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Disclaimer: | will forsake rigor for intuition.

Questions most welcome any time.
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Lessons from Gian-Carlo Rota

Every lecture should make only one main point.
Never run overtime.

Relate to your audience.

B Give them something to take home.
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Main point

Compound matrices play a significant role in systems and control theory.
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k-minors of a matrix

Let Ae R™™M. Fix k € {1,...,min{n, m}}. Fix indices:

1<ihi<hb<---<i<n,
1<ji<p<--<jg<m

The corresponding k-submatrix of A is

A(it, 1) Al o) .. Al jk)
Al ) Al f2) - Alizs k)
Alik. j1)  Alik,j2) - Aliks Jx)
A corresponding k-minor is
det(B).
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k-minors of a matrix

Let Ae R™™M. Fix k € {1,...,min{n, m}}. Fix indices:

1<ihi<hb<---<i<n,
1<j<fp<--<jx<m

A(1,1) A(1,2) ... A(1,m)
A A(2,1) A(2,2) ... A(2,m)
A(n,1) A(n,2) . .:. A(n,m)

The number of k-minors is
n " m
(&) = (%)
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k-multiplicative compound of a matrix

The k multiplicative compound of a matrix A € R™™ is a matrix A) e R(2)x(¥)
that collects all the k-minors of A (in a lexicographic ordering).

Note A") = A. If A c R™" then Al") = det(A).

[ [1 2] 1 3] 2 3
. det(_4 5_) det(_4 6_) det(_5 6)
Al4 5 6] — A® = :
7 8 9 (4 7] 4 6] 5 6]
_det( 5 8 ) det( 7 9 ) det( 8 9 )_
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k-multiplicative compound of a diagonal matrix

The k multiplicative compound of a matrix A € R is a matrix AK) ¢ R(2)*(¥)
that collects all the k-minors of A (in a lexicographic ordering).

i 2 0] 2 0] 0 0
5 0 0 det( 0 3_) det( 0 0_) det( 3 0_) 60 o
A{OSO]:A@) : =0 8 0.
0 0 4 0 3] 0 O] 3 0] 0 0 12
_det( 0 0 ) det( 0 4 ) det( 0 4 )_

Eigenvalues of A: 2, 3, and 4. Eigenvalues of A®): 2% 3, 2 x4, and 3 * 4.
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Properties of the k-multiplicative matrix

Theorem (Cauchy-Binet)
LetAe R™™M Be R™P. Fixk € {1,...,min{n,m,p}}. Then

(AB)K) = AlK) g(K)

For k = 1, this becomes AB = AB.
For A, B € R™™ and k = n, this becomes det(AB) = det(A) det(B).

The Cauchy-Binet theorem justifies the terminology “multiplicative compound”.
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Inverse of the k-multiplicative matrix

Theorem (Cauchy-Binet)
LetA,Be R™". Fixk € {1,...,n}. Then

(AB)(K) = AlK) g(k),

Let I, denote the p x p identity matrix. Suppose that A € R™*" is non-singular.
Then I, = AA~1, so
() = (A& = A (A1),

that is,
/(Z) = AR (AT (K),

so (A= = (A-1)(k),
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Spectral properties of the k-multiplicative compound

Denote the eigenvalues of A € R™" by: Ay, ..., A,. Then the eigenvalues of A¥)
are the (};) products:

Ay A, withl <y <p<---<ix<n.

For k = n, this gives A" = det(A) = A ... A,
Suppose that D := TAT ' is diagonal. Then
D) — (TAT_1)(k) — T(k)A(k)(T—1)(k) — T(k)A(k)(T(k))—ﬁ
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Applications of multiplicative compounds

A matrix A € R™" is called totally positive (TP) if all its minors are positive.

CAMBRIBGE TRACTS 1% MATHEMATICS

Totally Nonnegative
Matrices
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Applications of multiplicative compounds

A matrix A € R™" is called totally positive (TP) if all its minors are positive.

3 8
Its 1-minors (i.e., entries) are positive.
It has a single 2-minor: det(A) = 2, so itis TP.

For example, consider A = [1 2] .

Theorem (Gantmacher and Krein)

If A€ R™" js TP then all its eigenvalues are real, positive, and simple.
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Applications of multiplicative compounds

Theorem (Gantmacher and Krein)

If A e R™" js TP then all its eigenvalues are real, positive, and simple.

Since 1-minors are positive, the Perron Theorem implies that there exists a positive
eigenvalue A; such that

A > || forall j # 1. (1)

Since A®) is positive,
A1/-\2 > M]?lgl for all (j, f) == (1,2).

so /s, is real and positive, and Ay > A, > |23|. Continue to A®), ... ]
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Applications of multiplicative compounds

Fix x',...,xK € R". The parallelotope generated by x', ..., x* (and the origin) is

Michael Margaliot Compound Matrices and Dynamical Systems 13/32



Applications of multiplicative compounds

Fix x',...,xK € R". The parallelotope generated by x', ..., x* (and the origin) is

k
P(x",... . x*):={> nx":re0,1]}.
i=1

Theorem (Gantmacher, 1960)

LetA:= [x! ... xK] € R™k. Then the volume of P(x", ..., x¥) is equal to
NEL xk](k) 2.
Note that [ . x4]® ¢ R
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Applications of multiplicative compounds
Theorem (Gantmacher, 1960)

LetA:= [x! ... xK] € R™k. Then the volume of P(x", ..., x¥) is equal to

X' ... xK] .
For k = n, this gives

volume(P(x',... . x") = [x" ... x| =det([x' ... x7)|.
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Compound matrices in Linear Ordinary Differential
Equations

Consider the ODE:
x(t) = A(t)x(t), x(0) = xo.

The solution is
x(t, Xg) = ®(t)xo,

where ®(t) is the transition matrix from time 0 to time t. The transition matrix is the
solution of the matrix linear ODE:

o(t) = A()d(t), (0) = I

Question: what can we say about (¢(t)))?
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Compound matrices in Linear ODEs

Consider the ODE:
x(t) = A(t)x(t), x(0) = xo.

Fix k initial conditions a', ..., a* € R". Then
[x(t,a") ... x(t,ak)](k)

describes the evolution in time of the parallelotope generated by a', ..., a*. Note that

x(t,a') ... x(t,a@)" =[oma ... o))
— (o) [a" ... a]]®
= (o)W [a" ... ak](k).

Thus, (¢(1))*) describes the evolution of the k-parallelotopes under the ODE.
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Compound matrices in Linear ODEs

The transition matrix satisfies ®(t) = A(t)®(t), with ®(0) = /,. We would like to study the
evolution of (¢(1))¥). What is & (¢(t))9)?

(@t + )" — (o(t)™

ZZ

(O(t) + ed(t)) ™) — (o(t
= (o(t) + eA(t)¢(t))<k
((Ih + eAD)(t)) 0 — (¢
(In + eA(t)) 0 (o(1)

= ((hn+ A@E)™ — 1y )) (&(t)®

t)
(
Define the k additive compound of A € R"*" by
/ + EA (k) — / n
ARl -— lim U ) @)

e—0 &
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Compound matrices in Linear ODEs

The transition matrix satisfies
o(t) = A(t)o(t),  (0) = I,
and
2 (@)% = (A (e()®,  (@(0)® = )

Thus, the evolution of k-dimensional parallelotopes also follows a linear ODE with the
k additive compound matrix (A(t))!.
For k = n, this becomes

%det@b(t)) = trace(A(t)) det(d(1)).
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Properties of the k additive compound

Denote the eigenvalues of A € R™" by: A1, ..., Ax. Then the eigenvalues of Al¥]
are the (}) sums:

A,’1+7l,'2+--'+ﬂik, with1 <ih <bb<---<ix<n.

For k = n, this gives A"l = A + ... + A, = trace(A).

Let A,B € R™". Then (A + B)IKl = AlKl 1 BIAl.

This justifies the terminology additive compound.
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Applications to nonlinear systems

Consider the nonlinear system:
x(t) = f(x(1)). (@)

The first step is to derive a linear system that provides useful information on (2). Fix two
initial conditions a, b € R”, and let x(t, a), x(t, b) denote the corresponding solutions at
time t. Let z(t) := x(t,a) — x(t,b). Then

2(t) = (/01 %f(rx(t, a) + (1 - nx(t, b))dr) ().

This variational equation is a linear ODE. Let J := %f.
Then JIK! describes the evolution of k-dimensional parallelotopes under the variational
equation.
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k generalizations of nonlinear dynamical systems
using kK compounds
Consider the nonlinear system:
x(t) = f(x(t)).
Let J(x) := 2 f(x).

A generalization principle

Suppose that the system satisfies some property < J(x) satisfies a condition p.
We say that the system satisfies k-property < (J(x))! satisfies condition p.

This is meaningful because:
For k = 1, we have JIXI = J, so we obtain the original property,
JI] has a clear geometric interpretation.
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From contraction to k-contraction

The system x = f(x) is called contractive if for any two initial conditions a, b the
corresponding solutions approach each other at an exponential rate:

|x(t,a) — x(t,b)| < exp(—nt)|la— b|, forall t > 0,
where n > 0.
Implications:

m If the system admits an equilibrium e then e is globally exponentially stable,
m If the system admits more than a single equilibrium point then it is not contractive,

m If x = f(t,x) and f is T-periodic then the system admits a unique globally
exponentially stable T-periodic solution y(t), t € [0, T).
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From contraction to kK contraction

Consider the nonlinear system x = f(x).
There is a simple sufficient condition for contraction. Foranorm |- | : R" — R, and a
matrix A € R™" define the induced matrix norm

Al := max |Ax],
[x]=1

and the induced matrix measure

|+ €A — 1
A) = lim T2 7
u(A) i .

If u(J(x)) < —n < 0 for all x then the nonlinear system is contractive.

Contraction theory has found numerous applications in robotics, multi-agent systems,
dynamic neural network models, systems biology, and more.
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From contraction to kK contraction

Consider the nonlinear system x = f(x).

u(J(x)) <—n<0 - the system is contractive
u((J(x)K) < —n < 0 — the system is k-contractive

k-contraction implies that along the variational equation k-dimensional parallelotopes
converge to zero at an exponential rate.
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From contraction to 2-contraction

Theorem (Muldowney and Li)
If the time-invariant system x(t) = f(x(t)) is 2-contractive then any bounded solution
converges to an equilibrium point.

This allows to prove a well-behaved asymptotic behaviour in nonlinear systems that
admit more than a single equilibrium, e.g., dynamical neural network models that serve as

associative memories.
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Consider

with

For any x(0) € R?, we have

. 0
Am x(t,x(0)) = [XQ(O) X (0)] :

Thus, there is more than a single equilibrium point, so the system is not contractive.
However, AlPl(t) = trace(A(t)) = —1, so the system is 2-contractive.
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Z1

Figure: Evolution of the unit square in a 2-contractive system.
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2-contraction in networked systems

Consider the nonlinear networked system
d 0 ... 0
X(t) = — : x(t) + Wi (Wox(t)) + v, (3)
0 0 ... dy
with v € R", Wy, Wh € R™". Let Ji(x) := %f(x). Fix k € {1,...,n}, and let

ax =k 'min{d, +---+d [1<i<---<i<n}.

Theorem (Ofir, Ovseevich, Margaliot)

If
k
ai > 0 and sup [J(Wex)[3 S 02(Wy)o?(We) < ok
X

i=1

then (3) is k-contractive.
29/32
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Contractive System k-Contractive System
Ll
w(J)<-n<0 u(JHy < —p <o
Positive System k-Positive System
Ll
A is Metzler AWM is Metzler
Cooperative System N k-Cooperative System
J is Metzler JH is Metzler
Discrete Time Discrete Time
Diagonal Stable I k-Diagonal Stable
A is diagonally stable AWM s diagonally stable
Hankel 1-Positive System Hankel k-Positive System
P
G(z) is externally positive G™(2) is externally positive
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Main point

Compound matrices play a significant role in systems and control theory.
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