraction)
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Converse theorem: matrix equation

Theorem (Giesl 2015/17)
Consider & = f(z), f € C*(R",R"), s > 2.
@ x( exponentially stable equilibrium
e C € C*1(A(xg),S™™™), C(x) positive definite

Then there is a unique solution M € C*~1(A(xg),S™*™") to the matrix
equation

Df ()T M (z) + M (2)Df (x) + M(z) = —C(x) for all x € A(zo).

M is Riemannian metric (in particular positive definite).

v

Proof: M(z) = [;° ¢(7,0;2)T C(S-2)¢(r,0; ) dr where ¢(t,to; x) is the
principal fundamental matrix solution of first variation equation

y = Df(Six)y
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2. Construction of contraction metric

Problem Find S € C!(K;S™*") such that
e S(x) > 0 (positive definite)
o Df(x)TS(z) 4+ S(z)Df(x) + S(z) < 0 (negative definite)

Construction methods

@ SOS (sum of squares) — Linear Matrix Inequalities
(Aylward, Parrilo & Slotine 2008, polynomial systems)

@ CPA (continuous piecewise affine) — semidefinite optimization
(Giesl & Hafstein 2013)

e RBF (Radial Basis Functions) — mesh-free collocation
(Giesl & Wendland 2018/19)

Idea
@ Solution M of matrix-valued PDE
Df(x)T M (2) + M (x)Df (x) + M(2) = —C < 0 solves problem
@ Solve PDE approximately by S
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2.1 Construction of contraction metric with mesh-free

collocation — overview

o Linear differential operator F' of order 1
F(M)(z) := Df ()" M (2) + M(z) Df (x) + M(x)
e Approximate solution M of F(M)(x) = —C < 0 (matrix-valued
PDE) by S
e K C R™ compact, X = {z1,...,2ny} C K given collocation points
@ Error estimate (from mesh-free collocation)

o—1-n/2
IF(M) = F(S) | paresmemy < 1 b i "2 1M e @gnen)

where hx g = maxycx mingex ||z — y|| fill distance of collocation
points
@ Error estimate (from formula for M)

IM = S| (rignxny < cof[F(M) — F(S)

||Loo(»y+(K);Sn><n)

@ This shows: S(x) positive definite and F'(S)(x) negative definite if
collocation points are dense enough
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Optimal recovery

Generalised interpolation in Hilbert space H
@ Ai,..., Ay € H” linearly independent functionals

@ ry,...,mm € R given

Optimal recovery: S € H such that
S|z = min{||S||mg, \i(S) =r; fori=1,..., M}

@ Solution S = Z;‘il Bjv;, v; Riesz representer of \;, 5; € R

@ Interpolation condition \;(S) = Z]]Vi1 BiXi(vj) =r; fori=1,...,M:
system of linear equations
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Optimal recovery

Generalised interpolation in Hilbert space H= H7(€;S"*"), which is a
Reproducing Kernel Hilbert Space: special form of Riesz representer

Functionals

o F: Ho(Q;8™") — H7(Q;S™*") differential operator of order 1:
F(M) = Df(x)"M(x) + M(x)Df(x) + M(z)

o X ={x1,...,xzn} C Q collocation points

o A\ (M) =T F(M)(z)e;, 1<i<j<n k=1,...,N linearly
independent functionals

, . . 1
@ solve system of linear equations of size N%
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2.2 Examples

Linear example

T = —x+y
= x—2y

o X ={(z,y) e R?| 2,y = —4,-3.8,-3.6,...,0,0.2,...,4} with
N = 1681 points

@ linear system with 5043 x 5043 matrix

e Solution of F(M)(z) =—1is M(x) = (

N|—= =
NI— NI
N——
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Linear example
4 5
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Left: CoIIocatlon p0|hts tr F(S)(x,y) = Oﬁ(rAedj aznd1 dzat F(ZS)B(JU4 ys) =0

(green).
Right: Curve of equal distance with respect to metric S(z):

{x+v]|(v—2)TS(x)(v—12) = const}
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Left: Collocation points; F'(S)(z,y) < 0 (red) and S(x,y) > 0 (blue)
Right: Curve of equal distance with respect to metric S(z,y)
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Perturbed van der Pol

e=20.1

Left: Collocation points; F/(S)(z,y) < 0 (red) and S(z,y) > 0 (blue)
Right: Collocation points; F¢(S)(z,y) < 0 (red) and S(z,y) > 0 (blue)
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Problem: how to verify F'(S)(z) <0 and S(z) =07
@ Error estimates do not provide explicit bound
@ and hold only in the (unknown) basin of attraction

Idea:

@ interpolate metric by continuous piecewise affine (CPA) metric on
triangulation

@ Taylor-type estimates at vertices ensure rigorous verification of
conditions
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3.1 CPA - verification of contraction metric

Triangulation

e Simplicial complex (triangulation) is a collection 7 of simplices
S = co(xo, z1,. .., Zn)
o Vertex set V7, e.g. pZ™
@ Largest distance of vertices in a simplex A,
Examples of triangulations
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erpolation of (matrix-valued) function

CPA interpolation P of S:
i) P(x):= S(x) for every vertex = € V1

ii) P;j is affine on every simplex S, € T

Values at vertices CPA interpolation
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CPA estimates: constraints

@ Positive definiteness of P: P(xy) > ol VY € Vr

@ Upper bound on P: P(zy) < C,1 Va, € V1

© Bound on the derivative of P: VS, € T,i,5 € {1,...,n}
vaij Sell =Dy

© Negative definiteness of contraction condition: for each simplex
S, =co(xg,...,xy) €T,V vertex x of S :

—eol = P(xp)Df(xk) + Df(x)" Plap)
+(VFijlss - F(@r))ij=t2, nthiE,1

E, :=n%*1+4yn)B2,D, +2n3Bs,C,
(B.,: bounds on 2nd and 3rd derivatives of f)

If constraints are satisfied, then P is contraction metric.
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Converse result

collocation points triangulation
— =

S
RBF approximation CPA interpolation

Theorem

-~
|

@ collocation points sufficiently dense and
e triangulation sufficiently fine
then
o CPA interpolation P of
@ RBF approximation S of
@ the solution M of PDE
satisfies the constraints.
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3.2 Examples: Van der Pol

Y

Black: 1926 collocation points Green: equilibrium
Blue: P(x) not positive definite Red: Constraint 4 not satisfied
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Example: Van der Pol

Y

Dark green: positively invariant set (using Lyapunov-like function)
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3-d example:

Green: Constraint 4 not satisfied Red: positively invariant set
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4. Contraction criterion for periodic orbit

Differences to equilibrium

@ No contraction in direction of flow

@ Orbital stability requires synchronisation of time of solutions
such that difference vector perpendicular to f

(Sriyy — Six) f(Sex) = 0

Sty

St.%‘
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Sufficient condition (with Riemannian metric)

Theorem (Giesl 2021)

e I # K C R"™ positively invariant, compact, connected, no equilibrium
@ Riemannian metric M € C*(R"™, S™*™)

o P, :=1— f(@)f @) projection onto hyperplane L f(x)(# 0)

II.f ()]
LM(z) = Df(a)"M(x)+ M(x)Df(x) + M(x)
M(x)f (@) f(2)"(Df(z) + Df(x)T)
7@
_(Df(@) + Df(@))f (@) f (@) M(x)
7@
LM(z) = -P'B(@)P,

with B(x) > 0
Then: existence and uniqueness of exponentially asymptotically stable
periodic orbit Q@ C K and K C A(Q) (basin of attraction)

™7 ™ =
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Converse theorem: matrix equation

Theorem (Giesl 2021)
Consider & = f(z), f € C7(R",R"), 0 > 2.
o ) exponentially stable periodic orbit
e B e CHA(Q),S™™), B(z) = 0
o & € A(Q), cp> 0
Then there is a unique solution M € C°~1(A(Q),S™") to

LM(z) = —PIB(z)P,=:—C() for all z € A(Q)
with f(&)" M (&) f(&%) = coll f(&)I*

M is Riemannian metric (in particular positive definite).

Proof: M(z) = [;° ¢(7,0;2)" C(S-2)p(7,0;x) dr+co f (x) f(x)" where
o(t,to; x) is prlnC|pa| fundamental matrix solution of first variation
equation ¢ = Df (Six)y
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(1l — 2% —9?) —y+0.1yz
y(1—z?+y?) +x

—zZ+xy

Black: 3256 collocation points Green: positively invariant set
Blue: S not positive definite Red: LS not negative definite
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e Contraction metric (local property, distance between adjacent
trajectories)

Determination of equilibrium/periodic orbit and its basin of attraction
No information about attractor needed
Robust with respect to perturbations

Converse theorems, characterised by linear matrix-valued PDE

Numerical construction by solving matrix-valued PDE with mesh-free
collocation

@ Verification by interpolating with CPA metric and checking
inequalities
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