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Linear Differential Inclusions

A linear differential inclusion (LDI) is a system of the form

ẋ ∈ Ωx, x(0) = x0

where Ω ⊆ Rn×n is a set of matrices and Ωx = {Mx | M ∈ Ω}.

Any t 7→ x(t) satisfying the LDI is called a trajectory of the LDI.

Lemma. Given norm | · | on Rn and corresponding matrix log norm µ(·) where

µ(A) := lim
h→0+

∥I +hA∥−1
h

for induced matrix norm ∥ · ∥, and c ∈ R,

if µ(M)≤ c for all M ∈ Ω,

then |x(t)| ≤ ect|x(0)| for all t ≥ 0.

This is essentially a corollary of Coppel’s inequality.
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Bounding a nonlinearity with an LDI

Consider some differentiable f : Rn → Rm and convex X ⊆ Rn.

Proposition.1 If J ⊆ Rm×n satisfies
∂ f
∂x

(X)⊆ J ,

then

f (x)− f (x′) ∈ co(J )︸ ︷︷ ︸
matrix set

(x− x′)︸ ︷︷ ︸
vector

for every x,x′ ∈ X.

Pf. Apply mean value theorem to the line segment
connecting x and x′.

1Boyd, El Ghaoui, Feron, Balakrishnan, LMIs in Systems and Control Theory, SIAM, 1994, page 55
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Nonlinear contraction as LDI stability

Combining Lemma and Proposition recovers standard contraction result:

1 Given ẋ = f (x) and convex X, let J =
∂ f
∂x

(X).

2 For any initial conditions x0,x′0 ∈ X, set

ε(t) = x(t)− x′(t).

Then the Proposition implies ε satisfies the LDI

ε̇ = f (x)− f (x′) ∈ co(J )(x− x′) = co(J )ε.

Lemma and convexity of log norm then imply contraction property:

If sup
x∈X

µ

(
∂ f
∂x

(x)
)
≤ c then |x(t)− x′(t)| ≤ ect|x0 − x′0| for any x0,x′0 ∈ X, t ≥ 0.
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Some comments on the Jacobian-based LDI interpretation of contraction

▶ Several other proof techniques possible2,3, e.g., write ε̇ = A(t)ε , where

A(t) =
∫ 1

0

∂ f
∂x

(sx(t)+(1− s)x′(t))ds, apply subadditivity of log norm to conclude

µ(A(t))≤ c.

▶ Yet another example of contraction by another name: LMI book4 refers to stability
of Jacobian-based LDI as “fading memory” property of the nonlinear system and
that “the difference between any two trajectories...converges to zero”

2Aminzare, Sontag, “Contraction methods for nonlinear systems: A brief introduction and some open
problems”, IEEE CDC, 2014
3A. Davydov, S. Jafarpour, and F. Bullo, “Non-euclidean contraction theory for robust nonlinear
stability,” IEEE TAC, 2022
4Boyd, El Ghaoui, Feron, Balakrishnan, LMIs in Systems and Control Theory, SIAM, 1994
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Why is the LDI interpretation useful?

1 Automated computational tools using interval analysis for overapproximating
∂ f
∂x

(X) and contraction rate c, e.g. our tool is immrax5

2 Illuminates that any strategy for LDI analysis/synthesis applies for contraction,
e.g., LMI-based control design

Example:
Stabilizing feedback control of error LDI =⇒ contracting tracking control

3 Points to possibility of alternative LDIs that characterize error dynamics (rest of
talk)

5JAX-based immrax using JAX for Python, [Harapanahalli, Jafarpour, Coogan, ADHS, 2024]
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An observation on contraction to known trajectories

▶ In many applications, we care about contraction to a known trajectory x′(t), e.g.,
trajectory tracking, reachability analysis

▶ In this case, ε̇ ∈ co(J )ε remains a valid error inclusion

▶ However, when x′(t) is known, we can consider other error LDIs, i.e., alternative
sets Ω such that ε̇ ∈ Ωε still holds (next slides)

x′(t)
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Defining a mixed Jacobian matrix6

Definition. For differentiable f : Rn → Rm and x′ ∈ Rn, the mixed Jacobian op-
erator Mx′ is given by

Mx′ f : Rn × [0,1]n → Rm×n

(Mx′ f (x,s))ij =
∂ fi
∂xj

(x1, . . . ,xj−1,sjxj +(1− sj)x′j,x
′
j+1, . . . ,x

′
n).

▶ The matrix Mx′ f (x,s) is called the mixed Jacobian matrix of f at (x,s), since it
mixes the arguments to the Jacobian between the point x′ and x.

6[Coogan, Harapanahalli, TAC, 2025]
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Mixed Jacobian LDI for bounding a nonlinearity

Consider some differentiable f : Rn → Rm and X ⊆ Rn.

Theorem. For any fixed x′ ∈ X, if M⊆ Rm×n

satisfies

Mx′ f (X, [0,1]n)⊆M,

then

f (x)− f (x′) ∈ co(M)(x− x′)

for every x ∈ X.

Proof. Follows from elementwise application of
mean value theorem along each coordinate
direction.
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Mixed Jacobian LDI for contraction to known trajectory

Consider ẋ = f (x), X ⊂ Rn, and x′(t) a known trajectory in X.

Theorem. If

sup
t≥0,x∈X,s∈[0,1]n

µ
(
Mx′(t)f (x,s)

)
≤ c

then

|x(t)− x′(t)| ≤ ect|x0 − x′0| for any x0 ∈ X, t ≥ 0.

Proof. For any trajectory x(t) in X, the error ε(t) = x(t)− x′(t) satisfies the LDI

ε̇(t) ∈ co
(
Mx′(t)f (X, [0,1]

n)
)

ε(t).
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Comparing mixed Jacobian set M and Jacobian set J

Suppose exact

J :=
∂ f
∂x

(X)

M := Mx′ f (X, [0,1]n).

▶ In general, neither M⊆J nor J ⊆M is guaranteed
▶ Thus, no guarantee that using M is better for contraction analysis, except two

special cases:

1 Using ℓ1 norm (due to column-wise construction of Mx′)
2 Using interval overapproximations (next slide)
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Interval overapproximations of mixed Jacobian set M and Jacobian set J

Corollary. Suppose X = X1 ×·· ·×Xn ⊂ Rn is an interval and x′ ∈ X.

An interval matrix [M] satisfies Mx′ f (X, [0,1]n)⊆ [M] if

∂ fi
∂xj

(X1, . . . ,Xj,x′j+1, . . . ,x
′
n)⊆ [M]ij.

▶ Compare to: An interval matrix [J ] satisfies
∂ f
∂x

(X)⊆ [J ] if

∂ fi
∂xj

(X1, . . . ,Xj,Xj+1, . . . ,Xn)⊆ [J ]ij.

▶ The smallest interval overapproximations satisfy [M]⊆ [J ].

▶ Reordering states can lead to alternative mixed Jacobian LDIs.
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Example: Ellipsoidal reachability

▶ Four state robot arm7

▶ Ellipsoidal reachability with weighted 2-norm

Jacobian Interval Approx.8 Mixed Jacobian Approx. Improved Mixed Jacobian9

7Angeli, Sontag, Wang, “A characterization of integral input-to-state stability”, IEEE TAC, 2002
8C. Fan, J. Kapinski, X. Jin, and S. Mitra, “Simulation-driven reachability using matrix measures," ACM TECS, 2017
9Harapanahalli, Coogan, "Parametric Reachable Sets Via Controlled Dynamical Embeddings" (WeC16.6)
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ARCH-COMP neural-network controlled nonlinear system benchmarks10

Benchmark Instance CORA CROWN-Reach JuliaReach NNV immrax
ACC safe-distance 3.091 2.525 0.638 26.751 0.066
AttitudeControl avoid 3.418 3.485 5.728 – 0.507
TORA reach-tanh 3.166 7.486 0.357 63.523 0.020
TORA reach-sigmoid 6.001 5.293 0.458 118.312 0.023
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10https://cps-vo.org/group/ARCH/FriendlyCompetition
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Conclusions and acknowledgements

1 Linear Differential Inclusions (LDIs) is a (underutilized) vantage point for
contraction analysis

2 Introduced mixed Jacobian matrix for alternative LDIs for contraction to known
trajectories

3 LDIs are particularly amenable to interval analysis for automated computational
tools (e.g., immrax)

Akash Harapanahalli

coogan.ece.gatech.edu
for papers and code

pip install immrax

Thank you!
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Bounding a nonlinearity with an LDI (Proof)

Proposition. If
∂ f
∂x

(X)⊆ J then f (x)− f (x′) ∈ co(J )(x− x′)

Pf. Fix ℓ ∈ Rm and x,x′ ∈ X, consider γ : [0,1]→ X, γ(s) = sx+(1− s)x′. By mean
value theorem, there exists s′ ∈ (0,1) such that

ℓT(f (γ(1))− f (γ(0))
)
= ℓT ∂ f

∂x

(
γ(s′)

)
(γ(1)− γ(0)).

Since γ(s) ∈ X by convexity,
∂ f
∂x

(
γ(s′)

)
∈ J . Thus,

ℓT (f (x)− f (x′)
)
≤ sup

J∈co(J )

ℓTJ(x− x′),

implying f (x)− f (x′) belongs to every halfspace containing co(J )(x− x′). Since
co(J )(x− x′) is closed and convex, it equals the intersection of these halfspaces.
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Mixed Jacobian matrix is preferred under ℓ1 norm

Theorem. Let X ⊆ Rn be an interval and x′ ∈ X. Then

sup
x∈X,s∈[0,1]n

µ1 (Mx′ f (x,s))≤ sup
x∈X

µ1 (Df (x)) .
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