2024 CDC Workshop on "Contraction Theory for Systems, Control, Optimization, and Learning"

Full-Day Workshop, in conjunction with the 2024 Conference on Decision and Control in Milano, Italy

Organizer: Francesco Bullo, UC Santa Barbara

Schedule. Sunday, December 15, 2024, 8:30-17:45

There will be 13 presentations, each lasting a total of 25 minutes. This time includes 20 minutes for the talk, 5 minutes for questions, transition and informal conversations. There will also be a Rapid Presentations session.

08:30-08:40: Introduction by Francesco Bullo (10 minutes)

Morning Session: 4 talks

- 08:40-09:05: A Quarter Century of Contraction Analysis, Jean-Jacques Slotine, MIT, USA
- 09:05-09:30: Contraction Theory of Output Regulation Daniele Astolfi, Université de Lyon, France
- 09:30-09:55: Contractivity of Interconnected Continuous and Discrete-time Systems, Emiliano Dall'Anese, Boston University, USA
- 09:55-10:20: Computation of Contraction Metrics with Meshfree Collocation, Peter Giesl, University of Sussex, UK

10:20-11:00: Coffee Break (40 minutes), CDC coffee will be served between 10:00 and 11:00

Midday Session: 3 talks

- 11:00-11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli, Imperial College, UK
- 11:25-11:50: Towards Contracting Biologically Plausible Neural Networks Giovanni Russo, Universita di Salerno, Italy
- 11:50-12:15: Youla-Kucera Parametrization in the Contraction Framework, Yu Kawano, Hiroshima University, Japan

12:15-13:45: Group Photo and Lunch Break (1 hour 30 minutes)

Afternoon Session: 3 talks

- 13:45-14:10: A Robust Learning Framework built on Contraction and Monotonicity, Ian Manchester, University of Sydney, Australia
- 14:10-14:35: Compound Matrices and Dynamical Systems (PDF), Michael Margaliot, Tel Aviv University, Israel
- 14:35-15:00: Towards Non-quadratic Absolute Stability Theory. Anton Proskurnikov. Politecnico di Torino. Italy

15:00-15:40: Coffee Break (40 minutes), CDC coffee will be served between 15:00 and 16:00

Evening Session: 3 talks + rapid presentations

- 15:40-16:05: Regulation Without Calibration, Rodolphe Sepulchre, Cambridge University, UK (afternoon speaker)
- 16:05–16:30: Contractions for Interaction Networks, Eduardo Sontag, NorthEastern University, USA
- 16:30-16:55: Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach, Francesco Bullo, UC Santa Barbara, USA
- 17:00-17:45: Rapid Presentation Session, Final Panel Discussion, and Closing Remarks (45 minutes)
 - Li Qiu, Presidential Chair Professor, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China, Five Minutes on Phase Theory
 - Akash Harapanahalli, URL, School of Electrical and Computer Engineering, Georgia Tech, USA, Linear Differential Inclusions for Computational Contraction Theory
 - Zahra Marvi, URL, Postdoctoral Scientist, Department of Mechanical Engineering, University of Minnesota Twin cities, USA, Contraction Theory for Safety Verification
 - Ramzi Gaagai, URL, Universität der Bundeswehr Hamburg, Germany, Distributed Safety-Critical Control for Nonlinear Heterogeneous Vehicle Platoons via Contraction and Regulation Theory
 - Alexander (Sasha) Davydov, URL, Mechanical Engineering, University of California, Santa Barbara, Learning Globally Contracting Dynamics from Demonstrations (PDF)

contractivity = robust, modular, computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces

highly-ordered transient and asymptotic behavior, no anonymous constants/functions:

- sharp analysis for numerous example systems
- unique globally exponential stable equilibriumtwo natural Lyapunov functions
- o robustness properties bounded input, bounded output (iss) finite input-state gain robustness margin wrt unmodeled dynamics
- periodic input, periodic output
- o modularity and interconnection properties
- accurate numerical integration and equilibrium point computation

search for contraction properties

design engineering systems to be contracting

verify correct/safe behavior via known Lipschitz constants

Example contracting systems

- gradient descent flows under strong convexity assumptions (proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)
- 2 neural network dynamics under assumptions on synaptic matrix (recurrent, implicit, reservoir computing, etc)
- Lur'e-type systems under assumptions on nonlinearity and LMI conditions
 (Lipschitz, incrementally passive, monotone, conic, etc)
- interconnected systems under contractivity and small-gain assumptions
 (Hurwitz Metzler matrices, network small-gain theorem, etc)
- odata-driven learned models (imitation learning)
- 6 feedback linearizable systems with stabilizing controllers
- incremental ISS systems
- Giesl Converse Theorem: nonlinear systems with a locally exponentially stable equilibrium are contracting with respect to appropriate Riemannian metric

Example #1: Parametric convex optimization and contracting dynamics

Many convex optimization problems can be solved with contracting dynamics

$$\dot{x} = \mathsf{F}(x, \theta)$$

	Convex Optimization	Contracting Dynamics
Unconstrained	$\min_{x \in \mathbb{R}^n} f(x, \theta)$	$\dot{x} = -\nabla_x f(x, \theta)$
Constrained	$ \min_{x \in \mathbb{R}^n} f(x, \boldsymbol{\theta}) \\ \text{s.t.} x \in \mathcal{X}(\boldsymbol{\theta}) $	$\dot{x} = -x + \operatorname{Proj}_{\mathcal{X}(\boldsymbol{\theta})}(x - \gamma \nabla_x f(x, \boldsymbol{\theta}))$
Composite	$\min_{x \in \mathbb{R}^n} f(x, \theta) + g(x, \theta)$	$\dot{x} = -x + \text{prox}_{\gamma g_{\theta}}(x - \gamma \nabla_x f(x, \theta))$
Equality	$ \min_{x \in \mathbb{R}^n} f(x, \theta) \\ \text{s.t.} Ax = b(\theta) $	$\dot{x} = -\nabla_x f(x, \boldsymbol{\theta}) - A^{\top} \lambda,$ $\dot{\lambda} = Ax - b(\boldsymbol{\theta})$
Inequality	$ \min_{x \in \mathbb{R}^n} f(x, \boldsymbol{\theta}) \\ \text{s.t.} Ax \le b(\boldsymbol{\theta}) $	$\dot{x} = -\nabla f(x, \theta) - A^{\top} \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda),$ $\dot{\lambda} = \gamma (-\lambda + \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda))$

Example #2: Systems in Lur'e form

For $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times m}$, nonlinear system in Lur'e form

$$\dot{x} = Ax + B\Psi(Cx) =: \mathsf{F}_{\mathsf{Lur'e}}(x)$$

where $\Psi:\mathbb{R}^m \to \mathbb{R}^m$ is described by an incremental multiplier matrix M, that is,

$$\begin{bmatrix} y_1 - y_2 \\ \Psi(y_1) - \Psi(y_2) \end{bmatrix}^\top M \begin{bmatrix} y_1 - y_2 \\ \Psi(y_1) - \Psi(y_2) \end{bmatrix} \ge 0 \quad \text{for all } y_1, y_2 \in \mathbb{R}^m$$

For $P = P^{\top} \succ 0$, following statements are equivalent:

- $\bullet \quad \mathsf{F}_{\mathsf{Lur'e}} \text{ infinitesimally contracting wrt } \| \cdot \|_{2,P} \text{ with rate } \eta > 0 \text{ for each } \Psi \text{ described by } M,$
- $\exists \lambda \geq 0 \text{ s.t. } \begin{bmatrix} PA + A^\top P + 2\eta P & PB \\ B^\top P & \mathbb{O}_{m \times m} \end{bmatrix} + \lambda \begin{bmatrix} C^\top & \mathbb{O}_{n \times m} \\ \mathbb{O}_{m \times m} & I_m \end{bmatrix} M \begin{bmatrix} C & \mathbb{O}_{m \times m} \\ \mathbb{O}_{m \times n} & I_m \end{bmatrix} \preceq 0$

Ongoing education and research on contraction theory

"Continuous improvement is better than delayed perfection" Mark Twain Textbook: Contraction Theory for Dynamical Systems, Francesco Bullo, rev 1.2, Aug 2024. (Book and slides freely available) https://fbullo.github.io/ctds

- Tutorial slides: https://fbullo.github.io/ctds
- Youtube lectures: "Minicourse on Contraction Theory" https://youtu.be/FQV5PrRHks8 6 lectures, total 12h

2024 CDC Workshop on "Contraction Theory for Systems, Control, Optimization, and Learning"

Full-Day Workshop, in conjunction with the 2024 Conference on Decision and Control in Milano, Italy

Organizer: Francesco Bullo, UC Santa Barbara

Schedule. Sunday, December 15, 2024, 8:30-17:45

There will be 13 presentations, each lasting a total of 25 minutes. This time includes 20 minutes for the talk, 5 minutes for questions, transition and informal conversations. There will also be a Rapid Presentations session.

08:30-08:40: Introduction by Francesco Bullo (10 minutes)

Morning Session: 4 talks

- 08:40-09:05: A Quarter Century of Contraction Analysis, Jean-Jacques Slotine, MIT, USA
- 09:05-09:30: Contraction Theory of Output Regulation Daniele Astolfi, Université de Lyon, France
- 09:30-09:55: Contractivity of Interconnected Continuous and Discrete-time Systems, Emiliano Dall'Anese, Boston University, USA
- 09:55-10:20: Computation of Contraction Metrics with Meshfree Collocation, Peter Giesl, University of Sussex, UK

10:20-11:00: Coffee Break (40 minutes), CDC coffee will be served between 10:00 and 11:00

Midday Session: 3 talks

- 11:00-11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli, Imperial College, UK
- 11:25-11:50: Towards Contracting Biologically Plausible Neural Networks Giovanni Russo, Universita di Salerno, Italy
- 11:50-12:15: Youla-Kucera Parametrization in the Contraction Framework, Yu Kawano, Hiroshima University, Japan

12:15-13:45: Group Photo and Lunch Break (1 hour 30 minutes)

Afternoon Session: 3 talks

Verification

- 13:45-14:10: A Robust Learning Framework built on Contraction and Monotonicity, Ian Manchester, University of Sydney, Australia
- 14:10-14:35: Compound Matrices and Dynamical Systems (PDF), Michael Margaliot, Tel Aviv University, Israel
- 14:35-15:00: Towards Non-quadratic Absolute Stability Theory. Anton Proskurnikov. Politecnico di Torino. Italy

15:00-15:40: Coffee Break (40 minutes), CDC coffee will be served between 15:00 and 16:00

Evening Session: 3 talks + rapid presentations

- 15:40-16:05: Regulation Without Calibration, Rodolphe Sepulchre, Cambridge University, UK (afternoon speaker)
- 16:05–16:30: Contractions for Interaction Networks, Eduardo Sontag, NorthEastern University, USA
- 16:30-16:55: Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach, Francesco Bullo, UC Santa Barbara, USA
- 17:00-17:45: Rapid Presentation Session, Final Panel Discussion, and Closing Remarks (45 minutes)
 - Li Qiu, Presidential Chair Professor, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China, Five Minutes on Phase Theory
 - Akash Harapanahalli, URL, School of Electrical and Computer Engineering, Georgia Tech, USA, Linear Differential Inclusions for Computational Contraction Theory
 - Zahra Marvi, URL, Postdoctoral Scientist, Department of Mechanical Engineering, University of Minnesota Twin cities, USA, Contraction Theory for Safety
 - Ramzi Gaagai, URL, Universität der Bundeswehr Hamburg, Germany, Distributed Safety-Critical Control for Nonlinear Heterogeneous Vehicle Platoons via Contraction and Regulation Theory
 - Alexander (Sasha) Davydov, URL, Mechanical Engineering, University of California, Santa Barbara, Learning Globally Contracting Dynamics from Demonstrations (PDF)

Contracting Dynamics for Optimization

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
https://fbullo.github.io/ctds

2024 IEEE CDC Contraction Theory Workshop, 2024/12/15. This version: 2024/12/15

Acknowledgments

Veronica Centorrino Scuola Sup Meridionale

Alexander Davydov UC Santa Barbara

Anand Gokhale UC Santa Barbara

Emiliano Dall'Anese Boston University

Robin Delabays HES-SO Sion

Anton Proskurnikov Politecnico Torino

Giovanni Russo Univ Salerno

Frederick Leve @AFOSR FA9550-22-1-0059 Edward Palazzolo @ARO W911NF-22-1-0233 Marc Steinberg @ONR N00014-22-1-2813 Paul Tandy @DTRA W912HZ-22-2-0010 Donald Wagner @AFOSR FA9550-21-1-0203 Michael Dorothy @ARO W911NF-24-1-0228

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Continuous-time dynamics and one-sided Lipschitz constants

$$\dot{x} = \mathsf{F}(x)$$
 on \mathbb{R}^n with norm $\|\cdot\|$ and induced log norm $\mu(\cdot)$

One-sided Lipschitz constant (\approx maximum expansion rate)

$$\begin{aligned} \operatorname{osLip}(\mathsf{F}) &= \inf\{b \in \mathbb{R} \text{ such that } [\![\mathsf{F}(x) - \mathsf{F}(y), x - y]\!] \leq b |\!|x - y|\!|^2 & \text{ for all } x, y\} \\ &= \sup_x \mu(D\mathsf{F}(x)) & \text{ (when F differentiable)} \end{aligned}$$

For scalar map
$$f$$
, $\operatorname{osLip}(f) = \sup_x f'(x)$

For affine map $F_A(x) = Ax + a$

$$\operatorname{osLip}_{2,P^{1/2}}(\mathsf{F}_A) = \mu_{2,P^{1/2}}(A) \leq \ell \qquad \iff \qquad A^\top P + PA \preceq 2\ell P$$

$$\operatorname{osLip}_{\infty}(\mathsf{F}_A) = \mu_{\infty}(A) \leq \ell \qquad \iff \qquad a_{ii} + \sum_{i \neq i} |a_{ij}| \leq \ell$$

Banach contraction theorem for continuous-time dynamics:

If $-c := \operatorname{osLip}(\mathsf{F}) < 0$, then

- F is infinitesimally contracting = distance between trajectories decreases exp fast (e^{-ct})
- 2 F has a unique, glob exp stable equilibrium x^*

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Speed and error

$$\operatorname{osLip}(\mathsf{F}) = -c < 0$$
 and x^* is equilibrium

The two canonical Lyapunov functions and their relationship

Given $F: \mathbb{R}^n \to \mathbb{R}^n$ and a norm $\|\cdot\|$ (with induced norm $\|\cdot\|$ and log norm $\mu(\cdot)$) $\dot{x}(t) = \mathsf{F}(x(t))$

If
$$\operatorname{osLip}(\mathsf{F}) = -c < 0$$
 and $\mathsf{F}(x^*) = \mathbb{O}_n$, then

two global Lyapunov functions:

$$x \mapsto \|x - x^*\|$$
$$x \mapsto \|\mathsf{F}(x)\|$$

② for each
$$x(0) = x_0$$
 and $t \in \mathbb{R}_{\geq 0}$,

② for each
$$x(0) = x_0$$
 and $t \in \mathbb{R}_2$

$$||x(t) - x^*|| \le e^{-ct} ||x_0 - x^*||$$

 $||F(x(t))|| \le e^{-ct} ||F(x_0)||$

$$\|x\|$$

$$\|\mathsf{F}(x(t))\| \le e^{-ct} \|\mathsf{F}(x_0)\|$$

$$\P$$
 if additionally Lip(F) = ℓ ,

$$c\|x - x^*\| \le \|\mathsf{F}(x)\| \le \ell \|x - x^*\|$$

(error)

(speed)

A third Lyapunov function for symmetric Jacobians

If additionally $DF(x) = DF(x)^{\top}$ for all x, then

$$f(x) = -\int_0^1 x^{\mathsf{T}} \mathsf{F}(tx) dt$$

is a global Lyapunov function, c-strongly convex, and $\mathsf{F} = -\nabla f$

E.g.: for
$$\mathsf{F}_Q(x) = -Qx + q$$
 with $Q = Q^\top \succ 0$ and $q \in \mathbb{R}^n$,

$$x \mapsto \|x - Q^{-1}q\|_2^2, \qquad x \mapsto \|Qx - q\|_2^2, \qquad x \mapsto \frac{1}{2}x^\top Qx - q^\top x$$

More generally, Cost :
$$\mathbb{R}^n \to \mathbb{R}$$
 such that

$$x^* = \operatorname*{argmin}_{x} \mathsf{Cost}(x)$$

$$\ell_{\mathsf{Cost}} = \mathsf{Lip}(\mathsf{Cost})$$

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Cumulative error and curve length

osLip(F) = -c < 0 and x^* is equilibrium

curve length:
$$\mathcal{L} = \int_0^\infty \text{speed}$$
 x^* $x(0)$ cumulative error: $\mathcal{E} = \int_0^\infty \text{distance}$

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

$$\dot{x}(t) = \mathsf{F}\big(x(t)\big)$$

Example contour plot of $x\mapsto \mu(D\mathsf{F}(x))$

Red values are points x where $\mu(D\mathsf{F}(x)) < 0$ Blue values are points where $\mu(D\mathsf{F}(x)) > 0$

Lemma: if contracting region S is invariant and convex, then restrict F to S and usual contractivity properties apply

- lacktriangle invariance of contracting set S?
- $\circled{2}$ convexity of contracting set S?

The small-residual theorem

For $\dot{x} = \mathsf{F}(x)$ infinitesimally contracting with rate c > 0 in region S

$$\overline{B}_r(x^\dagger) \subset S$$
 and $\|\mathsf{F}(x^\dagger)\| \leq cr$ \Longrightarrow $\overline{B}_r(x^\dagger)$ is invariant

Intuition: if $\|\mathsf{F}(x^\dagger)\|/c \le r$, then solution from x^\dagger remains inside $\overline{B}_r(x^\dagger)$ and converges to equilibrium point

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

$$\dot{x}(t) = F(x(t), \theta_x(t))$$
$$\dot{y}(t) = F(y(t), \theta_y(t))$$

If
$$\|\theta_x(t) - \theta_y(t)\| \leq \delta$$
 for all t , then $y(t)$ approaches or remains inside the tube with center $x(t)$ and radius $\frac{\ell\delta}{c}$

Incremental input-state-stability

For parameter-dependent vector field $F: \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and differentiable $\theta: \mathbb{R}_{\geq 0} \to \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$$

Assume there exist norms $\|\cdot\|_{\chi}$ and $\|\cdot\|_{\Theta}$ s.t.

- contractivity wrt x: osLip $_x(\mathsf{F}) \leq -c < 0$, uniformly in θ
- Lipschitz wrt θ : Lip $_{\theta}(\mathsf{F}) \leq \ell$, uniformly in x

Theorem: Incremental ISS. Any two soltns: x(t) with input θ_x and y(t) with input θ_y

$$||x(t) - y(t)|| \le e^{-ct} ||x_0 - y_0|| + \frac{\ell}{c} \sup_{\tau \in [0,t]} ||\theta_x(\tau) - \theta_y(\tau)||$$
 (error)

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Equilibrium tracking and tube invariance

$$\begin{split} \dot{x}(t) &= \mathsf{F}(x(t), \theta(t)) \\ x^*(\theta(t)) &= \mathsf{equilibrium\ trajectory} \end{split}$$

If
$$\|\dot{\theta}(t)\| \leq \delta$$
 for all t , then $x(t)$ approaches or remains inside — the tube with center $x^\star \big(\theta(t)\big)$ and radius $\frac{\ell\delta}{c^2}$

Equilibrium tracking

For parameter-dependent vector field $\mathbf{F}:\mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and differentiable $\theta:\mathbb{R}_{\geq 0} \to \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$$

Assume there exist norms $\|\cdot\|$ and $\|\cdot\|$ s.t.

- contractivity wrt x: osLip $_x(\mathsf{F}) \leq -c < 0$, uniformly in θ
- Lipschitz wrt θ : Lip $_{\theta}(\mathsf{F}) \leq \ell$, uniformly in x

Theorem: Equilibrium tracking for contracting dynamics.

The equilibrium map $x^*(\cdot)$ is Lipschitz with constant $\frac{\ell}{c}$ and

$$||x(t)-x^{\star}(\theta(t))|| \leq e^{-ct} ||x_0-x^{\star}(\theta_0)|| + \frac{\ell}{c^2} \sup_{\tau>0} ||\dot{\theta}(\tau)||$$

$$||x(t) - x^{*}(\theta(t))|| \leq e^{-ct} ||x_{0} - x^{*}(\theta_{0})|| + \frac{\epsilon}{c^{2}} \sup_{\tau > 0} ||\theta(\tau)||$$

$$||F(x(t), \theta(t))|| \leq e^{-ct} ||F(x_{0}, \theta_{0})|| + \frac{\ell}{c} \sup_{\tau > 0} ||\dot{\theta}(\tau)||$$
 (speed)

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Exact equilibrium tracking with feedforward control

For parameter-dependent vector field $\mathsf{F}:\mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and differentiable $\theta:\mathbb{R}_{\geq 0} \to \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$$

- contractivity wrt x: osLip $_x(\mathsf{F}) \leq -c < 0$, uniformly in θ
- Lipschitz wrt θ : Lip $_{\theta}(\mathsf{F}) \leq \ell$, uniformly in x

If additionally F is differentiable in both arguments, then **inverse function theorem**

$$D_{\theta}x^{\star}(\theta) = -(D_x \mathsf{F}(x^{\star}(\theta), \theta))^{-1} D_{\theta} \mathsf{F}(x^{\star}(\theta), \theta).$$

Exact equilibrium tracking with feedforward control

Time-varying contracting dynamics with feedforward prediction

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t)) - \left(D_x \mathsf{F}(x(t), \theta(t))\right)^{-1} D_\theta \mathsf{F}(x(t), \theta(t)) \,\dot{\theta}(t)$$

Asymptotically exact equilibrium tracking

$$\|\mathsf{F}\big(x(t),\theta(t)\big)\| \le \mathrm{e}^{-ct}\|\mathsf{F}\big(x_0,\theta_0\big)\|$$
 (speed)

$$||x(t) - x^{\star}(\theta(t))|| \leq \frac{1}{c} e^{-ct} ||F(x_0, \theta_0)|| \qquad \stackrel{\ell_x = \operatorname{Lip}_x(F)}{\leq} \frac{\ell_x}{c} e^{-ct} ||x_0 - x^{\star}(\theta_0)|| \qquad \text{(error)}$$

E.g., if
$$F = -\nabla_x f$$
, then $\dot{x} = -\nabla_x f(x,\theta) + \left(\operatorname{Hess} f(x,\theta)\right)^{-1} D_\theta \nabla_x f(x,\theta) \dot{\theta}$

Conjecture: no exact tracking is possible in discrete time

A. Simonetto and E. Dall'Anese. Prediction-correction algorithms for time-varying constrained optimization. *IEEE Transactions on Signal Processing*, 65(20):5481–5494, 2017.

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Dynamic regret

$$\begin{aligned} \mathsf{CErr} \big(x_{[0,T]}, \theta_{[0,T]} \big) &= \int_0^T \bigl\| x(t) - x^* \big(\theta(t) \big) \bigr\| dt \end{aligned} \qquad \qquad \text{(cumulative error)} \\ \mathsf{Regret} \big(x_{[0,T]}, \theta_{[0,T]} \big) &= \int_0^T \mathsf{Cost} \big(x(t), \theta(t) \big) - \mathsf{Cost} \big(x^*(\theta(t)), \theta(t) \big) dt \qquad \text{(dynamic regret)} \end{aligned}$$

$$\text{Note:} \quad \mathsf{Length}\big(x^*_{[0,T]}\big) = \int_0^T \|\dot{x}^*(\theta(t))\|dt \quad \overset{\mathsf{Lip}(x^*) = \ell/c}{\leq} \quad \frac{\ell}{c} \int_0^T \|\dot{\theta}(t)\|dt = \frac{\ell}{c} \, \mathsf{Length}\big(\theta_{[0,T]}\big)$$

Dynamic regret

For parameter-dependent vector field $\mathbf{F}:\mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and differentiable $\theta:\mathbb{R}_{\geq 0} \to \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$$

Assume there exist norms $\|\cdot\|_{\mathcal{X}}$ and $\|\cdot\|_{\Theta}$ s.t.

- contractivity wrt x: osLip $_x(\mathsf{F}) \leq -c < 0$, uniformly in θ
- Lipschitz wrt θ : Lip $_{\theta}(\mathsf{F}) \leq \ell$, uniformly in x

Cumulative tracking error

$$\mathsf{CErr}ig(x_0, heta_{[0,T]}ig) \leq \frac{1}{c} \|x_0 - x^*(heta_0)\| + \frac{\ell}{c^2} \mathsf{Length}ig(heta_{[0,T]}ig)$$

Dynamic regret (for a Cost (x, θ) that is ℓ_{Cost} -Lipschitz in x)

$$\mathsf{Regret}(x_0, \theta_{[0,T]}) \leq \ell_{\mathsf{Cost}} \mathsf{CErr}(x_0, \theta_{[0,T]}) = \mathcal{O}(1 + \mathsf{Length}(\theta_{[0,T]}))$$

§1. Time-invariant contracting dynamics

- The continuous-time Banach contraction theorem
- Canonical Lyapunov functions
- Cumulative error and curve length
- Local contractivity and the small-residual theorem

- Incremental input-state-stability
- Equilibrium tracking and tube invariance
- Exact equilibrium tracking with feedforward control
- Dynamic regret
- Gradient dynamics and online feedback optimization

Gradient dynamics and online feedback optimization

Solving optimization problems via dynamical systems

- studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
- neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
- optimization on manifolds (Brockett 1991)
- . . .
- online and dynamic feedback optimization (Dall'Anese, Dörfler, Simonetto, ...)

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, June 2023. . Conditionally accepted

L. Cothren, F. Bullo, and E. Dall'Anese. Online feedback optimization and singular perturbation via contraction theory. *SIAM Journal on Control and Optimization*, Aug. 2024. ©. Submitted

Motivation: Optimization-based control

- parametric optimization
- online feedback optimization
- model predictive control
- control barrier functions
- **⑤** ...

parametric QP. YALMIP + Multi-Parametric Toolbox

Online feedback optimization. Courtesy of Emiliano Dall'Anese.

Parametric and time-varying convex optimization

$$\min \mathcal{E}(x) \iff \dot{x} = \mathsf{F}(x) \qquad \qquad \mathsf{x}^*$$

Parametric and time-varying convex optimization

• parametric contracting dynamics for parametric convex optimization

$$\min \mathcal{E}(x,\theta) \quad \iff \quad \dot{x} = \mathsf{F}(x,\theta) \qquad \qquad \mathsf{x}^*(\theta)$$

2 contracting dynamics for time-varying strongly-convex optimization

$$\min \mathcal{E}(x, \theta(t)) \iff \dot{x} = \mathsf{F}(x, \theta(t)) \qquad \qquad x^*(\theta(t))$$

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, June 2023. ©. Conditionally accepted

Application: Online feedback optimization

$$\begin{cases} \min & \mathsf{cost}_1(u) + \mathsf{cost}_2(y) \\ \mathsf{subj.} \ \mathsf{to} & y = \mathsf{Plant}\big(u, w(t)\big) \end{cases} \implies \begin{cases} \dot{u} = \mathsf{Optimizer}(u, y) \\ y = \mathsf{Plant}\big(u, w(t)\big) \end{cases}$$

Gradient controller

Online feedback optimization

$$u^*ig(w(t)ig):=rgmin_u \phi(u)+\psi(y(t))$$
 (c-strongly convex ϕ , convex ψ) subj to $y(t)=Y_uu+Y_ww(t)$

gradient controller

$$\dot{u} \ = \ \mathsf{F}_{\mathsf{GradCtrl}}(u,w) := -\nabla_u \big(\phi(u) + \psi(y(t))\big) \ = \ -\nabla\phi(u) - Y_u^\top \nabla\psi(Y_u u + Y_w w)$$

Contractivity of the gradient controller \implies eq. tracking + regret estimates

 $\mathbf{0}$ u(t) approaches or remains inside

the tube with center $u^*(w(t))$ and radius $\frac{\ell_w}{c^2} \sup_{\tau < t} \|\dot{w}(\tau)\|$

$$\text{Regret } \leq \frac{\ell_x}{c} \left\| u_0 - u^*(w_0) \right\| + \frac{\ell_x \ell_w}{c^2} \mathsf{Length}(\theta_{[0,T]})$$

Selected references from my group

Contracting neural networks:

- A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In *American Control Conference*, pages 1527–1534, Atlanta, USA, May 2022.
- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. IEEE Control Systems Letters, 7:1724–1729, 2023.
- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. *Neural Computation*, 36(6):1163–1197, 2024.

Optimization:

- A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. *Journal of Machine Learning Research*, 25(307):1–33, 2024. [€] URL http://jmlr.org/papers/v25/23-0805.html
- A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A
 contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, June 2023.
 Conditionally accepted
- A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. *IEEE Control Systems Letters*, 7:3896–3901, 2023.
- A. Gokhale, A. Davydov, and F. Bullo. Onlinea optimization via contraction theory. Technical Report, 2024

Conclusion

- canonical properties of contracting dynamics for optimization
 - error and speed Lyapunov functions (and the gradient case)
 - curve length and cumulative error
 - incremental ISS
 - equilibrium tracking and feedforward control
 - dynamic regret
- gradient controller
- local invariance

search for contraction properties

design engineering systems to be contracting

verify correct/safe behavior via known Lipschitz constants