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Robust Neural Networks

Monotone, Bi-Lipschitz, and Polyak- Lojasiewicz Networks

Neural Lyapunov Functions, Stable Dynamics, and Contraction



Robust Neural Networks



Small input perturbation x+∆x
⇓

Large output change y +∆y

Image: Aleksander Madry, MIT.



Adversarial Inputs and Lipschitz Bounds

▶ We want to avoid small input perturbations leading to large
input perturbations

▶ If a model f : x 7→ y satisfies a Lipschitz bound:

∥f(xa)− f(xb)∥︸ ︷︷ ︸
∥∆y∥

≤ γ ∥xa − xb∥︸ ︷︷ ︸
∥∆x∥

∀ xa, xb

then the effect of adversarial perturbations is bounded.



Direct Parameterizations

Non-convex Convex Direct

x1

x2

▶ How to impose Lipschitz bounds during training of large
models?

▶ Our approach: construct direct parameterization of models
satisfying this bound.
▶ a.k.a. an intrinsic parameterization of the constraint manifold.

▶ Learn via unconstrained optimization: SGD, ADAM, etc.



Direct Parameterization
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▶ Basic idea: square root representation: H ⪰ 0 ⇔ H = PP⊤

▶ Problem: construct P s.t. H has the right sparsity structure:

▶ The blocks on the main diagonal γI, 2Λ0, 2Λ1, ... are
diagonal matrices.



Robust Reinforcement Learning

 

 

 

 

  

▶ Lipschitz-bounded control policy limits affect of attacks/errors
in state measurement.

▶ Parameterization of policies that guarantee closed-loop
contraction (Youla-REN)



Pong: Uniform Random Noise

Unconstrained Lipschitz-Bounded

Code and videos can be found at
https://github.com/nic-barbara/Lipschitz-RL-Atari

https://github.com/nic-barbara/Lipschitz-RL-Atari


Monotone, Bi-Lipschitz, and Polyak- Lojasiewicz
Networks



Monotone and Bi-Lipschitz networks

α

cosα = µ/ν

µ ν

∆x

∆y

(µ, ν)-Lipschitz
µ-strongly monotone

& ν-Lipschitz

▶ A function y = f(x), f : Rn → Rn is bi-Lipschitz if

µ∥∆x∥ ≤ ∥∆y∥ ≤ ν∥∆x∥, ∀x1, x2 ∈ Rn.

▶ We construct a direct parameterization (via incremental
quadratic constraints) of strongly monotone and Lipschitz
residual networks:

yi = xi + F(xi), ⟨∆yi,∆xi⟩ ≥ µ∥∆xi∥2,



Composition Properties

α

cosα = µ/ν

µ ν

∆x

∆y

(µ, ν)-Lipschitz
µ-strongly monotone

& ν-Lipschitz

▶ Composition f1 ◦ f2(x) of monotone functions is not
necessarily monotone.

▶ But composition two functions µ1, µ2-strongly monotone is
(µ1µ2)-inverse Lipschitz.

▶ Orthogonal layers O(x) = Qx+ b, Q⊤Q = I:
norm-preserving.

▶ Composition of orthogonal and strongly-monotone and
Lipschitz layers:

f(x) = OK+1 ◦ FK ◦OK ◦ FK−1 ◦ ... ◦O2 ◦ F1 ◦O1(x)

are Bi-Lipschitz with constants (
∏

k µk,
∏

k νk)



Toy Example
Fitting a step with (0.1, 10) - Bi-Lipschitz model

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

Target fn.

i-ResNet

i-Densenet

BiLipNet

Optimal fit

Model inv. Lip. Lip. loss

i-ResNet 0.80 4.69 0.2090
i-DenseNet 0.82 4.66 0.2091
BiLipNet 0.11 9.97 0.0685
Optimal 0.10 10.0 0.0677



Learning Surrogate Cost Functions

▶ Given data {xi, yi}, i = 1, ..., N , with xi vector and yi scalar

▶ learn a model f
yi ≈ f(xi)

i.e. standard supervised learning

▶ But with constraint that f(x) is “easy to optimize”, i.e.

x⋆ = argmin f(x)

is can be efficiently and reliably computed.
▶ Why:

▶ Data-driven optimization of black-box functions (MDO,
experiment design, etc)

▶ Learning terminal costs in MPC
▶ Q learning with continuous action spaces.
▶ Inverse reinforcement learning



Polyak- Lojasiewicz Networks

▶ A function f : Rn → R satisfies the Polyak- Lojasiewicz (PL)
condition1 if

1

2
∥∇xf(x)∥2 ≥ m(f(x)−min

x
f(x)), ∀x ∈ Rn, (1)

▶ Guarantees linear convergence of gradient descent to global
minimum, less restrictively than convexity.

▶ If a function g(x) is (µ, ν) bi-Lipschitz, then

f(x) =
1

2
∥g(x)∥2 + c, c ∈ R (2)

is a satisfies PL m = µ2. We call it a PLNet

▶ Unique minimum at the solution of g(x) = 0, i.e.
x⋆ = g−1(0), and a minimum value of c.

1Polyak, 1967;  Lojasiewicz, 1967



Polyak- Lojasiewicz Networks: Rosenbrock function + Sine
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Fast Solution of Minimum

▶ The minimum of f(x) = |g(x)|2 + c is at the point
x⋆ : g(x⋆) = 0, i.e. x⋆ = g−1(0)

▶ For deep networks g we can “backtrack” through layers.

▶ Solution via Davis-Yin 3-operator splitting

▶ Illustration on 20-dimensional Rosenbrock function:
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Neural Lyapunov Functions, Stable Dynamics,
and Contraction



Learning Lyapunov Functions
JOURNAL OF DIFFERENTIAL EQUATIONS 3, 323-329 (1967) 

The Structure of the Level Surfaces 
of a Lyapunov Function 

F. WESLEY WILSON, JR.* 

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 

Received February 24, 1966 

Let f be a real-valued Cl function which is defined on Euclidian space R”. 
We are interested in characterizing the noncritical level surfaces off near 
its isolated relative maxima and minima. The technique which is used for 
this investigation is to study the relationship between the trajectories of a 
differential equation and its Lyapunov function. As an application of interest, 
we obtain characterizations of the level surfaces of a Lyapunov function and 
of the domain of asymptotic stability of an asymptotically stable critical 
point. The domain of asymptotic stability is diffeomorphic to R”, and the 
level surfaces are manifolds (as smooth as the defining function) which are 
homotopically equivalent to the (n - 1)-sphere 3-l. It follows from the 
generalized PoincarC conjecture that the level surfaces are spheres if n # 4, 5. 
When n = 5, the problem of whether or not the level surface is homeomor- 
phic to the sphere is equivalent to the PoincarC conjecture. The paper 
concludes with a discussion of similar statements for asymptotically stable 
sets and nonautonomous systems. 

1. ASYMPTOTIC STABILITY IN THE LARGE 

We shall say that a function is differentiable of class Cr (0 < r < CO) if its 
first r derivatives exist and are continuous. Consider the differential equation 

dx/dt = F(x), F(0) = 0, (1) 

defined on R”, where F is Cl on R” - 0 and satisfies a Lipschitz condition 
at 0. The trajectories of this equation satisfy the uniqueness condition and 
vary differentiably with respect to their initial points on P - 0. Con- 

* This research was supported in part by the United States Air Force Office of 
Scientific Research under Grant No. AF-AFOSR-693-65, and in part by the United 
States Army Research Office, Durham, under Contract No. DA-31-124-ARD-D-270. 
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▶ Lyapunov functions can be written in the form:

V (x) =
1

2
∥g(x)∥2

where g is a homeomorphism. Unique x⋆ : V (x⋆) = 0.

▶ If g is Bi-Lipschitz we automatically get

µ|x− x⋆|2 ≤ V (x) ≤ ν|x− x⋆|2

▶ If x⋆ is known, use V (x) = 1
2∥g(x)− g(x⋆)∥2



Flexible Lyapunov Functions



Flexible Lyapunov Functions

Goal Point



From Gradient Flow to Hamiltonians
Parameterize descent directions: ẋ = (J(x)︸︷︷︸

J=−J⊤

−D(x)︸ ︷︷ ︸
≻0

)∇V (x)

Extends to passive and stable port-Hamiltonian system:

ẋ = (J(x)−R(x))∇V (x) +B(x)u

y = B(x)⊤∇V (x)
(3)



Double Pendulum

Learning dynamics from data x(k), ẋ(k), k = 1, 2, ...,K.

Comparison of ours to unconstrained method MLP and previous
stability-preserving method ICNN.



Equivalence of Contraction and Koopman

Consider a system
ẋ = f(x) (4)

and also consider changes of variables (Koopman embeddings)
ϕ : Rn → RN :

z = ϕ(x) =⇒ ż = Az (5)

such that Φ(x) := ∂ϕ
∂x is full column-rank.

Theorem (informal):

▶ Suppose ∃ embedding (5) such that A is stable, then (4) is
contracting with metric M(x) = Φ(x)⊤PΦ(x) where
A⊤P + PA < 0

▶ Conversely, suppose (4) is contracting, then there exists a
full-rank embedding (5) such that A is stable.

In fact, ϕ can be strongly monotone Rn → Rn



Learning a Contraction Metric from Trajectory Data

▶ Given trajectory data x(k), ẋ(k), k = 1, 2, ..., N

▶ Learn a mapping z = ϕ(x) such that ż = Az,

▶ Evaluate Lyapunov equation A⊤P + PA = −I

▶ Metric: Φ(x)⊤PΦ(x).

   

Left: Max real parts of eigenvalue of (∂fM +MF + F⊤M)
Right: The smallest real parts of eigenvalue of M



Learning Robot Motion from Demonstration

▶ Idea: parameterize ϕ via biLipNet, parameterize A as stable.

▶ E.g. A = −R⊤R+ S − S⊤.

▶ Learning motion of a robot arm from demonstration:
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Summary

Main message:
We provide a rich parameterization of robustly invertible
(bi-Lipschitz) neural networks.

Useful for:

▶ Learning “easily optimizable” surrogate losses (PLNet)

▶ Learning Lyapunov functions satisfying natural conditions

▶ Learning stable dynamics via Lyapunov descent directions

▶ Learning Koopman embeddings and contraction metrics



Thank you!

ThB12.4: Learning Stable and Passive Neural Differential Equations

▶ R. Wang & I. R. Manchester, Direct Parameterization of
Lipschitz Bounded Deep Networks, ICML23

▶ N. Barbara, R. Wang, & I. R. Manchester, On Robust
Reinforcement Learning with Lipschitz-Bounded Policy
Networks, SysDO 2024.

▶ R. Wang, K. Dvijotham, & I. R. Manchester, Monotone,
Bi-Lipschitz and Poylak Lojasiewicz Networks, ICML24

▶ J. Cheng, R. Wang, & I. R. Manchester, Learning Stable and
Passive Neural Differential Equations, CDC24 .

▶ F. Fan, B. Yi, D. Rye, G. Shi, & I. R. Manchester, Learning Stable
Koopman Embeddings, ACC2022, extended version (submitted):
arXiv:2401.08153

▶ B. Yi & I. R. Manchester, On the Equivalence of Contraction
and Koopman Approaches for Nonlinear Stability and Control,
TAC 2023
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