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Lessons from Gian-Carlo Rota

1 Every lecture should make only one main point.
2 Never run overtime.
3 Relate to your audience.
4 Give them something to take home.
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Main point

Compound matrices play a significant role in systems and control theory.
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k -minors of a matrix

Let A ∈ Rn×m. Fix k ∈ {1, . . . ,min{n,m}}. Fix indices:

1 ≤ i1 < i2 < · · · < ik ≤ n,
1 ≤ j1 < j2 < · · · < jk ≤ m.

The corresponding k-submatrix of A is

B =


A(i1, j1) A(i1, j2) . . . A(i1, jk )
A(i2, j1) A(i2, j2) . . . A(i2, jk )

...
A(ik , j1) A(ik , j2) . . . A(ik , jk )

 .

A corresponding k-minor is
det(B).
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k -minors of a matrix

Let A ∈ Rn×m. Fix k ∈ {1, . . . ,min{n,m}}. Fix indices:

1 ≤ i1 < i2 < · · · < ik ≤ n,
1 ≤ j1 < j2 < · · · < jk ≤ m.

A =


A(1, 1) A(1, 2) . . . A(1,m)
A(2, 1) A(2, 2) . . . A(2,m)

...
A(n, 1) A(n, 2) . . . A(n,m)

 .

The number of k -minors is (
n
k

)
×
(

m
k

)
.
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k -multiplicative compound of a matrix

Definition

The k multiplicative compound of a matrix A ∈ Rn×m is a matrix A(k) ∈ R(
n
k)×(

m
k )

that collects all the k -minors of A (in a lexicographic ordering).

Note A(1) = A. If A ∈ Rn×n then A(n) = det(A).

A =

1 2 3
4 5 6
7 8 9

 =⇒ A(2) =


det(

[
1 2
4 5

]
) det(

[
1 3
4 6

]
) det(

[
2 3
5 6

]
)

...

det(
[
4 7
5 8

]
) det(

[
4 6
7 9

]
) det(

[
5 6
8 9

]
)

 .
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k -multiplicative compound of a diagonal matrix

Definition

The k multiplicative compound of a matrix A ∈ Rn×m is a matrix A(k) ∈ R(
n
k)×(

m
k )

that collects all the k -minors of A (in a lexicographic ordering).

A =

2 0 0
0 3 0
0 0 4

 =⇒ A(2) =


det(

[
2 0
0 3

]
) det(

[
2 0
0 0

]
) det(

[
0 0
3 0

]
)

...

det(
[
0 3
0 0

]
) det(

[
0 0
0 4

]
) det(

[
3 0
0 4

]
)

 =

6 0 0
0 8 0
0 0 12

 .

Eigenvalues of A: 2, 3, and 4. Eigenvalues of A(2): 2 ∗ 3, 2 ∗ 4, and 3 ∗ 4.
Michael Margaliot Compound Matrices and Dynamical Systems 6 / 32



Properties of the k -multiplicative matrix

Theorem (Cauchy-Binet)

Let A ∈ Rn×m, B ∈ Rm×p. Fix k ∈ {1, . . . ,min{n,m, p}}. Then

(AB)(k) = A(k)B(k).

For k = 1, this becomes AB = AB.

For A,B ∈ Rn×n and k = n, this becomes det(AB) = det(A) det(B).

The Cauchy-Binet theorem justifies the terminology “multiplicative compound”.
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Inverse of the k -multiplicative matrix

Theorem (Cauchy-Binet)

Let A,B ∈ Rn×n. Fix k ∈ {1, . . . , n}. Then

(AB)(k) = A(k)B(k).

Let Ip denote the p × p identity matrix. Suppose that A ∈ Rn×n is non-singular.
Then In = AA−1, so

(In)(k) = (AA−1)(k) = A(k)(A−1)(k),

that is,
I(n

k)
= A(k)(A−1)(k),

so (A(k))−1 = (A−1)(k).
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Spectral properties of the k -multiplicative compound

Theorem

Denote the eigenvalues of A ∈ Rn×n by: λ1, . . . , λn. Then the eigenvalues of A(k)

are the
(n

k

)
products:

λi1λi2 . . . λik , with 1 ≤ i1 < i2 < · · · < ik ≤ n.

For k = n, this gives A(n) = det(A) = λ1 . . . λn.

Proof.

Suppose that D := TAT−1 is diagonal. Then

D(k) = (TAT−1)(k) = T (k)A(k)(T−1)(k) = T (k)A(k)(T (k))−1.

■Michael Margaliot Compound Matrices and Dynamical Systems 9 / 32



Applications of multiplicative compounds
Definition

A matrix A ∈ Rn×n is called totally positive (TP) if all its minors are positive.

1961 2009 2011
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Applications of multiplicative compounds
Definition

A matrix A ∈ Rn×n is called totally positive (TP) if all its minors are positive.

For example, consider A =

[
1 2
3 8

]
.

Its 1-minors (i.e., entries) are positive.
It has a single 2-minor: det(A) = 2, so it is TP.

Theorem (Gantmacher and Krein)

If A ∈ Rn×n is TP then all its eigenvalues are real, positive, and simple.
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Applications of multiplicative compounds

Theorem (Gantmacher and Krein)

If A ∈ Rn×n is TP then all its eigenvalues are real, positive, and simple.

Proof.

Since 1-minors are positive, the Perron Theorem implies that there exists a positive
eigenvalue λ1 such that

λ1 > |λj | for all j ̸= 1. (1)

Since A(2) is positive,
λ1λ2 > |λjλℓ| for all (j , ℓ) ̸= (1, 2).

so λ2 is real and positive, and λ1 > λ2 > |λ3|. Continue to A(3), ... ■
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Applications of multiplicative compounds
Definition

Fix x1, . . . , xk ∈ Rn. The parallelotope generated by x1, . . . , xk (and the origin) is

P(x1, . . . , xk ) := {
k∑

i=1

rix i : ri ∈ [0, 1]}.

x1

x2

x3

0

P(x1, x2, x3)
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Applications of multiplicative compounds
Definition

Fix x1, . . . , xk ∈ Rn. The parallelotope generated by x1, . . . , xk (and the origin) is

P(x1, . . . , xk ) := {
k∑

i=1

rix i : ri ∈ [0, 1]}.

Theorem (Gantmacher, 1960)

Let A :=
[
x1 . . . xk

]
∈ Rn×k . Then the volume of P(x1, . . . , xk ) is equal to

|
[
x1 . . . xk

](k) |2.
Note that

[
x1 . . . xk

](k) ∈ R(
n
k)×(

k
k).
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Applications of multiplicative compounds
Theorem (Gantmacher, 1960)

Let A :=
[
x1 . . . xk

]
∈ Rn×k . Then the volume of P(x1, . . . , xk ) is equal to

|
[
x1 . . . xk

](k) |2.
For k = n, this gives

volume(P(x1, . . . , xn)) = |
[
x1 . . . xn

](n) |2 = | det(
[
x1 . . . xn

]
)|.
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Compound matrices in Linear Ordinary Differential
Equations

Consider the ODE:
ẋ(t) = A(t)x(t), x(0) = x0.

The solution is
x(t , x0) = Φ(t)x0,

where Φ(t) is the transition matrix from time 0 to time t . The transition matrix is the
solution of the matrix linear ODE:

Φ̇(t) = A(t)Φ(t), Φ(0) = In.

Question: what can we say about (Φ(t))(k)?
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Compound matrices in Linear ODEs

Consider the ODE:
ẋ(t) = A(t)x(t), x(0) = x0.

Fix k initial conditions a1, . . . , ak ∈ Rn. Then[
x(t , a1) . . . x(t , ak )

](k)
describes the evolution in time of the parallelotope generated by a1, . . . , ak . Note that[

x(t , a1) . . . x(t , ak )
](k)

=
[
Φ(t)a1 . . . Φ(t)ak

](k)
=
[
Φ(t)

[
a1 . . . ak

]](k)
= (Φ(t))(k)

[
a1 . . . ak

](k)
.

Thus, (Φ(t))(k) describes the evolution of the k -parallelotopes under the ODE.
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Compound matrices in Linear ODEs

The transition matrix satisfies Φ̇(t) = A(t)Φ(t), with Φ(0) = In. We would like to study the
evolution of (Φ(t))(k). What is d

dt (Φ(t))
(k)?

(Φ(t + ε))(k) − (Φ(t))(k) ≈ (Φ(t) + εΦ̇(t))(k) − (Φ(t))(k)

= (Φ(t) + εA(t)Φ(t))(k) − (Φ(t))(k)

= ((In + εA(t))Φ(t))(k) − (Φ(t))(k)

= (In + εA(t))(k)(Φ(t))(k) − (Φ(t))(k)

=
(
(In + εA(t))(k) − I(n

k)

)
(Φ(t))(k).

Define the k additive compound of A ∈ Rn×n by

A[k ] := lim
ε→0

(In + εA)(k) − I(n
k)

ε
.

Michael Margaliot Compound Matrices and Dynamical Systems 18 / 32



Compound matrices in Linear ODEs

The transition matrix satisfies

Φ̇(t) = A(t)Φ(t), Φ(0) = In,

and
d
dt

(Φ(t))(k) = (A(t))[k ](Φ(t))(k), (Φ(0))(k) = I(n
k)
.

Thus, the evolution of k -dimensional parallelotopes also follows a linear ODE with the
k additive compound matrix (A(t))[k ].
For k = n, this becomes

d
dt

det(Φ(t)) = trace(A(t)) det(Φ(t)).
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Properties of the k additive compound
Theorem

Denote the eigenvalues of A ∈ Rn×n by: λ1, . . . , λn. Then the eigenvalues of A[k ]

are the
(n

k

)
sums:

λi1 + λi2 + · · ·+ λik , with 1 ≤ i1 < i2 < · · · < ik ≤ n.

For k = n, this gives A[n] = λ1 + · · ·+ λn = trace(A).

Theorem

Let A,B ∈ Rn×n. Then (A + B)[k ] = A[k ] + B[k ].

This justifies the terminology additive compound.
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Applications to nonlinear systems

Consider the nonlinear system:
ẋ(t) = f (x(t)). (2)

The first step is to derive a linear system that provides useful information on (2). Fix two
initial conditions a, b ∈ Rn, and let x(t , a), x(t , b) denote the corresponding solutions at
time t . Let z(t) := x(t , a)− x(t , b). Then

ż(t) =

(∫ 1

0

∂

∂x
f (rx(t , a) + (1 − r)x(t , b))dr

)
z(t).

This variational equation is a linear ODE. Let J := ∂
∂x f .

Then J [k ] describes the evolution of k -dimensional parallelotopes under the variational
equation.

Michael Margaliot Compound Matrices and Dynamical Systems 21 / 32



k generalizations of nonlinear dynamical systems
using k compounds

Consider the nonlinear system:
ẋ(t) = f (x(t)).

Let J(x) := ∂
∂x f (x).

A generalization principle

Suppose that the system satisfies some property ⇐⇒ J(x) satisfies a condition p.
We say that the system satisfies k-property ⇐⇒ (J(x))[k ] satisfies condition p.

This is meaningful because:
1 For k = 1, we have J [k ] = J, so we obtain the original property,
2 J [k ] has a clear geometric interpretation.
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From contraction to k -contraction

The system ẋ = f (x) is called contractive if for any two initial conditions a, b the
corresponding solutions approach each other at an exponential rate:

|x(t , a)− x(t , b)| ≤ exp(−ηt)|a − b|, for all t ≥ 0,

where η > 0.

Implications:

If the system admits an equilibrium e then e is globally exponentially stable,
If the system admits more than a single equilibrium point then it is not contractive,
If ẋ = f (t , x) and f is T -periodic then the system admits a unique globally
exponentially stable T -periodic solution γ(t), t ∈ [0,T ).

Michael Margaliot Compound Matrices and Dynamical Systems 23 / 32



From contraction to k contraction

Consider the nonlinear system ẋ = f (x).
There is a simple sufficient condition for contraction. For a norm | · | : Rn → R+ and a
matrix A ∈ Rn×n, define the induced matrix norm

∥A∥ := max
|x |=1

|Ax |,

and the induced matrix measure

μ(A) := lim
ε↓0

∥In + εA∥ − 1
ε

.

Theorem

If μ(J(x)) ≤ −η < 0 for all x then the nonlinear system is contractive.

Contraction theory has found numerous applications in robotics, multi-agent systems,
dynamic neural network models, systems biology, and more.
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From contraction to k contraction

Consider the nonlinear system ẋ = f (x).

μ(J(x)) ≤ −η < 0 – the system is contractive
μ((J(x))[k ]) ≤ −η < 0 – the system is k -contractive

k -contraction implies that along the variational equation k -dimensional parallelotopes
converge to zero at an exponential rate.

Michael Margaliot Compound Matrices and Dynamical Systems 25 / 32



From contraction to 2-contraction

Theorem (Muldowney and Li)

If the time-invariant system ẋ(t) = f (x(t)) is 2-contractive then any bounded solution
converges to an equilibrium point.

This allows to prove a well-behaved asymptotic behaviour in nonlinear systems that
admit more than a single equilibrium, e.g., dynamical neural network models that serve as
associative memories.
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Consider
ẋ = A(t)x ,

with

A(t) =
[

−1 0
−2 cos(t) 0

]
x .

For any x(0) ∈ R2, we have

lim
t→∞

x(t , x(0)) =
[

0
x2(0)− x1(0)

]
.

Thus, there is more than a single equilibrium point, so the system is not contractive.
However, A[2](t) = trace(A(t)) ≡ −1, so the system is 2-contractive.
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Figure: Evolution of the unit square in a 2-contractive system.
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2-contraction in networked systems
Consider the nonlinear networked system

ẋ(t) = −

d1 0 . . . 0
...

0 0 . . . dn

 x(t) + W1f (W2x(t)) + v , (3)

with v ∈ Rn, W1,W2 ∈ Rn×n. Let Jf (x) := ∂
∂x f (x). Fix k ∈ {1, . . . , n}, and let

αk := k−1 min
{

di1 + · · ·+ dik | 1 ≤ i1 < · · · < ik ≤ n
}
.

Theorem (Ofir, Ovseevich, Margaliot)

If

αk > 0 and sup
x

∥Jf (W2x)∥2
2

k∑
i=1

σ2
i (W1)σ

2
i (W2) < α

2
kk

then (3) is k-contractive.

This allows to prove a well-behaved asymptotic behaviour in nonlinear systems that admit
more than a single equilibrium, e.g., dynamical neural network models that serve as
associative memories.
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Main point

Compound matrices play a significant role in systems and control theory.
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