The	Linear	Ca
000	200	

Forwarding Design

Integral Action and Contraction

Contraction Theory of Output Regulation

Daniele Astolfi

LAGEPP, CNRS, Université Lyon 1, Lyon, France

Contraction Theory for Systems, Control, Optimization, and Learning 63rd IEEE CDC, December 15, 2024

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Outline				

1 Introduction

2 The Linear Case

3 Forwarding Design

4 Integral Action and Contraction

5 Conclusions

Introduction	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Outline				

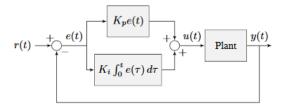
1 Introduction

- 2 The Linear Case
- **3** Forwarding Design
- 4 Integral Action and Contraction
- **5** Conclusions

D. Astolfi

Introduction 00000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Introducti	on to Integral A	ction		

- Goal of feedback: achieve a prescribed goal in presence of model uncertainties
- For set-point tracking: P, PI, PID
- Example of standard PI controller:



- Taught in any basic course of control
- Industrial applications

Introduction	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Some milest	ones			

- 1868: James Clerk Maxwell: "On Governors" Scottish physicist and mathematician
- 1911: Elmer Ambrose Sperry: PID controller using a marine gyro compass for automatic steering of ships. American inventor and entrepreneur
- 1922: Minorsky: "Directional stability of automatically steered bodies" American mathematician "the second class of controllers (= PI) has the remarkable result that such a (constant) disturbance has no influence upon the device"
- 1931: Foxboro, USA (Schneider Electric Company since 2014): pneumatic differential PI controller named Stabilog Model 10
- 1942: Ziegler-Nichols method for optimal tuning of a PID controller

Introduction	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Output Re	gulation Theory			

Integral action as a special case of robust output regulation (servomechanism problem)

 $\dot{w} = Sw$ w : perturbations and references $\dot{x} = Ax + Bu + Pw$ e = Cx + Qw

Regulation objective: $\lim_{t \to \infty} e(t) = 0$

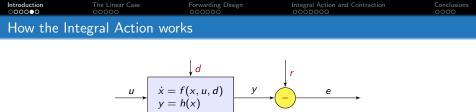
1976: Francis, Wohnam and Davison: the internal model principle

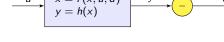
"the output regulation property is insensitive to plant parameter variations only if the controller utilizes feedback of the regulated variable, and incorporates in the feedback path a suitably reduplicated model of the dynamic structure of the exogenous signals which the regulator is required to process"

 \implies Necessity and Sufficiency of an integral action for set-point tracking and constant perturbation rejection

The adjective "robust" has a different meaning w.r.t. to robust control theory

From 80's: Development of nonlinear output regulation theory

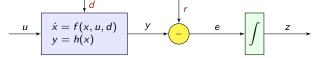




x: state

u: control

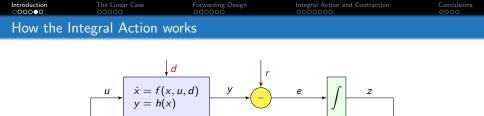
- e: regulated output
- (r, d): constant references and perturbations



1 Add the integral action on the regulated output e

- Design a feedback so that the for a given pair (r, d), the closed-loop system admits an asymptotically stable equilibrium (x°, z°)
- **B** On the equilibrium (x°, z°) , we have

$$0 = \dot{z} = e \qquad \Longleftrightarrow h(x^{\circ}) = r$$

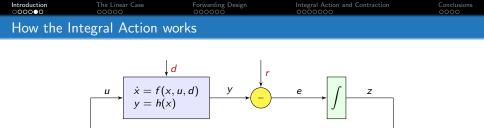


- Add the integral action on the regulated output e
- **2** Design a feedback so that the for a given pair (r, d), the closed-loop system admits an asymptotically stable equilibrium (x°, z°)

Feedback

3 On the equilibrium (x°, z°) , we have

$$0 = \dot{z} = e \qquad \iff h(x^\circ) = r$$



Feedback

1 Add the integral action on the regulated output e

- **2** Design a feedback so that the for a given pair (r, d), the closed-loop system admits an asymptotically stable equilibrium (x°, z°)
- **3** On the equilibrium (x°, z°) , we have

$$0 = \dot{z} = e \qquad \iff h(x^{\circ}) = r$$

D. Astolfi

Introduction	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Main difficu	lties			

- Design of a stabilizing feedback for the extended system (x, z) to guarantee the existence of an equilibrium
 - domain of attraction (DoA)?
 - uniformity with respect to (d, r)?
- Persistence of an equilibrium in presence of model uncertainties Δ_f, Δ_h

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	●0000	000000		0000
Outline				

1 Introduction

2 The Linear Case

3 Forwarding Design

4 Integral Action and Contraction

5 Conclusions

D. Astolfi

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	○●000	000000		0000
Revising th	ne linear approac	:h		

Consider the linear system

$$\begin{cases} \dot{x} = Ax + Bu + d & x \in \mathbb{R}^n, \ u \in \mathbb{R}^m \\ e = Cx - r & e \in \mathbb{R}^p \end{cases}$$

Theorem

Suppose that

non-resonance condition rank
$$\begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = n + p \ holds^1$$
.

Then, there exists K, L such that the controller

$$\begin{cases} \dot{z} = e \\ u = Kx + Lz \end{cases}$$

solves the robust output regulation problem, i.e. $\lim_{t\to\infty} e(t) = 0$ for all initial conditions $(x_0, z_0) \in \mathbb{R}^n \times \mathbb{R}^p$, all constant references and disturbances (r, d) and for small model perturbations $\Delta_A, \Delta_B, \Delta_C$.

¹This conditions is equivalent to ask that the transfer function between u and e has no zeros at the origin.

Introduction 000000	The Linear Case ○●000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Revising th	ne linear approad	ch		

Consider the linear system

$$\begin{cases} \dot{x} = Ax + Bu + d & x \in \mathbb{R}^n, \ u \in \mathbb{R}^m \\ e = Cx - r & e \in \mathbb{R}^p \end{cases}$$

Theorem

Suppose that

non-resonance condition rank
$$\begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = n + p \ holds^1$$
.

Then, there exists K, L such that the controller

$$\begin{cases} \dot{z} = e \\ u = Kx + Lz \end{cases}$$

solves the robust output regulation problem, i.e. $\lim_{t\to\infty} e(t) = 0$ for all initial conditions $(x_0, z_0) \in \mathbb{R}^n \times \mathbb{R}^p$, all constant references and disturbances (r, d) and for small model perturbations $\Delta_A, \Delta_B, \Delta_C$.

¹This conditions is equivalent to ask that the transfer function between u and e has no zeros at the origin.

(A, B) stabilizable and the non-resonance condition implies the extended system

$$\left(\begin{pmatrix} A & 0 \\ C & 0 \end{pmatrix}, \begin{pmatrix} B \\ 0 \end{pmatrix} \right)$$

is stabilizable, i.e., there exists K, L so that $F := \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix}$ is Hurwitz.

■ For any (*d*, *r*), the system

$$\begin{cases} \dot{x} = (A + BK)x + BLz + d\\ \dot{z} = Cx - r \end{cases}$$

admits an equilibrium (x°, z°) given by

$$0 = \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix} \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} + \begin{pmatrix} d \\ -r \end{pmatrix} \implies \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} = F^{-1} \begin{pmatrix} d \\ -r \end{pmatrix}$$

This equilibrium (x°, z°) is GAS due to the stability of *F*. This can be shown in error coordinates $(x - x^{\circ}, z - z^{\circ})$.

(A, B) stabilizable and the non-resonance condition implies the extended system

$$\left(\begin{pmatrix} A & 0 \\ C & 0 \end{pmatrix}, \begin{pmatrix} B \\ 0 \end{pmatrix} \right)$$

is stabilizable, i.e., there exists K, L so that $F := \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix}$ is Hurwitz.

For any (d, r), the system

$$\begin{cases} \dot{x} = (A + BK)x + BLz + d\\ \dot{z} = Cx - r \end{cases}$$

admits an equilibrium (x°, z°) given by

$$0 = \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix} \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} + \begin{pmatrix} d \\ -r \end{pmatrix} \implies \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} = F^{-1} \begin{pmatrix} d \\ -r \end{pmatrix}$$

This equilibrium (x°, z°) is GAS due to the stability of *F*. This can be shown in error coordinates $(x - x^{\circ}, z - z^{\circ})$.

(A, B) stabilizable and the non-resonance condition implies the extended system

$$\left(\begin{pmatrix} A & 0 \\ C & 0 \end{pmatrix}, \begin{pmatrix} B \\ 0 \end{pmatrix} \right)$$

is stabilizable, i.e., there exists K, L so that $F := \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix}$ is Hurwitz.

■ For any (*d*, *r*), the system

$$\begin{cases} \dot{x} = (A + BK)x + BLz + d \\ \dot{z} = Cx - r \end{cases}$$

admits an equilibrium (x°, z°) given by

$$0 = \begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix} \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} + \begin{pmatrix} d \\ -r \end{pmatrix} \implies \begin{pmatrix} x^{\circ} \\ z^{\circ} \end{pmatrix} = F^{-1} \begin{pmatrix} d \\ -r \end{pmatrix}$$

This equilibrium (x°, z°) is GAS due to the stability of *F*. This can be shown in error coordinates $(x - x^{\circ}, z - z^{\circ})$.

Note that if

$$\begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix}$$

is Hurwitz, for small perturbations $\Delta_A, \Delta_B, \Delta_C$, stability of

$$\begin{pmatrix} (A + \Delta_A) + (B + \Delta_B)K & (B + \Delta_B)L \\ (C + \Delta_C) & 0 \end{pmatrix}$$

is preserved ..

.. and so the existence of a stable equilibrium on which e = 0!

 \implies The design is robust and asymptotic regulation is preserved in presence of model uncertainties!

Note that if

$$\begin{pmatrix} A + BK & BL \\ C & 0 \end{pmatrix}$$

is Hurwitz, for small perturbations $\Delta_A, \Delta_B, \Delta_C$, stability of

$$\begin{pmatrix} (A + \Delta_A) + (B + \Delta_B)K & (B + \Delta_B)L \\ (C + \Delta_C) & 0 \end{pmatrix}$$

is preserved ..

.. and so the existence of a stable equilibrium on which e = 0!

 \Longrightarrow The design is robust and asymptotic regulation is preserved in presence of model uncertainties!

Linear lesson:

- The design of the feedback is independent of (d, r)
- Stability guarantees the existence of a unique equilibrium for any (d, r) and in presence of model uncertainties

Question:

Can we extend such a paradigm to the nonlinear ODEs?

Linear lesson:

- The design of the feedback is independent of (d, r)
- Stability guarantees the existence of a unique equilibrium for any (d, r) and in presence of model uncertainties

Question:

Can we extend such a paradigm to the nonlinear ODEs?

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	●○○○○○		0000
Outline				

1 Introduction

2 The Linear Case

3 Forwarding Design

4 Integral Action and Contraction

5 Conclusions

D. Astolfi

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○●0000		0000
A Stabiliz	ation of cascade	svstems		

$$\dot{x} = f(x) + g(x)u \dot{z} = h(x)$$

Problem: design a feedback $u = \alpha(x, z)$ guaranteeing origin GAS (and LES)

A possible solution: forwarding design see, e.g., Praly, Mazenc, A. Astolfi, Ortega, Teel, Sepulchre, Kokotovic, Kristic, ...

Remark: a necessary condition for the existence of α is the existence of a α_0 :

$$\dot{x} = f(x) + g(x)\alpha_0(x)$$
 is GAS

In the following we suppose this step has already been done:

 $\dot{x} = f(x)$ is GAS and LES

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○●0000		0000
A Stabiliza	ation of cascade	systems		

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{z} = h(x) \end{cases}$$

Problem: design a feedback $u = \alpha(x, z)$ guaranteeing origin GAS (and LES)

A possible solution: forwarding design see, e.g., Praly, Mazenc, A. Astolfi, Ortega, Teel, Sepulchre, Kokotovic, Kristic, ...

Remark: a necessary condition for the existence of α is the existence of a α_0 :

$$\dot{x} = f(x) + g(x)\alpha_0(x)$$
 is GAS

In the following we suppose this step has already been done:

 $\dot{x} = f(x)$ is GAS and LES

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○●0000		0000
A Stabiliza	ation of cascade	systems		

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{z} = h(x) \end{cases}$$

Problem: design a feedback $u = \alpha(x, z)$ guaranteeing origin GAS (and LES)

A possible solution: forwarding design see, e.g., Praly, Mazenc, A. Astolfi, Ortega, Teel, Sepulchre, Kokotovic, Kristic, ...

Remark: a necessary condition for the existence of α is the existence of a α_0 :

$$\dot{x} = f(x) + g(x)\alpha_0(x)$$
 is GAS

In the following we suppose this step has already been done:

$$\dot{x} = f(x)$$
 is GAS and LES

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○O●OOO		0000
Forwarding	g design: main i	deas		

$$\dot{x} = f(x) + g(x)u \dot{z} = h(x)$$

- Let x be the fast stable dynamics and z the slow one
- If the origin of $\dot{x} = f(x)$ is GAS and LES, we can define an invariant-manifold for z = M(x) satisfying

$$L_f M(x) := \frac{\partial M}{\partial x}(x) f(x) = h(x)$$

• Consider the change of coordinates $\zeta := z - M(x)$ giving-

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{\zeta} = -L_g M(x)u \end{cases}$$

D. Astolfi

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○○●○○○		0000
Forwarding	g design: main i	deas		

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{z} = h(x) \end{cases}$$

- Let x be the fast stable dynamics and z the slow one
- If the origin of $\dot{x} = f(x)$ is GAS and LES, we can define an invariant-manifold for z = M(x) satisfying

$$L_f M(x) := \frac{\partial M}{\partial x}(x) f(x) = h(x)$$

• Consider the change of coordinates $\zeta := z - M(x)$ giving-

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{\zeta} = -L_g M(x)u \end{cases}$$

D. Astolfi

We have

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{\zeta} = -L_g M(x)u \end{cases}$$

• With the Lypaunov function $W(x,\zeta) = V(x) + \frac{1}{2}\zeta^2$ we obtain

 $\dot{W} \leq L_f V(x) + (L_g V(x) - \zeta L_g M(x)) u$

 \implies Select $u = -(L_g V(x) - \zeta L_g M(x))$ to obtain a negative derivative

We obtain

$$\dot{W} \le L_f V(x) - u^2$$

If $L_g M(0) \neq 0$ we can conclude stability of the origin $(x, \zeta) = 0$.

D. Astolfi

We have

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ \dot{\zeta} = -L_g M(x)u \end{cases}$$

• With the Lypaunov function $W(x,\zeta) = V(x) + \frac{1}{2}\zeta^2$ we obtain

 $\dot{W} \leq L_f V(x) + (L_g V(x) - \zeta L_g M(x)) u$

 \implies Select $u = -(L_g V(x) - \zeta L_g M(x))$ to obtain a negative derivative

We obtain

$$\dot{W} \le L_f V(x) - u^2$$

If $L_g M(0) \neq 0$ we can conclude stability of the origin $(x, \zeta) = 0$.

D. Astolfi

E	a deciant necin			
000000	00000	000000	0000000	0000
Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions

Forwarding design: main result

Lemma (Existence of the Invariant Manifold)

Suppose

- The origin of $\dot{x} = f(x)$ is GAS and LES, f(0) = 0, h(0) = 0
- The non-resonance condition $CA^{-1}B \neq 0$ holds, with

$$A:=rac{\partial f}{\partial x}(0), \quad B:=g(0), \quad C:=rac{\partial h}{\partial x}(0).$$

Then, there exists a C^2 function M satisfying M(0) = 0, $\frac{\partial M}{\partial x}(0) = CA^{-1}$ and 2

$$L_f M(x) = h(x), \qquad L_g M(0) \neq 0.$$

Theorem (Forwarding Stabilization)

There exists a feedback $u = \alpha(x, z)$ such that the origin of

$$\dot{x} = f(x) + g(x)\alpha(x, z), \qquad \dot{z} = h(x),$$

is GAS and LES.

 $^{2}L_{g}M(0)$ is the DC-gain at the origin of $\dot{x} = f(x) + g(x)u$, y = h(x).

D. Astolfi

E	a deciant necin			
000000	00000	000000	0000000	0000
Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions

Forwarding design: main result

Lemma (Existence of the Invariant Manifold)

Suppose

- The origin of $\dot{x} = f(x)$ is GAS and LES, f(0) = 0, h(0) = 0
- The non-resonance condition $CA^{-1}B \neq 0$ holds, with

$$A:=rac{\partial f}{\partial x}(0), \quad B:=g(0), \quad C:=rac{\partial h}{\partial x}(0).$$

Then, there exists a C^2 function M satisfying M(0) = 0, $\frac{\partial M}{\partial x}(0) = CA^{-1}$ and 2

$$L_f M(x) = h(x), \qquad L_g M(0) \neq 0.$$

Theorem (Forwarding Stabilization)

There exists a feedback $u = \alpha(x, z)$ such that the origin of

$$\dot{x} = f(x) + g(x)\alpha(x,z), \qquad \dot{z} = h(x),$$

is GAS and LES.

 $^{2}L_{g}M(0)$ is the DC-gain at the origin of $\dot{x} = f(x) + g(x)u$, y = h(x).

D. Astolfi

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○○○○○●		0000
Forwardin	g and perturbat	ions		

Consider now the perturbed system:

$$\dot{x} = f(x, d) + g(x, d)\alpha(x, z)$$

 $\dot{z} = h(x, r)$

with α designed with the forwarding as shown before.

- When (d, r) = 0 then the origin is GAS and LES
- Can we conclude the existence of an equilibrium for $(d, r) \neq 0$?
- **I** In general, only for small values, i.e. $|(d, r)| \leq \varepsilon$

Total stability: equilibria are preserved under small perturbations

[Astolfi Praly, TAC 2017]

To achieve global results, we need stronger properties:

 \implies Contraction

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○○○○○●		0000
Forwardin	g and perturbat	ions		

Consider now the perturbed system:

$$\dot{x} = f(x, d) + g(x, d)\alpha(x, z)$$

 $\dot{z} = h(x, r)$

with α designed with the forwarding as shown before.

- When (d, r) = 0 then the origin is GAS and LES
- Can we conclude the existence of an equilibrium for $(d, r) \neq 0$?
- In general, only for small values, i.e. $|(d, r)| \leq \varepsilon$

Total stability: equilibria are preserved under small perturbations

[Astolfi Praly, TAC 2017]

To achieve global results, we need stronger properties:

 \implies Contraction

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	○○○○○●		0000
Forwardin	g and perturbat	ions		

Consider now the perturbed system:

$$\dot{x} = f(x, d) + g(x, d)\alpha(x, z)$$

 $\dot{z} = h(x, r)$

with α designed with the forwarding as shown before.

- When (d, r) = 0 then the origin is GAS and LES
- Can we conclude the existence of an equilibrium for $(d, r) \neq 0$?
- In general, only for small values, i.e. $|(d, r)| \leq \varepsilon$

Total stability: equilibria are preserved under small perturbations

[Astolfi Praly, TAC 2017]

■ To achieve global results, we need stronger properties:

 \implies Contraction

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000		0000
Outline				

1 Introduction

2 The Linear Case

3 Forwarding Design

4 Integral Action and Contraction

5 Conclusions

D. Astolfi

Consider again the closed-loop system and use a compact notation

$$\begin{cases} \dot{x} = f(x, \alpha(x, z), d) \\ \dot{z} = h(x) - r \end{cases} \implies \dot{\xi} = F(\xi, (d, r))$$

 Global regulation can be obtained if the vector field F admits a fixed point for any (d, r)

Main Idea: use Banach fixed point theorem..

⇒ we need F to be a (uniform) contraction

Consider again the closed-loop system and use a compact notation

$$\begin{cases} \dot{x} = f(x, \alpha(x, z), d) \\ \dot{z} = h(x) - r \end{cases} \implies \dot{\xi} = F(\xi, (d, r))$$

- Global regulation can be obtained if the vector field F admits a fixed point for any (d, r)
- Main Idea: use Banach fixed point theorem..

 \implies we need F to be a (uniform) contraction

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
<u> </u>				

Some highlights on Contraction Theory

Contraction with Riemannian metric

The vector field $F : \mathbb{R}^n \to \mathbb{R}^n$ is contracting if (and only if, for $F \ C^2$ globally Lipschitz) there exists a (Riemannian) metric $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ taking SPD values and $\bar{p}, p, q > 0$ such that³

$$\underline{P}I \leq P(\xi) \leq \overline{P}I, \quad L_F P(\xi) := \dot{P}(\xi) + P(\xi) \frac{\partial F}{\partial \xi}(\xi) + \frac{\partial F}{\partial \xi}(\xi)^\top P(\xi) \leq -qI, \quad \forall \xi \in \mathbb{R}^n.$$

Remark: generalization of Lyapunov Matrix Inequality $PA + A^{\top}P \preceq -Q$

Contraction and Incremental Stability

Suppose F is a contraction. Then $\exists k, \lambda > 0$ such that solutions to system $\xi = F(\xi)$ satisfy

$$|\phi(\xi_a,t)-\phi(\xi_b,t)|\leq k\,|\xi_a-\xi_b|\exp(-\lambda t)\qquad orall\xi_a,\xi_b\in\mathbb{R}^n.$$

In other words, the system is Incrementally Globally Exponentially Stable (δGES).

³The notation \dot{P} defines a matrix with its *ij*-th elements defined as $\dot{P}_{ij} = \frac{\partial P_{ij}}{\partial \xi} F(\xi)$

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
<u> </u>				

Some highlights on Contraction Theory

Contraction with Riemannian metric

The vector field $F : \mathbb{R}^n \to \mathbb{R}^n$ is contracting if (and only if, for $F \ C^2$ globally Lipschitz) there exists a (Riemannian) metric $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ taking SPD values and $\bar{p}, p, q > 0$ such that³

$$\underline{P}I \leq P(\xi) \leq \overline{P}I, \quad L_F P(\xi) := \dot{P}(\xi) + P(\xi) \frac{\partial F}{\partial \xi}(\xi) + \frac{\partial F}{\partial \xi}(\xi)^\top P(\xi) \leq -qI, \quad \forall \xi \in \mathbb{R}^n.$$

Remark: generalization of Lyapunov Matrix Inequality $PA + A^{\top}P \preceq -Q$

Contraction and Incremental Stability

Suppose F is a contraction. Then $\exists k, \lambda > 0$ such that solutions to system $\dot{\xi} = F(\xi)$ satisfy

$$|\phi(\xi_a,t)-\phi(\xi_b,t)|\leq k\,|\xi_a-\xi_b|\exp(-\lambda t)\qquad orall\xi_a,\xi_b\in\mathbb{R}^n.$$

In other words, the system is Incrementally Globally Exponentially Stable (δGES).

³The notation \dot{P} defines a matrix with its *ij*-th elements defined as $\dot{P}_{ij} = \frac{\partial P_{ij}}{\partial \xi} F(\xi)$

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000		0000
Contractio	on and equilibria			

Incremental Stability and Equilibria

Let $\dot{\xi} = F(\xi)$ be δGES :

$$|\phi(\xi_a,t)-\phi(\xi_b,t)|\leq k|\xi_a-\xi_b|\exp(-\lambda t) \qquad orall \ \xi_a,\xi_b\in\mathbb{R}^n.$$

Then there exists a unique equilibrium $\xi^{\circ} \in \mathbb{R}^n$ which is globally exponentially stable.

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000		0000
Contractio	on and equilibria			

Incremental Stability and Equilibria

Let $\dot{\xi} = F(\xi)$ be δGES :

$$\phi(\xi_a, t) - \phi(\xi_b, t)| \le k |\xi_a - \xi_b| \exp(-\lambda t) \qquad \forall \ \xi_a, \xi_b \in \mathbb{R}^n.$$

Then there exists a unique equilibrium $\xi^{\circ} \in \mathbb{R}^n$ which is globally exponentially stable.

Sketch of the proof:

- Select τ such that $k \exp(-\lambda \tau) < 1$.
- The application $\xi \mapsto \phi(\xi, \tau)$ defines a contraction:

$$|\phi(\xi_a,\tau)-\phi(\xi_b,\tau)|<|\xi_a-\xi_b|\qquad \forall\ \xi_a,\xi_b\in\mathbb{R}^n.$$

Banach fixed point theorem gives existence and uniqueness of ξ° .

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Contractio	on and equilibria			

Incremental Stability and Equilibria

Let $\dot{\xi} = F(\xi)$ be δGES :

$$|\phi(\xi_a,t)-\phi(\xi_b,t)| \leq k|\xi_a-\xi_b|\exp(-\lambda t) \qquad \forall \ \xi_a,\xi_b\in\mathbb{R}^n.$$

Then there exists a unique equilibrium $\xi^{\circ} \in \mathbb{R}^n$ which is globally exponentially stable.

In order to apply previous theorem we need the system

$$\begin{cases} \dot{x} = f(x, \alpha(x, z), d) \\ \dot{z} = h(x) - r \end{cases} \iff \dot{\xi} = F(\xi, (d, r))$$

to be δGES uniformly in (d, r).

 \implies we need a uniform contraction

$$\dot{P}(\xi, (\boldsymbol{d}, \boldsymbol{r})) + P(\xi) \frac{\partial F}{\partial \xi}(\xi, (\boldsymbol{d}, \boldsymbol{r})) + \frac{\partial F}{\partial \xi}(\xi, (\boldsymbol{d}, \boldsymbol{r}))^{\top} P(\xi) \leq -q\boldsymbol{l} \qquad \forall \ \xi, (\boldsymbol{d}, \boldsymbol{r})$$

D. Astolfi

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions 0000
Killing vec	tor and uniform	contraction		

Given a 2-tensor $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$, a C^1 function $G : \mathbb{R}^n \to \mathbb{R}^m$ is said to be a Killing vector for P if $L_G P(\xi) = 0$ for all $\xi \in \mathbb{R}^n$.

Consider a system

$$\dot{\xi} = F(\xi) + G(\xi)w$$

Suppose there exist a P such that that

F is contractive w.r.t P: $L_F P(\xi) \preceq -qI$

• G is a Killing vector for P: $L_G P(\xi) = 0$

Then,

$$L_F P(\xi) + L_G P(\xi) w \preceq -qI \qquad \forall \xi, w$$

 \implies the system defines a uniform contraction \implies is δGES uniformly $\forall w!$

Problem: design of the feedback $\alpha(x, z)$ satisfying previous conditions

D. Astolfi

000000	00000	000000	0000000	0000
Killing ver	ctor and uniform	contraction		

Given a 2-tensor $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$, a C^1 function $G : \mathbb{R}^n \to \mathbb{R}^m$ is said to be a Killing vector for P if $L_G P(\xi) = 0$ for all $\xi \in \mathbb{R}^n$.

Consider a system

$$\dot{\xi} = F(\xi) + G(\xi) w$$

Suppose there exist a P such that that

- F is contractive w.r.t P: $L_F P(\xi) \leq -qI$
- G is a Killing vector for P: $L_G P(\xi) = 0$

Then,

$$L_F P(\xi) + L_G P(\xi) w \preceq -qI \qquad \forall \xi, w$$

 \implies the system defines a uniform contraction \implies is δGES uniformly $\forall w!$

Problem: design of the feedback $\alpha(x, z)$ satisfying previous conditions

000000	00000	000000	0000000	0000
Killing ver	ctor and uniform	contraction		

Given a 2-tensor $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$, a C^1 function $G : \mathbb{R}^n \to \mathbb{R}^m$ is said to be a Killing vector for P if $L_G P(\xi) = 0$ for all $\xi \in \mathbb{R}^n$.

Consider a system

$$\dot{\xi} = F(\xi) + G(\xi) w$$

Suppose there exist a P such that that

- F is contractive w.r.t P: $L_F P(\xi) \leq -qI$
- G is a Killing vector for P: $L_G P(\xi) = 0$

Then,

$$L_F P(\xi) + L_G P(\xi) w \preceq -qI \qquad \forall \xi, w$$

 \implies the system defines a uniform contraction \implies is δGES uniformly $\forall w!$

Problem: design of the feedback $\alpha(x, z)$ satisfying previous conditions

000000	00000	000000	0000000	0000
Killing ver	ctor and uniform	contraction		

Given a 2-tensor $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$, a C^1 function $G : \mathbb{R}^n \to \mathbb{R}^m$ is said to be a Killing vector for P if $L_G P(\xi) = 0$ for all $\xi \in \mathbb{R}^n$.

Consider a system

$$\dot{\xi} = F(\xi) + G(\xi) w$$

Suppose there exist a P such that that

- F is contractive w.r.t P: $L_F P(\xi) \leq -qI$
- G is a Killing vector for P: $L_G P(\xi) = 0$

Then,

$$L_F P(\xi) + L_G P(\xi) w \preceq -qI \qquad \forall \xi, w$$

 \implies the system defines a uniform contraction \implies is δGES uniformly $\forall w!$

Problem: design of the feedback $\alpha(x, z)$ satisfying previous conditions

D. Astolfi

 Introduction
 The Linear Case
 Forwarding Design
 Integral Action and Contraction
 Conclusions

 Sufficient conditions for contractive forwarding

 Consider the system

$$\dot{x} = f(x) + g(x)(u + d)$$
$$\dot{z} = h(x) - r$$

Theorem (Incremental Uniform Global Forwarding Stabilization)

Suppose that

- f is contraction⁴ for P and g is a Killing for P
- there exists a function $M: \mathbb{R}^n \to \mathbb{R}$ and a constant $\gamma > 0$ satisfying

$$L_f M(x) = h(x), \qquad L_g M(x) = \gamma$$

Then, for any k > 0 the control law

$$u=k\left[z-M(x)\right]$$

makes the closed-loop system uniformly contractive and $\lim_{t\to\infty} h(x) = r$ for any initial condition $(x_0, z_0) \in \mathbb{R}^n \times \mathbb{R}$ and any (d, r).

[Giaccagli, Astolfi Andrieu, Marconi, TAC 2022]

⁴This can be also obtained after a preliminary state-feedback with Control Contraction Metrics: $L_f P(x) + P(x)g(x)g(x)^\top P(x) \preceq -ql$

D. Astolfi

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000	○00000●	0000
Some Rem	arks			

- The first conditions corresponds to the stabilizability of (A, B) in the proposed contractive framework
- The second condition correspond to a global uniform non-resonance condition, i.e., a controllability (contractive) condition for the extended system (*x*, *z*)
- Design based on the construction of a contraction metric for the closed-loop dynamics
- ✓ The control law depends on the solution of a PDE

$$L_f M(x) = h(x)$$

but there exist alternative designs to rely only on an approximation of \boldsymbol{M}

- X Conditions are restrictive due to the nature of the problem we aim at solving: \implies The result is global in the initial conditions and in (d, r)
- X We considered only disturbances d satisfying a matching-condition

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000	○00000●	0000
Some Rem	arks			

- The first conditions corresponds to the stabilizability of (A, B) in the proposed contractive framework
- The second condition correspond to a global uniform non-resonance condition, i.e., a controllability (contractive) condition for the extended system (*x*, *z*)
- Design based on the construction of a contraction metric for the closed-loop dynamics
- \checkmark The control law depends on the solution of a PDE

 $L_f M(x) = h(x)$

but there exist alternative designs to rely only on an approximation of M

- X Conditions are restrictive due to the nature of the problem we aim at solving: \implies The result is global in the initial conditions and in (d, r)
- X We considered only disturbances d satisfying a matching-condition

Introduction	The Linear Case	Forwarding Design	Integral Action and Contraction	Conclusions
000000	00000	000000	○00000●	0000
Some Rem	arks			

- The first conditions corresponds to the stabilizability of (A, B) in the proposed contractive framework
- The second condition correspond to a global uniform non-resonance condition, i.e., a controllability (contractive) condition for the extended system (*x*, *z*)
- Design based on the construction of a contraction metric for the closed-loop dynamics
- \checkmark The control law depends on the solution of a PDE

$$L_f M(x) = h(x)$$

but there exist alternative designs to rely only on an approximation of M

X Conditions are restrictive due to the nature of the problem we aim at solving:

 \implies The result is global in the initial conditions and in (d, r)

 \checkmark We considered only disturbances *d* satisfying a matching-condition

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions
Outline				

1 Introduction

2 The Linear Case

3 Forwarding Design

4 Integral Action and Contraction

5 Conclusions

Introduction 000000	The Linear Case 00000	Forwarding Design	Integral Action and Contraction	Conclusions
Conclusions				

Takeaway messages:

- We proposed sufficient conditions for the design of a global integral action based on forwarding and contraction analysis
- Integral action has many applications: PI-control, tracking, and also optimization

$$\begin{array}{ll} \min f(x) \\ Ax = b \end{array} \qquad \Longrightarrow \qquad \begin{array}{l} \dot{x} = \nabla f(x) - A^{\top} \lambda \\ \dot{\lambda} = Ax - b \end{array}$$

16:30–16:55: Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach, Francesco Bullo

 Possible extension to periodic references/disturbances and harmonic regulation (no time in this presentation)

$$\dot{x} = f(x) + g(x)(u + d(t))$$
 $d(t + T) = d(t)$
 $e = h(x) - r(t)$ $r(t + T) = r(t)$

[Giaccagli, Astolfi Andrieu, Marconi, TAC 2024]

Introduction 000000	The Linear Case 00000	Forwarding Design 000000	Integral Action and Contraction	Conclusions
Conclusions	s (2)			

Open Problems:

Can we relax δGES with δGAS to ensure the existence of an equilibrium?

Kato, Astolfi, Andrieu, Praly, ''Incremental global asymptotic stability equals incremental global exponential stability - but at equilibria'', NOLCOS 2025

Is the Killing vector condition necessary for global uniform contractions? Duvall, Sontag ''Global exponential stability or contraction of an unforce system do not imply extrainment to periodic inputs'. ACC 2024

Can we relax contraction with 2-contraction to ensure the existence of an equilibrium?

Giaccagli, Lorenzetti, Astolfi, Andrieu, ''PI-control for non-linear systems with multiple equilibria via 2-contraction'', NOLCOS 2025

what is 2-contraction? 11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli.

Introduction 000000	The Linear Case 00000	Forwarding Design 000000	Integral Action and Contraction	Conclusions
Conclusion	s (2)			

Open Problems:

• Can we relax δGES with δGAS to ensure the existence of an equilibrium?

```
Kato, Astolfi, Andrieu, Praly, ''Incremental global asymptotic stability
equals incremental global exponential stability - but at equilibria'', NOLCOS
2025
```

Is the Killing vector condition necessary for global uniform contractions?

Duvall, Sontag ''Global exponential stability or contraction of an unforced system do not imply entrainment to periodic inputs''. ACC 2024

Can we relax contraction with 2-contraction to ensure the existence of an equilibrium?

```
Giaccagli, Lorenzetti, Astolfi, Andrieu, ''PI-control for non-linear systems
with multiple equilibria via 2-contraction'', NOLCOS 2025
```

what is 2-contraction?

11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli.

Introduction 000000	The Linear Case 00000	Forwarding Design 000000	Integral Action and Contraction	Conclusions
Conclusion	s (2)			

Open Problems:

• Can we relax δGES with δGAS to ensure the existence of an equilibrium?

```
Kato, Astolfi, Andrieu, Praly, ''Incremental global asymptotic stability
equals incremental global exponential stability - but at equilibria'', NOLCOS
2025
```

Is the Killing vector condition necessary for global uniform contractions?

```
Duvall, Sontag 'Global exponential stability or contraction of an unforced system do not imply entrainment to periodic inputs'. ACC 2024
```

Can we relax contraction with 2-contraction to ensure the existence of an equilibrium?

```
Giaccagli, Lorenzetti, Astolfi, Andrieu, ''PI-control for non-linear systems with multiple equilibria via 2-contraction'', NOLCOS 2025
```

what is 2-contraction? 11:00–11:25: On 2-Contraction and Non-Oscillatory Systems: Some Theory and Applications, David Angeli.

Introdu	
0000	00

The Linear Case

Forwarding Design

Integral Action and Contractic

Conclusions

Thanks and references

Mattia Giaccagli Univ. of Lorraine Ass. Prof.

Vincent Andrieu CNRS - Univ. Lyon Research Director

Lorenzo Marconi Univ. of Bologna Full Prof.

Laurent Praly MinesParisTech Prof. Emeritus

- Astolfi, Praly, ''Integral Action in Output Feedback for multi-input multi-output nonlinear systems'', IEEE TAC 2017
- Giaccagli, Astolfi, Andrieu and Marconi, 'Sufficient Conditions for Global Integral Action via Incremental Forwarding for Input-Affine Nonlinear Systems'', IEEE TAC 2022
- M. Giaccagli, D. Astolfi, V. Andrieu and L. Marconi, ''Incremental stabilization of cascade nonlinear systems and harmonic regulation: a forwarding-based design'', IEEE TAC 2024