A Robust Learning Framework built on Contraction and Monotonicity

Ian R. Manchester,

with Ruigang Wang, Nic Barbara Johnny Cheng (ACFR) Bowen Yi (Polytech Montreal) Krishnamurthy (Dj) Dvijotham (ServiceNow/Google Deepmind)

CDC Contraction Workshop, Dec 2024

Robust Neural Networks

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks

Neural Lyapunov Functions, Stable Dynamics, and Contraction

Robust Neural Networks

"pig" "airliner"
$$+ 0.005 \text{ x}$$
 =

Small input perturbation $x + \Delta x$ $\downarrow \downarrow$ Large output change $y + \Delta y$

Image: Aleksander Madry, MIT.

Adversarial Inputs and Lipschitz Bounds

- We want to avoid small input perturbations leading to large input perturbations
- If a model $f: x \mapsto y$ satisfies a **Lipschitz bound**:

$$\underbrace{\|f(x^a) - f(x^b)\|}_{\|\Delta y\|} \le \gamma \underbrace{\|x^a - x^b\|}_{\|\Delta x\|} \quad \forall \ x^a, x^b$$

then the effect of adversarial perturbations is bounded.

Direct Parameterizations

- How to impose Lipschitz bounds during training of large models?
- Our approach: construct **direct** parameterization of models satisfying this bound.

a.k.a. an intrinsic parameterization of the constraint manifold.

Learn via unconstrained optimization: SGD, ADAM, etc.

Direct Parameterization

$$H = \begin{bmatrix} \gamma I & -W_0^\top \Lambda_0^\top & & \\ -\Lambda_0 W_0 & 2\Lambda_0 & -W_1^\top \Lambda_1^\top & & \\ & \ddots & \ddots & \ddots & \\ & & -\Lambda_1 W_1 & 2\Lambda_{L-1} & -W_L^\top \Lambda_L^\top \\ & & & -\Lambda_L W_L & \gamma I \end{bmatrix} \succeq 0.$$

- ▶ Basic idea: square root representation: $H \succeq 0 \Leftrightarrow H = PP^{\top}$
- **Problem**: construct *P* s.t. *H* has the right sparsity structure:
- The blocks on the main diagonal γI, 2Λ₀, 2Λ₁, ... are diagonal matrices.

Robust Reinforcement Learning

- Lipschitz-bounded control policy limits affect of attacks/errors in state measurement.
- Parameterization of policies that guarantee closed-loop contraction (Youla-REN)

Pong: Uniform Random Noise

Code and videos can be found at https://github.com/nic-barbara/Lipschitz-RL-Atari

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks

Monotone and Bi-Lipschitz networks

• A function $y = f(x), f : \mathbb{R}^n \to \mathbb{R}^n$ is **bi-Lipschitz** if

 $\mu \|\Delta x\| \le \|\Delta y\| \le \nu \|\Delta x\|, \quad \forall x_1, x_2 \in \mathbb{R}^n.$

We construct a direct parameterization (via incremental quadratic constraints) of strongly monotone and Lipschitz residual networks:

$$y_i = x_i + \mathcal{F}(x_i), \quad \langle \Delta y_i, \Delta x_i \rangle \ge \mu \|\Delta x_i\|^2,$$

Composition Properties

- Composition f₁ o f₂(x) of monotone functions is not necessarily monotone.
- But composition two functions μ₁, μ₂-strongly monotone is (μ₁μ₂)-inverse Lipschitz.
- ► Orthogonal layers O(x) = Qx + b, Q^TQ = I: norm-preserving.
- Composition of orthogonal and strongly-monotone and Lipschitz layers:

$$f(x) = O_{K+1} \circ F_K \circ O_K \circ F_{K-1} \circ \dots \circ O_2 \circ F_1 \circ O_1(x)$$

are **Bi-Lipschitz** with constants $(\prod_k \mu_k, \prod_k \nu_k)$

Toy Example

Fitting a step with (0.1, 10) - Bi-Lipschitz model

Model	inv. Lip.	Lip.	loss
i-ResNet	0.80	4.69	0.2090
i-DenseNet	0.82	4.66	0.2091
BiLipNet	0.11	9.97	0.0685
Optimal	0.10	10.0	0.0677

Learning Surrogate Cost Functions

Given data {x_i, y_i}, i = 1, ..., N, with x_i vector and y_i scalar
 learn a model f

$$y_i \approx f(x_i)$$

i.e. standard supervised learning

But with constraint that f(x) is "easy to optimize", i.e.

 $x^{\star} = \arg\min f(x)$

is can be efficiently and reliably computed.

► Why:

- Data-driven optimization of black-box functions (MDO, experiment design, etc)
- Learning terminal costs in MPC
- Q learning with continuous action spaces.
- Inverse reinforcement learning

Polyak-Łojasiewicz Networks

A function f : ℝⁿ → ℝ satisfies the Polyak-Łojasiewicz (PL) condition¹ if

$$\frac{1}{2} \|\nabla_x f(x)\|^2 \ge m(f(x) - \min_x f(x)), \, \forall x \in \mathbb{R}^n,$$
 (1)

- Guarantees linear convergence of gradient descent to global minimum, less restrictively than convexity.
- ▶ If a function g(x) is (μ, ν) bi-Lipschitz, then

$$f(x) = \frac{1}{2} ||g(x)||^2 + c, \quad c \in \mathbb{R}$$
(2)

is a satisfies PL $m = \mu^2$. We call it a **PLNet**

Unique minimum at the solution of g(x) = 0, i.e. x* = g⁻¹(0), and a minimum value of c.

¹Polyak, 1967; Łojasiewicz, 1967

Polyak-Łojasiewicz Networks: Rosenbrock function + Sine

Fast Solution of Minimum

- ▶ The minimum of $f(x) = |g(x)|^2 + c$ is at the point $x^* : g(x^*) = 0$, i.e. $x^* = g^{-1}(0)$
- ▶ For deep networks g we can "backtrack" through layers.
- Solution via Davis-Yin 3-operator splitting
- Illustration on 20-dimensional Rosenbrock function:

Neural Lyapunov Functions, Stable Dynamics, and Contraction

Learning Lyapunov Functions

JOURNAL OF DIFFERENTIAL EQUATIONS 3, 323-329 (1967)

The Structure of the Level Surfaces of a Lyapunov Function

F. WESLEY WILSON, JR.*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 Received February 24, 1966

Lyapunov functions can be written in the form:

$$V(x) = \frac{1}{2} \|g(x)\|^2$$

where g is a homeomorphism. Unique $x^* : V(x^*) = 0$. If g is *Bi-Lipschitz* we automatically get

$$\mu |x - x^{\star}|^2 \le V(x) \le \nu |x - x^{\star}|^2$$

▶ If x^* is known, use $V(x) = \frac{1}{2} \|g(x) - g(x^*)\|^2$

Flexible Lyapunov Functions

Flexible Lyapunov Functions

From Gradient Flow to Hamiltonians

Parameterize descent directions: $\dot{x} = \underbrace{(J(x))}_{J=-J^{\top}} - \underbrace{D(x)}_{\succ 0} \nabla V(x)$

Extends to passive and stable port-Hamiltonian system:

$$\dot{x} = (J(x) - R(x))\nabla V(x) + B(x)u$$

$$y = B(x)^{\top}\nabla V(x)$$
(3)

Double Pendulum

Comparison of ours to unconstrained method MLP and previous stability-preserving method ICNN.

Equivalence of Contraction and Koopman

Consider a system

$$\dot{x} = f(x) \tag{4}$$

and also consider changes of variables (Koopman embeddings) $\phi : \mathbb{R}^n \to \mathbb{R}^N$:

$$z = \phi(x) \implies \dot{z} = Az$$
 (5)

such that $\Phi(x) := \frac{\partial \phi}{\partial x}$ is full column-rank.

Theorem (informal):

- Suppose ∃ embedding (5) such that A is stable, then (4) is contracting with metric M(x) = Φ(x)^TPΦ(x) where A^TP + PA < 0</p>
- Conversely, suppose (4) is contracting, then there exists a full-rank embedding (5) such that A is stable.

In fact, ϕ can be strongly monotone $\mathbb{R}^n \to \mathbb{R}^n$

Learning a Contraction Metric from Trajectory Data

- Given trajectory data $x(k), \dot{x}(k), k = 1, 2, ..., N$
- Learn a mapping $z = \phi(x)$ such that $\dot{z} = Az$,
- Evaluate Lyapunov equation $A^{\top}P + PA = -I$
- Metric: $\Phi(x)^{\top} P \Phi(x)$.

Left: Max real parts of eigenvalue of $(\partial_f M + MF + F^{\top}M)$ Right: The smallest real parts of eigenvalue of M

Learning Robot Motion from Demonstration

Idea: parameterize φ via biLipNet, parameterize A as stable.
 E.g. A = −R^TR + S − S^T.

Learning motion of a robot arm from demonstration:

Summary

Main message:

We provide a rich parameterization of robustly invertible (bi-Lipschitz) neural networks.

Useful for:

- Learning "easily optimizable" surrogate losses (PLNet)
- Learning Lyapunov functions satisfying natural conditions
- Learning stable dynamics via Lyapunov descent directions
- Learning Koopman embeddings and contraction metrics

Thank you!

ThB12.4: Learning Stable and Passive Neural Differential Equations

- R. Wang & I. R. Manchester, Direct Parameterization of Lipschitz Bounded Deep Networks, ICML23
- N. Barbara, R. Wang, & I. R. Manchester, On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks, SysDO 2024.
- R. Wang, K. Dvijotham, & I. R. Manchester, Monotone, Bi-Lipschitz and Poylak Lojasiewicz Networks, ICML24
- J. Cheng, R. Wang, & I. R. Manchester, Learning Stable and Passive Neural Differential Equations, CDC24.
- F. Fan, B. Yi, D. Rye, G. Shi, & I. R. Manchester, Learning Stable Koopman Embeddings, ACC2022, extended version (submitted): arXiv:2401.08153
- B. Yi & I. R. Manchester, On the Equivalence of Contraction and Koopman Approaches for Nonlinear Stability and Control, TAC 2023