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Introduction to Integral Action

Goal of feedback: achieve a prescribed goal in presence of model uncertainties

For set-point tracking: P, PI, PID

Example of standard PI controller:

Taught in any basic course of control

Industrial applications

D. Astolfi
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Some milestones

1868: James Clerk Maxwell: “On Governors”
Scottish physicist and mathematician

1911: Elmer Ambrose Sperry: PID controller using a marine gyro compass for
automatic steering of ships.
American inventor and entrepreneur

1922: Minorsky: “Directional stability of automatically steered bodies”
American mathematician
“the second class of controllers (= PI) has the remarkable result that such a
(constant) disturbance has no influence upon the device”

1931: Foxboro, USA (Schneider Electric Company since 2014): pneumatic differential
PI controller named Stabilog Model 10

1942: Ziegler-Nichols method for optimal tuning of a PID controller
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Output Regulation Theory

Integral action as a special case of robust output regulation (servomechanism problem)

ẇ = Sw w : perturbations and references
ẋ = Ax + Bu + Pw
e = Cx + Qw

Regulation objective: lim
t→∞

e(t) = 0

1976: Francis, Wohnam and Davison: the internal model principle

“the output regulation property is insensitive to plant parameter variations only
if the controller utilizes feedback of the regulated variable, and incorporates
in the feedback path a suitably reduplicated model of the dynamic structure
of the exogenous signals which the regulator is required to process”

=⇒ Necessity and Sufficiency of an integral action for set-point tracking and
constant perturbation rejection

The adjective “robust” has a different meaning w.r.t. to robust control theory

From 80’s: Development of nonlinear output regulation theory
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How the Integral Action works

ẋ = f (x , u, d)
y = h(x)

u

d

−
y

r

e

x : state

u: control

e: regulated output

(r , d): constant references and
perturbations
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How the Integral Action works

ẋ = f (x , u, d)
y = h(x)

u

d

−
y

r ∫
e z

1 Add the integral action on the regulated output e

2 Design a feedback so that the for a given pair (r , d), the closed-loop system
admits an asymptotically stable equilibrium (x◦, z◦)

3 On the equilibrium (x◦, z◦), we have

0 = ż = e ⇐⇒ h(x◦) = r
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Main difficulties

Design of a stabilizing feedback for the extended system (x , z) to guarantee the
existence of an equilibrium

domain of attraction (DoA)?

uniformity with respect to (d , r)?

Persistence of an equilibrium in presence of model uncertainties ∆f ,∆h
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Revising the linear approach

Consider the linear system{
ẋ = Ax + Bu + d
e = Cx − r

x ∈ Rn, u ∈ Rm

e ∈ Rp

Theorem

Suppose that

(A,B) is stabilizable;

non-resonance condition rank

(
A B
C 0

)
= n + p holds1.

Then, there exists K , L such that the controller{
ż = e

u = Kx + Lz

solves the robust output regulation problem, i.e. limt→∞ e(t) = 0 for all initial
conditions (x0, z0) ∈ Rn × Rp , all constant references and disturbances (r , d) and for
small model perturbations ∆A,∆B ,∆C .

1This conditions is equivalent to ask that the transfer function between u and e has no zeros at the origin.
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Sketch of the proof (1)

(A,B) stabilizable and the non-resonance condition implies the extended system((
A 0
C 0

)
,

(
B
0

))

is stabilizable, i.e., there exists K , L so that F :=

(
A+ BK BL

C 0

)
is Hurwitz.

For any (d , r), the system{
ẋ = (A+ BK)x + BLz + d

ż = Cx − r

admits an equilibrium (x◦, z◦) given by

0 =

(
A+ BK BL

C 0

)(
x◦

z◦

)
+

(
d
−r

)
=⇒

(
x◦

z◦

)
= F−1

(
d
−r

)

This equilibrium (x◦, z◦) is GAS due to the stability of F . This can be shown in
error coordinates (x − x◦, z − z◦).
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ẋ = (A+ BK)x + BLz + d
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Sketch of the proof (2)

Note that if (
A+ BK BL

C 0

)
is Hurwitz, for small perturbations ∆A,∆B ,∆C , stability of(

(A+∆A) + (B +∆B)K (B +∆B)L
(C +∆C ) 0

)
is preserved..

.. and so the existence of a stable equilibrium on which e = 0!

=⇒ The design is robust and asymptotic regulation is preserved in presence of
model uncertainties!

D. Astolfi

Contraction Theory of Output Regulation 10 / 25



Introduction The Linear Case Forwarding Design Integral Action and Contraction Conclusions

Sketch of the proof (2)

Note that if (
A+ BK BL

C 0

)
is Hurwitz, for small perturbations ∆A,∆B ,∆C , stability of(

(A+∆A) + (B +∆B)K (B +∆B)L
(C +∆C ) 0

)
is preserved..

.. and so the existence of a stable equilibrium on which e = 0!

=⇒ The design is robust and asymptotic regulation is preserved in presence of
model uncertainties!

D. Astolfi

Contraction Theory of Output Regulation 10 / 25



Introduction The Linear Case Forwarding Design Integral Action and Contraction Conclusions

Takeaway message from linear world

Linear lesson:

The design of the feedback is independent of (d , r)

Stability guarantees the existence of a unique equilibrium for any (d , r) and in
presence of model uncertainties

Question:

Can we extend such a paradigm to the nonlinear ODEs?

D. Astolfi
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A Stabilization of cascade systems

Consider a system of the form{
ẋ = f (x) + g(x)u

ż = h(x)

Problem: design a feedback u = α(x , z) guaranteeing origin GAS (and LES)

A possible solution: forwarding design

see, e.g., Praly, Mazenc, A. Astolfi, Ortega, Teel, Sepulchre, Kokotovic, Kristic, ..

Remark: a necessary condition for the existence of α is the existence of a α0:

ẋ = f (x) + g(x)α0(x) is GAS

In the following we suppose this step has already been done:

ẋ = f (x) is GAS and LES

D. Astolfi
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Forwarding design: main ideas

Consider a system of the form{
ẋ = f (x) + g(x)u

ż = h(x)

Let x be the fast stable dynamics and z the slow one

If the origin of ẋ = f (x) is GAS and LES, we can define an invariant-manifold for
z = M(x) satisfying

Lf M(x) :=
∂M

∂x
(x)f (x) = h(x)

Consider the change of coordinates ζ := z −M(x) giving-{
ẋ = f (x) + g(x)u

ζ̇ = −LgM(x)u

D. Astolfi
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Forwarding design: main ideas (2)

We have {
ẋ = f (x) + g(x)u

ζ̇ = −LgM(x)u

With the Lypaunov function W (x , ζ) = V (x) + 1
2
ζ2 we obtain

Ẇ ≤ Lf V (x) + (LgV (x)− ζLgM(x)) u

=⇒ Select u = −(LgV (x)− ζLgM(x)) to obtain a negative derivative

We obtain
Ẇ ≤ Lf V (x)− u2

If LgM(0) ̸= 0 we can conclude stability of the origin (x , ζ) = 0.
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Forwarding design: main result

Lemma (Existence of the Invariant Manifold)

Suppose

The origin of ẋ = f (x) is GAS and LES, f (0) = 0, h(0) = 0

The non-resonance condition CA−1B ̸= 0 holds, with

A :=
∂f

∂x
(0), B := g(0), C :=

∂h

∂x
(0).

Then, there exists a C2 function M satisfying M(0) = 0,
∂M

∂x
(0) = CA−1 and 2

Lf M(x) = h(x), LgM(0) ̸= 0.

Theorem (Forwarding Stabilization)

There exists a feedback u = α(x , z) such that the origin of

ẋ = f (x) + g(x)α(x , z), ż = h(x),

is GAS and LES.

2LgM(0) is the DC-gain at the origin of ẋ = f (x) + g(x)u, y = h(x).
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Forwarding and perturbations

Consider now the perturbed system:

ẋ = f (x , d) + g(x , d)α(x , z)

ż = h(x , r)

with α designed with the forwarding as shown before.

When (d , r) = 0 then the origin is GAS and LES

Can we conclude the existence of an equilibrium for (d , r) ̸= 0 ?

In general, only for small values, i.e. |(d , r)| ≤ ε

Total stability: equilibria are preserved under small perturbations

[Astolfi Praly, TAC 2017]

To achieve global results, we need stronger properties:

=⇒ Contraction
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Towards the existence of a “global” controller

Consider again the closed-loop system and use a compact notation{
ẋ = f (x , α(x , z), d)
ż = h(x)− r

=⇒ ξ̇ = F (ξ, (d , r))

Global regulation can be obtained if the vector field F admits a fixed point for
any (d , r)

Main Idea: use Banach fixed point theorem..

=⇒ we need F to be a (uniform) contraction
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ẋ = f (x , α(x , z), d)
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Some highlights on Contraction Theory

Contraction with Riemannian metric

The vector field F : Rn → Rn is contracting if (and only if, for F C2 globally
Lipschitz) there exists a (Riemannian) metric P : Rn → Rn×n taking SPD values and
p̄, p, q > 0 such that3

pI ≤ P(ξ) ≤ p̄I , LFP(ξ) := Ṗ(ξ) + P(ξ)
∂F

∂ξ
(ξ) +

∂F

∂ξ
(ξ)⊤P(ξ) ⪯ −qI , ∀ξ ∈ Rn.

Remark: generalization of Lyapunov Matrix Inequality PA+ A⊤P ⪯ −Q

Contraction and Incremental Stability

Suppose F is a contraction. Then ∃k, λ > 0 such that solutions to system ξ̇ = F (ξ)
satisfy

|ϕ(ξa, t)− ϕ(ξb, t)| ≤ k |ξa − ξb| exp(−λt) ∀ξa, ξb ∈ Rn.

In other words, the system is Incrementally Globally Exponentially Stable (δGES).

3The notation Ṗ defines a matrix with its ij-th elements defined as Ṗij =
∂Pij
∂ξ

F (ξ)

D. Astolfi
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Contraction and equilibria

Incremental Stability and Equilibria

Let ξ̇ = F (ξ) be δGES:

|ϕ(ξa, t)− ϕ(ξb, t)| ≤ k|ξa − ξb| exp(−λt) ∀ ξa, ξb ∈ Rn.

Then there exists a unique equilibrium ξ◦ ∈ Rn which is globally exponentially stable.
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|ϕ(ξa, t)− ϕ(ξb, t)| ≤ k|ξa − ξb| exp(−λt) ∀ ξa, ξb ∈ Rn.

Then there exists a unique equilibrium ξ◦ ∈ Rn which is globally exponentially stable.

Sketch of the proof:

Select τ such that k exp(−λτ) < 1.

The application ξ 7→ ϕ(ξ, τ) defines a contraction:

|ϕ(ξa, τ)− ϕ(ξb, τ)| < |ξa − ξb| ∀ ξa, ξb ∈ Rn.

Banach fixed point theorem gives existence and uniqueness of ξ◦.
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Contraction and equilibria

Incremental Stability and Equilibria

Let ξ̇ = F (ξ) be δGES:

|ϕ(ξa, t)− ϕ(ξb, t)| ≤ k|ξa − ξb| exp(−λt) ∀ ξa, ξb ∈ Rn.

Then there exists a unique equilibrium ξ◦ ∈ Rn which is globally exponentially stable.

In order to apply previous theorem we need the system{
ẋ = f (x , α(x , z), d)
ż = h(x)− r

⇐⇒ ξ̇ = F (ξ, (d , r))

to be δGES uniformly in (d , r).

=⇒ we need a uniform contraction

Ṗ(ξ, (d , r)) + P(ξ)
∂F

∂ξ
(ξ, (d , r)) +

∂F

∂ξ
(ξ, (d , r))⊤P(ξ) ≤ −qI ∀ ξ, (d , r)
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Killing vector and uniform contraction

Killing vector

Given a 2-tensor P : Rn → Rn×n, a C1 function G : Rn → Rm is said to be a Killing
vector for P if LGP(ξ) = 0 for all ξ ∈ Rn.

Consider a system
ξ̇ = F (ξ) + G(ξ)w

Suppose there exist a P such that that

F is contractive w.r.t P: LFP(ξ) ⪯ −qI

G is a Killing vector for P: LGP(ξ) = 0

Then,
LFP(ξ) + LGP(ξ)w ⪯ −qI ∀ ξ,w

=⇒ the system defines a uniform contraction =⇒ is δGES uniformly ∀w !

Problem: design of the feedback α(x , z) satisfying previous conditions
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Sufficient conditions for contractive forwarding

Consider the system {
ẋ = f (x) + g(x)(u + d)

ż = h(x)− r

Theorem (Incremental Uniform Global Forwarding Stabilization)

Suppose that

f is contraction4 for P and g is a Killing for P

there exists a function M : Rn → R and a constant γ > 0 satisfying

Lf M(x) = h(x), LgM(x) = γ

Then, for any k > 0 the control law

u = k
[
z −M(x)

]
makes the closed-loop system uniformly contractive and lim

t→∞
h(x) = r for any initial

condition (x0, z0) ∈ Rn × R and any (d , r).

[Giaccagli, Astolfi Andrieu, Marconi, TAC 2022]
4This can be also obtained after a preliminary state-feedback with Control Contraction Metrics:

Lf P(x) + P(x)g(x)g(x)⊤P(x) ⪯ −qI
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Some Remarks

The first conditions corresponds to the stabilizability of (A,B) in the proposed
contractive framework

The second condition correspond to a global uniform non-resonance condition,
i.e., a controllability (contractive) condition for the extended system (x , z)

Design based on the construction of a contraction metric for the closed-loop
dynamics

✓ The control law depends on the solution of a PDE

Lf M(x) = h(x)

but there exist alternative designs to rely only on an approximation of M

✗ Conditions are restrictive due to the nature of the problem we aim at solving:

=⇒ The result is global in the initial conditions and in (d , r)

✗ We considered only disturbances d satisfying a matching-condition
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Conclusions

Takeaway messages:

We proposed sufficient conditions for the design of a global integral action based
on forwarding and contraction analysis

Integral action has many applications: PI-control, tracking, and also optimization

min f (x)
Ax = b

=⇒
ẋ = ∇f (x)− A⊤λ

λ̇ = Ax − b

16:30–16:55: Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking

Approach, Francesco Bullo

Possible extension to periodic references/disturbances and harmonic regulation
(no time in this presentation)

ẋ = f (x) + g(x)(u + d(t))

e = h(x)− r(t)

d(t + T ) = d(t)

r(t + T ) = r(t)

[Giaccagli, Astolfi Andrieu, Marconi, TAC 2024]
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Conclusions (2)

Open Problems:

Can we relax δGES with δGAS to ensure the existence of an equilibrium?

Kato, Astolfi, Andrieu, Praly, ‘‘Incremental global asymptotic stability

equals incremental global exponential stability - but at equilibria’’, NOLCOS

2025

Is the Killing vector condition necessary for global uniform contractions?

Duvall, Sontag ‘‘Global exponential stability or contraction of an unforced

system do not imply entrainment to periodic inputs’’. ACC 2024

Can we relax contraction with 2-contraction to ensure the existence of an
equilibrium?

Giaccagli, Lorenzetti, Astolfi, Andrieu, ‘‘PI-control for non-linear systems

with multiple equilibria via 2-contraction’’, NOLCOS 2025

what is 2-contraction?

11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and
Applications, David Angeli.

D. Astolfi

Contraction Theory of Output Regulation 24 / 25



Introduction The Linear Case Forwarding Design Integral Action and Contraction Conclusions

Conclusions (2)

Open Problems:

Can we relax δGES with δGAS to ensure the existence of an equilibrium?

Kato, Astolfi, Andrieu, Praly, ‘‘Incremental global asymptotic stability

equals incremental global exponential stability - but at equilibria’’, NOLCOS

2025

Is the Killing vector condition necessary for global uniform contractions?

Duvall, Sontag ‘‘Global exponential stability or contraction of an unforced

system do not imply entrainment to periodic inputs’’. ACC 2024

Can we relax contraction with 2-contraction to ensure the existence of an
equilibrium?

Giaccagli, Lorenzetti, Astolfi, Andrieu, ‘‘PI-control for non-linear systems

with multiple equilibria via 2-contraction’’, NOLCOS 2025

what is 2-contraction?

11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and
Applications, David Angeli.

D. Astolfi

Contraction Theory of Output Regulation 24 / 25



Introduction The Linear Case Forwarding Design Integral Action and Contraction Conclusions

Conclusions (2)

Open Problems:

Can we relax δGES with δGAS to ensure the existence of an equilibrium?

Kato, Astolfi, Andrieu, Praly, ‘‘Incremental global asymptotic stability

equals incremental global exponential stability - but at equilibria’’, NOLCOS

2025

Is the Killing vector condition necessary for global uniform contractions?

Duvall, Sontag ‘‘Global exponential stability or contraction of an unforced

system do not imply entrainment to periodic inputs’’. ACC 2024

Can we relax contraction with 2-contraction to ensure the existence of an
equilibrium?

Giaccagli, Lorenzetti, Astolfi, Andrieu, ‘‘PI-control for non-linear systems

with multiple equilibria via 2-contraction’’, NOLCOS 2025

what is 2-contraction?

11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and
Applications, David Angeli.

D. Astolfi

Contraction Theory of Output Regulation 24 / 25



Introduction The Linear Case Forwarding Design Integral Action and Contraction Conclusions

Thanks and references

Mattia Giaccagli Vincent Andrieu Lorenzo Marconi Laurent Praly
Univ. of Lorraine CNRS - Univ. Lyon Univ. of Bologna MinesParisTech

Ass. Prof. Research Director Full Prof. Prof. Emeritus

Astolfi, Praly, ‘‘Integral Action in Output Feedback for multi-input

multi-output nonlinear systems’’, IEEE TAC 2017

Giaccagli, Astolfi, Andrieu and Marconi, ‘‘Sufficient Conditions for

Global Integral Action via Incremental Forwarding for Input-Affine

Nonlinear Systems’’, IEEE TAC 2022

M. Giaccagli, D. Astolfi, V. Andrieu and L. Marconi, ‘‘Incremental

stabilization of cascade nonlinear systems and harmonic regulation:

a forwarding-based design’’, IEEE TAC 2024

D. Astolfi

Contraction Theory of Output Regulation 25 / 25


	Introduction
	Introduction

	The Linear Case
	Linear

	Forwarding Design
	Towards a Global DoA

	Integral Action and Contraction
	Contraction

	Conclusions
	Conclusions


