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An LDI Perspective to Contraction Analysis (Part 1)

A linear differential inclusion (LDI) is of the form

where ,  is a set of matrices.

If there exists  such that  for every , then

for any trajectory  of the LDI.
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0
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Proposition 1 (Exponential Stability of LDIs )[1]
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An LDI Perspective to Contraction Analysis (Part 2)

Consider some differentiable function .

If , then for any .

Intuition: Apply mean value theorem to the line segment connecting  and 
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→ R

m

Proposition 2 (Jacobian Linear Inclusion )[2]
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An LDI Perspective to Contraction Analysis (Part 3)

Consider  for  smooth . Set .

Result is the usual norm bound. For any two trajectories ,

, : Fundamental Theorem + Coppel + Gronwall yields the result using sub-

additivity of , integrating the line segment connecting  and :

ẋ = f(x) C

1
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′

Proposition 2: ε̇ = f(x) − f(x

′
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––
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[3] [4]
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 Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear systems: A brief introduction and some open problems,” IEEE CDC, 2014.

 A. Davydov, S. Jafarpour, and F. Bullo, “Non-euclidean contraction theory for robust nonlinear stability,” IEEE TAC, 2022.
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Why is this Equivalent Viewpoint Useful?

Computational Advantage: Automatic, parallelizable and differentiable constructions of overapproximating interval

Jacobian sets using modern tools: automatic differentiation and interval analysis 

Can apply any strategy from LDI analysis , including LMI-based control design.

Theoretical Infinitesimal Linearization (closed-form)  Computational Error LDI Analysis (set)⟺

[5]

import immrax as irx1
import jax.numpy as jnp2

3
f = lambda x : jnp.array([x[0]**2, x[1]**3 + jnp.sin(x[0])]) # Dynamics4
J = irx.jacM(f) # autodiff + interval analysis5
print(J(irx.interval([-1., -1.], [1., 1.]))) # Interval Overapprox of Jacobian6

[2]

Example: Stable feedback control design on error LDI  contracting feedback tracking control⟹

 A. Harapanahalli, S. Jafarpour, and S. Coogan, “immrax: A parallelizable and differentiable toolbox for interval analysis and mixed monotone reachability in JAX,” IFAC

ADHS, 2024

 S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM, 1994.
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Mixed Jacobian LDI: Contraction to Known Trajectories 

In many applications, a nominal trajectory is fixed: reachable set computation, tracking control design, training, etc.

An elementwise application of the mean value theorem obtains a different inclusion: potential improvement for fixed .

Fixing a point , an element-wise application of mean value yields

for any .

[6]
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Application: Reachable Sets Using Matrix Measures

Reachable Set Computation: 

Simulate nominal , upper

bound logarithmic norm around ,

bloat/shrink a norm ball.

Interval Overapproximations: 

Use interval overapproximations of

the Jacobian to overapproximate

logarithmic norm.

Automated: immrax automatically

computes interval  matrices,

SDP searches for  norms.

Novelty: Compare directly to ,

not arbitrary trajectories. Strict

Improvement: 

[7]

t ↦ x

′

x

′

[8]
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∥ ⋅ ∥
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 state robot arm model, projection onto -  pictured4 q
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2

 J. Maidens and M. Arcak, “Reachability analysis of nonlinear systems using matrix measures,” IEEE TAC, 2014.

 C. Fan, J. Kapinski, X. Jin, and S. Mitra, “Simulation-driven reachability using matrix measures,” ACM TECS, vol. 17, no. 1, pp. 1–28, 2017.
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Conclusions

An LDI encompassing the error dynamics recovers the norm-based matrix measure contraction bound

When comparing to a known trajectory of the system, the mixed Jacobian LDI potentially provides better results

compared to using the normal Jacobian set

For all the details, please see the preprint Thank you for your attention!

Presenting “Efficient Reachable Sets on Lie Groups Using

Lie Algebra Monotonicity and Tangent Intervals” tomorrow:

MoA20.2, 10:20 - 10:40, Suite 9

https://arxiv.org/pdf/2411.11587
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