2024 CDC Workshop on “Contraction Theory for Systems, Control, Optimization, and Learning”

Full-Day Workshop, in conjunction with the 2024 Conference on Decision and Control in Milano, Italy

Organizer: Francesco Bullo, UC Santa Barbara

hedul day, D ber 15, 2024, 8:30-17:45
There will be 13 presentations, each lasting a total of 25 minutes. This time includes 20 minutes for the talk, 5 minutes for questions, transition and informal conversations.
There will also be a Rapid Presentations session.
08:30-08:40: Introduction by Francesco Bullo (10 minutes)

Morning Session: 4 talks
= 08:40-0 A Quarter Century of Contraction Analysis, Jean-Jacques Slotine, MIT, USA
= 09:05-09:30: Contraction Theory of Output Regulation Daniele Astolfi, Université de Lyon, France
= 09:30-09:55: Contractivity of Inter Contir and Discrete-time Systems, il Dall'Anese, Boston University, USA
= 09:55-10:20: Computation of Contraction Metrics with Meshfree Collocation, Peter Giesl, University of Sussex, UK

10:20-11:00: Coffee Break (40 minutes), CDC coffee will be served between 10:00 and 11:00

Midday Session: 3 talks
= 11:00-11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli, Imperial College, UK
= 11:25-11:50: Towards Contracting Biologically Plausible Neural Networks Giovanni Russo, Universita di Salerno, Italy
= 11:50-12:15: Youla-Kucera Parametrization in the Contraction Framework, Yu Kawano, Hiroshima University, Japan

12:15-13:45: Group Photo and Lunch Break (1 hour 30 minutes)

Afternoon Session: 3 talks
= 13:45-14:10: A Robust Learning Framework built on Contraction and Monotonicity, Ian Manchester, University of Sydney, Australia
= 14:10-14:35: Compound Matrices and Dynamical Systems (PDF), Michael Margaliot, Tel Aviv University, Israel
= 14:35-15:00: Towards Non-quadratic Absolute Stability Theory, Anton Proskurnikov, Politecnico di Torino, Italy

15:00-15:40: Coffee Break (40 minutes), CDC coffee will be served between 15:00 and 16:00

Evening Session: 3 talks + rapid presentations

15:40-16:05: ion Without C: . , Cambridge University, UK (afternoon speaker)

16:05-16:30: Contractions for Interaction Networks, Eduardo Sontag, NorthEastern University, USA

16:30-16:55: Time-Varying Convex Optimization: A C ion and Equilibri Tracking Approach, Francesco Bullo, UC Santa Barbara, USA
= 17:00-1

5: Rapid Presentation Session, Final Panel Discussion, and Closing Remarks (45 minutes)
u, Presidential Chair Professor, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China, Five Minutes on Phase Theory

= Akash Harapanahalli, URL, School of Electrical and Computer Engineering, Georgia Tech, USA, Linear Differential i for Cc i Cc ion Theory
= Zahra Marvi, URL, Postdoctoral Scientist, Department of Mechanical Engineering, University of Minnesota - Twin cities, USA, Contraction Theory for Safety
Verification

Ramzi Gaagai, URL, Universitat der Bundeswehr Hamburg, Germany, Distributed Safety-Critical Control for Nonlinear Heterogeneous Vehicle Platoons via
Contraction and Regulation Theory

- (Sasha) y , URL, N ical Engineering, University of California, Santa Barbara, Learning Globally Contracting Dynamics from Demonstrations
(PDF)

1/42



contractivity = robust, modular, computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior, no anonymous constants/functions:

o

©00

sharp analysis for numerous example systems
unique globally exponential stable equilibrium
& two natural Lyapunov functions
robustness properties

bounded input, bounded output (iss)

finite input-state gain

robustness margin wrt unmodeled dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Example contracting systems

@ gradient descent flows under strong convexity assumptions
(proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)

@ neural network dynamics under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)

© Lur'e-type systems under assumptions on nonlinearity and LMI conditions
(Lipschitz, incrementally passive, monotone, conic, etc)

Q interconnected systems under contractivity and small-gain assumptions
(Hurwitz Metzler matrices, network small-gain theorem, etc)

© data-driven learned models (imitation learning)

O feedback linearizable systems with stabilizing controllers

@ incremental ISS systems

O Giesl Converse Theorem: nonlinear systems with a locally exponentially stable equilibrium

are contracting with respect to appropriate Riemannian metric
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Example #1: Parametric convex optimization and contracting dynamics

Many convex optimization problems can be solved with contracting dynamics J

& = F(z,0)

Convex Optimization | Contracting Dynamics

Unconstrained m%{n f(z,0) &= —-V,f(x,0)

rER™
min  f(x,0)

Constrained | z€R" & = —x + Projyg)(x — vV f(z,0))
st. zeX()

Composite miRn f(z,0) +g(x,0) | & = —x+prox, , (v — vV f(z,0))
zeR™
min  f(z,0) = —Vaf(z,0)—ATA

Equality zeR™ v f(@,9) ’

st. Az =b(0) A=Az —b(0)
min  f(z,0) i = —Vf(z,0) — ATVM, ) (Az + 7\

Inequality zeR” €r f(l’, ) ’y,b(@)( T+ )7

st. Az < b(0) A =7(=A+ VM, 40)(Az + yN))
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Example #2: Systems in Lur'e form

> & =Ax+ Bu; y=Czxr —

u=V(y) |

For A € R"™*™ B € R™*" and C € R"*™, nonlinear system in Lur’e form
&= Ax+ BY(Cx) =:Fpryre(z)

where U : R™ — R™ is described by an incremental multiplier matrix M, that is,

N
y1— 42 Y1 — Y2 .
M >0  forally;,y2 €R
[\I’(?h) - ‘Il(yg)] [\Il(yl) — \IJ(yQ)] = rall yi, Y2

For P = PT > 0, following statements are equivalent:

@ Fpure infinitesimally contracting wrt || - ||2,p with rate > 0 for each W described by M,

PA+ ATP 4 29pP PB]JF)\[CT onxm]M[C Omsxcm
0 0

> .t.
Q@ J\>0s.t [ BTp O

E

mXxXm I’I’TL mxn Im
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Ongoing education and research on contraction theory

Contraction Theory
for Dynamical Systems

@ Textbook: Contraction Theory for Dynamical Systems, Francesco
Bullo, rev 1.2, Aug 2024. (Book and slides freely available)
https://fbullo.github.io/ctds

@ Tutorial slides: https://fbullo.github.io/ctds

@ Youtube lectures: " Minicourse on Contraction Theory”
https://youtu.be/FQV5PrRHks8 6 lectures, total 12h

Francesco Bullo

" Continuous improvement is
better than delayed perfection”
Mark Twain
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7/42



Contracting Dynamics for Optimization

Francesco Bullo

Center for Control,
Dynamical Systems & Computation

University of California at Santa Barbara
https:/ /fbullo.github.io/ctds

2024 IEEE CDC Contraction Theory Workshop, 2024/12/15. This version: 2024/12/15
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§1. Time-invariant contracting dynamics
@ The continuous-time Banach contraction theorem

§2. Time-varying contracting dynamics
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Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm p(-)

One-sided Lipschitz constant (=~ maximum expansion rate)

osLip(F) =
= sup, pu(DF(z))

(when F differentiable)

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az +a

OSLip2’P1/2(FA) = ,LL2’P1/2 (A) S K
osLipo, (Fa) = pioo(A) < €

ATP+PA=UP

ai + Y lai| < ¢
J7#i
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Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

t

12/42



§1. Time-invariant contracting dynamics

@ Canonical Lyapunov functions

§2. Time-varying contracting dynamics
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Speed and error

osLip(F) = —¢ < 0 and z* is equilibrium

speed: ||[F'(z)] -

error or distance = ||z — z*||
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The two canonical Lyapunov functions and their relationship

Given F : R — R™ and a norm || - || (with induced norm || - || and log norm p(-))

(t) = F(z(t))

If osLip(F) = —¢ < 0 and F(z*) = 0,, then

@ two global Lyapunov functions:

x|z — 2% (error)
z — ||[F(z)] (speed)
@ for each z(0) = zp and t € R>o,
z(t) — || < e [|lzo — 27| (error)
IF(z@)| < e ||F(zo)]| (speed)

© if additionally Lip(F) = ¢,

clle —a*|| < ||[F(z)]| < £z — 27
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A third Lyapunov function for symmetric Jacobians

If additionally DF(z) = DF(z)" for all z, then

1
fx) :—/0 x F(tz)dt

is a global Lyapunov function, c-strongly convex, and F = —V f

E.g.: for Fo(z) = —Qz + q with Q = Q" = 0 and ¢ € R,

zerle—Q 7 Yql3, e |Qr—ql3,  we3eTQr—q'x

More generally, Cost : R” — R such that

x* = argmin Cost(z)
T

leost = Lip(COSt)
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§1. Time-invariant contracting dynamics

@ Cumulative error and curve length

§2. Time-varying contracting dynamics
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Cumulative error and curve length

osLip(F) = —¢ < 0 and z* is equilibrium

oo
curve length: £ = / speed
JO <

- 00
cumulative error: £ = / distance
J0

o 1
Length(x[o,oo)) :/ IIF(z(t))||dt < =||F(zo)]] (curve length)
0 C
o 1
CErr(z)9,00)) = / |lx(t) — =*||dt < E||:c0 —z* (cumulative error)
0

CCost(x[p,o0)) =/ Cost(xz(t)) — Cost(z*)dt < EC—;)StHa:O —2*||  (cumulative cost)
0

v
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§1. Time-invariant contracting dynamics

@ Local contractivity and the small-residual theorem

§2. Time-varying contracting dynamics
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Local contractivity theory

Example contour plot of = — u(DF(x))
Red values are points x where p(DF(z)) < 0
Blue values are points where p(DF(z)) > 0

contracting set S := red region
closed ball B,.(z") = {z such that ||z — zf|| <r}

Lemma: if contracting region S is invariant and convex,
then restrict F to S and usual contractivity properties apply

@ invariance of contracting set 57

@ convexity of contracting set 57
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Local contractivity theory

The small-residual theorem
For & = F(x) infinitesimally contracting with rate ¢ > 0 in region S

B.(z")c s and |F(zD)| < er = B, (z") is invariant

Intuition: if |F(zh)|| /e < r,
then solution from ! remains inside B, (z!) and converges to equilibrium point
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§1. Time-invariant contracting dynamics

§2. Time-varying contracting dynamics
@ Incremental input-state-stability
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Time-varying contracting dynamics

x(t)

Yo ¢
tube centered at x(t) with radius - sup 162 (7) =6y ()]
217(): | T€[0,t]
(t) = F(z(t), 02(t))
§(t) = Fy(t), 0y(t))

If 116, (t) — 0, ()] < & for all ¢,

)
then y(t) approaches or remains inside  the tube with center x(¢) and radius —
c
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Incremental input-state-stability

For parameter-dependent vector field F : R” x R? — R™ and differentiable 6 : R>g — © C R?

Assume there exist norms || - ||x and || - || s.t.
e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in @
@ Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Incremental ISS. Any two soltns: z(t) with input 6, and y(t) with input 6,

. ¢
() —y@) < e Flzo —yoll + ESl[lopt]ll%(T)—%(T)ll (error)
T7€|0,

v
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§1. Time-invariant contracting dynamics

§2. Time-varying contracting dynamics

@ Equilibrium tracking and tube invariance
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Equilibrium tracking and tube invariance

YA .
tube centered at z* (A(t)) with radius — sup [|0(7)]|
- C” refo,t]
I

(t) = F(x(t), 0(t))

x*(0(t)) = equilibrium trajectory

If |0(t)|] < & for all ¢,

1%
then z(t) approaches or remains inside  the tube with center 2*(6(t)) and radius 2
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Equilibrium tracking

For parameter-dependent vector field F : R x R? — R™ and differentiable 6 : R>g — © C R?

Assume there exist norms || - || and || - || s.t.
@ contractivity wrt z: osLip,(F) < —¢ <0, uniformly in 6
@ Lipschitz wrt 0: Lipg(F) < ¢, uniformly in z

Theorem: Equilibrium tracking for contracting dynamics.

The equilibrium map z*(+) is Lipschitz with constant — and

lz(t)—z* (@)l < e™|lzo—a*(60)| + Céjggnémn (error)
IF@,60)] < e [F(so,00)]| + % sup 0] (speed)
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§1. Time-invariant contracting dynamics

§2. Time-varying contracting dynamics

@ Exact equilibrium tracking with feedforward control
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Exact equilibrium tracking with feedforward control

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ © C R

(t) = F(z(),0(1))
@ contractivity wrt z: osLip,(F) < —c <0, uniformly in

@ Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

If additionally F is differentiable in both arguments, then inverse function theorem

Dyz*(0) = —(D,F(z*(0),0)) " DgF(z*(6), 0).
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Exact equilibrium tracking with feedforward control

Time-varying contracting dynamics with feedforward prediction

i(t) = F(@(t), 0(t)) — (DuF(x(2), 0(¢))) ~ DoF ((2), 6(¢)) 6(2)

Asymptotically exact equilibrium tracking

IF (=, 6())]

1 /, = Lip,, ) )
[z(t) —2*(0@)] < Ee_“IIF(:Bo,Ho)II < —¢ @0 — x*(60) | (error)

IN

e~ |F(z0, 600) || (speed)

Eg.,if F=—-V,f, then i =—V,f(z,0)+ (Hess f(z, 0))_1D9sz(:n, 0)6
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Exact equilibrium tracking with feedforward control — discrete time

Conjecture: no exact tracking is possible in discrete time

A. Simonetto and E. Dall'Anese. Prediction-correction algorithms for time-varying constrained optimization. /EEE Transactions on Signal
Processing, 65(20):5481-5494, 2017. 4
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§2. Time-varying contracting dynamics
@ Incremental input-state-stability
@ Equilibrium tracking and tube invariance
@ Exact equilibrium tracking with feedforward control
@ Dynamic regret
@ Gradient dynamics and online feedback optimization
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Dynamic regret

T
CErr(x z(0,7]: 0o, T]) = /0 HT(f) -z (9(75))Hdt (cumulative error)

T
Regret (20,71, 0j0.77) = /0Cost(m(t),@(t))—Cost(x*(&(t)),@(t))dt (dynamic regret)

Lip(z*)=£/c ¢ T Y
Note: Length(z, ) =/ l2*(0(t))||dt < E/ HQ(t)Hdt:ELength(H[o,T])
0
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Dynamic regret

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ © C R

Assume there exist norms || - || and || - || s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Cumulative tracking error

1 V4
CErr(xoﬁ[O’T]) < EHxO = x*(HO)H + c—2Length (0[07T])

Dynamic regret (for a Cost(x, ) that is {cost-Lipschitz in x)

Regret(xo,Q[O,T]) < EcostCErr(a:o,H[o’T}) = (’)(l—i-Length(H[o’T}))
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§1. Time-invariant contracting dynamics

§2. Time-varying contracting dynamics

@ Gradient dynamics and online feedback optimization
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Gradient amics and online feedback optimization

Solving optimization problems via dynamical systems

l w(t)

o u Plant y
4 = Optimizer(,5) | (jirear, stable, fast)

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
optimization on manifolds (Brockett 1991)

@ online and dynamic feedback optimization (Dall'Anese, Dorfler, Simonetto, ... )

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking
approach. /EEE Transactions on Automatic Control, June 2023. 4. Conditionally accepted

L. Cothren, F. Bullo, and E. Dall’Anese. Online feedback optimization and singular perturbation via contraction theory. SIAM Journal on
Control and Optimization, Aug. 2024. 4. Submitted
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http://dx.doi.org/10.48550/arXiv.2305.15595
http://dx.doi.org/10.48550/arXiv.2310.07966

Motivation: Optimization-based control

© parametric optimization

© online feedback optimization
© model predictive control
@ control barrier functions

o

F

E

Transportation systems
[Bianchin et al '20]
[Cothren et al’22]

e

Feedback
optimization

Robotics
and vehicles

~ E

[Lawrence et al’21]

[Terpin et al '21]

[Cothren et al '22]
Compressor stations
[Zagorowska et al’23]

~4  Epidemic control
< '{ [Bianchin et al'22] @
¢

Power
systems

Jokic et al'09]
Bolognani-Zampieri'13]
Hirata-Hespanha-Uchida'14]
Lietal'14]

Dall’Anese et al'15]

Gan-Low’16]
Dall’Anese-Simonetto’18]
Menta et al'18]

Ortmann et al’20]

Picallo et al’22]

... and many others

[
[
[
[
[
[Bernstein et al’15]
[
[
[
[
[

parametric QP. YALMIP + Multi-Parametric Toolbox

Online feedback optimization. Courtesy of Emiliano Dall’Anese.
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Parametric and time-varying convex optimization

miné(z) <<= 1 =F() O I

Parametric and time-varying convex optimization
© parametric contracting dynamics for parametric convex optimization

miné(z,0) < &=F(z,0) A ()

@ contracting dynamics for time-varying strongly-convex optimization

min € (z,0(t)) <= @ =F(z,0(t)) ey 1 (0(t))

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking
approach. /EEE Transactions on Automatic Control, June 2023. 4. Conditionally accepted
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Application: Online feedback optimization

l w(t)

U Plant Y

’_‘> @ = Optimizer(u, y) (linear, stable, fast)

min costy (u) + costa(y) . @ = Optimizer(u, y)
subj. to y = Plant(u, w(t)) y = Plant(u, w(t))
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Gradient controller

Online feedback optimization
uw*(w(t)) = argmin ¢(u) + ¥(y(t)) (c-strongly convex ¢, convex 1))
subj to y(t) = Y,u+ Y,w(t)

gradient controller

U = Foradc(u,w) = =V (o(u) + ¥(y(t)) = —Vé(u) — Y, Vi (Y,u + Yy,w)

Contractivity of the gradient controller —> eq. tracking + regret estimates

© u(t) approaches or remains inside

o .
the tube with center u*(w(t)) and radius = Sup || ()]
<t

Ly * Lyly
Q Regret < ?Huo—u (wo) || + 7Length(6[o’ﬂ)
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Selected references from my group

Contracting neural networks:

@ A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks.
In American Control Conference, pages 1527-1534, Atlanta, USA, May 2022. 4

@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks
with symmetric weights. /EEE Control Systems Letters, 7:1724-1729, 2023. 4

@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse
reconstruction. Neural Computation, 36(6):1163-1197, 2024. 4
Optimization:

@ A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and
applications. Journal of Machine Learning Research, 25(307):1-33, 2024. 4. URL
http://jmlr.org/papers/v25/23-0805.html

@ A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A
contraction and equilibrium tracking approach. IEEE Transactions on Automatic Control, June 2023. &,
Conditionally accepted

@ A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking
dynamics. |[EEE Control Systems Letters, 7:3896-3901, 2023. L

@ A. Gokhale, A. Davydov, and F. Bullo. Onlinea optimization via contraction theory. Technical Report, 2024
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http://dx.doi.org/10.48550/arXiv.2303.11273
http://jmlr.org/papers/v25/23-0805.html
http://dx.doi.org/10.48550/arXiv.2305.15595
http://dx.doi.org/10.1109/LCSYS.2023.3341987

Conclusion

@ canonical properties of contracting dynamics for optimization
error and speed Lyapunov functions (and the gradient case)
curve length and cumulative error
incremental ISS
equilibrium tracking and feedforward control
dynamic regret

@ gradient controller

@ local invariance

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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