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Robust Neural Networks
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Adversarial Inputs and Lipschitz Bounds

> We want to avoid small input perturbations leading to large
input perturbations

» If a model f: x — y satisfies a Lipschitz bound:

If (%) = fa®)] < 7|2 —a®| V2?2
N ﬂ

Ayl [[Az|

then the effect of adversarial perturbations is bounded.



Direct Parameterizations
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» How to impose Lipschitz bounds during training of large
models?

» Qur approach: construct direct parameterization of models
satisfying this bound.

» a.k.a. an intrinsic parameterization of the constraint manifold.

» Learn via unconstrained optimization: SGD, ADAM, etc.



Direct Parameterization
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» Basic idea: square root representation: H = 0 < H = PP
» Problem: construct P s.t. H has the right sparsity structure:

» The blocks on the main diagonal vI,2Aq,2A4, ... are
diagonal matrices.



Robust Reinforcement Learning
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» Lipschitz-bounded control policy limits affect of attacks/errors

in state measurement.

» Parameterization of policies that guarantee closed-loop
contraction (Youla-REN)



Pong: Uniform Random Noise

Unconstrained Lipschitz-Bounded

Code and videos can be found at
https://github.com/nic-barbara/Lipschitz-RL-Atari


https://github.com/nic-barbara/Lipschitz-RL-Atari

Monotone, Bi-Lipschitz, and Polyak-tojasiewicz
Networks



Monotone and Bi-Lipschitz networks

\

pi-strongly monotone

(1, v)-Lipschitz & v-Lipschitz

» A function y = f(z), f : R® — R" is bi-Lipschitz if
pllAz| < Ayl < vl|Az|, Va2 € R

» We construct a direct parameterization (via incremental
quadratic constraints) of strongly monotone and Lipschitz
residual networks:

yi = xi + F(xi), (Ayi, Azy) > MHAmiH27



Composition Properties

-

p-strongly monotone

(1, v)-Lipschitz & v-Lipschitz

» Composition f1 o fa(x) of monotone functions is not
necessarily monotone.

» But composition two functions w1, po-strongly monotone is
(1 p2)-inverse Lipschitz.

» Orthogonal layers O(z) = Qz +b, QTQ = I:
norm-preserving.

» Composition of orthogonal and strongly-monotone and
Lipschitz layers:

f(l’) =0rg410Fxo00OKgoFg_10..0050F; 001(1‘)
are Bi-Lipschitz with constants (][, ux, [, vx)



Toy Example
Fitting a step with (0.1, 10) - Bi-Lipschitz model

3
2 1 —
1 -
01 Target fn.
14 i-ResNet
i-Densenet
Y, — BiLipNet
- = Optimal fit
_3 T T T
-2 -1 0 1 2
Model inv. Lip. Lip. loss

i-ResNet 0.80 4.69 0.2090
i-DenseNet 0.82 466 0.2091
BiLipNet 0.11 9.97 0.0685
Optimal 0.10 10.0 0.0677




Learning Surrogate Cost Functions

» Given data {x;,y;},i =1,..., N, with z; vector and y; scalar
» learn a model f
yi ~ f(x)
i.e. standard supervised learning

» But with constraint that f(z) is “easy to optimize”, i.e.
x* = argmin f(z)

is can be efficiently and reliably computed.
> Why:
» Data-driven optimization of black-box functions (MDO,
experiment design, etc)
» Learning terminal costs in MPC
» Q learning with continuous action spaces.
» Inverse reinforcement learning



Polyak-t.ojasiewicz Networks

» A function f: R™ — R satisfies the Polyak-Lojasiewicz (PL)
condition® if

SIVef @I 2 m(f(z) —min f(@)), ¥z € BY, (1)

» Guarantees linear convergence of gradient descent to global
minimum, less restrictively than convexity.

» If a function g(x) is (u, ) bi-Lipschitz, then
1
f@) =35lg@*+e, ceR (2)

is a satisfies PL m = u?. We call it a PLNet

» Unique minimum at the solution of g(x) = 0, i.e.
x* = g~1(0), and a minimum value of c.

Polyak, 1967; Lojasiewicz, 1967



Polyak-tojasiewicz Networks: Rosenbrock function + Sine
Error
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Fast Solution of Minimum

» The minimum of f(z) = |g(x)|? + c is at the point

r* 1 g(x*) =0, i.e. ¥ = g71(0)
» For deep networks g we can “backtrack” through layers.
» Solution via Davis-Yin 3-operator splitting

» lllustration on 20-dimensional Rosenbrock function:
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Neural Lyapunov Functions, Stable Dynamics,
and Contraction



Learning Lyapunov Functions

JOURNAL OF DIFFERENTIAL EQUATIONS 3, 323-329 (1967)

The Structure of the Level Surfaces
of a Lyapunov Function

F. WesLey WiLsoN, Jr.*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
Received February 24, 1966

» Lyapunov functions can be written in the form:

Via) = sllo@

where g is a homeomorphism. Unique z* : V(z*) = 0.
» If g is Bi-Lipschitz we automatically get

ple —2*? <V(z) < vl — 2"

> If 2* is known, use V(z) = 1||g(z) — g(z*)]?









From Gradient Flow to Hamiltonians

Parameterize descent directions: & = (J(z) — D(z))VV(x)
=~ T
J=—J

Extends to passive and stable port-Hamiltonian system:
&= (J(z) — R(z))VV(z) + B(z)u

y=B(z)"'VV(z) (3)



Double Pendulum

Learning dynamics from data z(k),¢(k),k =1,2,..., K.
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Comparison of ours to unconstrained method MLP and previous
stability-preserving method ICNN.



Equivalence of Contraction and Koopman

Consider a system
&= f(z) (4)
and also consider changes of variables (Koopman embeddings)
¢:R" —» RY:
=¢(z) = i=Az (5)

2
such that ®(z) := g—i is full column-rank.

Theorem (informal):

» Suppose 3 embedding (5) such that A is stable, then (4) is
contracting with metric M (z) = ®(z) " P®(z) where
ATP+PA<O

» Conversely, suppose (4) is contracting, then there exists a
full-rank embedding (5) such that A is stable.

In fact, ¢ can be strongly monotone R™ — R"



Learning a Contraction Metric from Trajectory Data

» Given trajectory data z(k),4(k),k=1,2,..,N
» Learn a mapping z = ¢(x) such that 2 = Az,
» Evaluate Lyapunov equation ATP + PA = —1
> Metric: ®(z)" P®(x).
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Learning Robot Motion from Demonstration

y (mm)

v

Idea: parameterize
» Eg A=—-R"R+S5-8".

¢ via biLipNet, parameterize A as stable.

» Learning motion of a robot arm from demonstration:
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Summary

Main message:
We provide a rich parameterization of robustly invertible
(bi-Lipschitz) neural networks.

Useful for:
» Learning “easily optimizable” surrogate losses (PLNet)
» Learning Lyapunov functions satisfying natural conditions
» Learning stable dynamics via Lyapunov descent directions
» Learning Koopman embeddings and contraction metrics



Thank you!

ThB12.4: Learning Stable and Passive Neural Differential Equations
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