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Proximal gradient dynamics:       ·x = − x + proxγg(x − γ∇f(x, u))

Consider a composite minimization problem
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V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction",  Neural Computation, vol. 36, pp. 1163-1197, 2024

S. Hassan-Moghaddam, M. R. Jovanovic, “Proximal gradient flow and Douglas-Rachford splitting dynamics: Global exponential stability via integral quadratic constraints”, 
Automatica, 2021.
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x⋆ = arg min
x∈ℝn

f(x, u) + g(x) ·x = − x + proxg(x − ∇f(x, u))
 is an equilibrium point of:x⋆⟺

Firing-Rate Neural Network!u
Input

Nodes/States x

y = x
Output

Synaptic Matrix W

·x = − x + Φ (Wx + u)
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Firing-Rate Neural Network 9

u

·x = fF(x, u)

y = x

state activation function stimulussynaptic matrix

FNN can be positive 
(when  is positive)Φ

Naturally models inhibition 
and excitation

·x = − x + Φ ( W x + u) := fF(x, u)
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min(Reconstruction Error + Sparsity constraint)

Sparse Reconstruction 11

J. Wright and Y. Ma, “High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications”, Cambridge University Press, 2022.

Applications in:

machine learning

signal processing

compressed sensing

neuroscience
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min
x∈ℝn

1
2

∥u − Dx∥2
2 + λS(x)

Sparse Reconstruction Problem

u xD1 Dn…

m × 1 m × n

n × 1

≈

Firing-Rate Competitive Networks
·x = − x + proxλS((In − D⊤D)x + D⊤u)

1 2

n

… …

…

…

…
…

…
…

1

n

…
1

m

D⊤
1

D⊤
2

…D⊤
n

⋮

u ∈ ℝm

y ∈ ℝn

x ∈ ℝn, n ≫ m

⟺
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Positive Firing-Rate Competitive Network 15

·x = − x + ReLU((In − D⊤D)x + D⊤u − λ) := fPFCN(x)

Property (On the positiveness of the PFCN)


The PFCN is a positive system, that is the state variables are never negative, 
given a non-negative initial state

 (PFCN)
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Property (On the positiveness of the PFCN)
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V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction",  Neural Computation, vol. 36, pp. 1163-1197, 2024

Recurrent Connection

Exhibit non-negative states

Effective model inhibition and excitation
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1
2

∥u−Dx∥2 + λS(x)

Sparse Coding
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min
x,D

1
2

∥u−Dx∥2 + λS(x)

Sparse Coding

{
·xi = − xi + Φ(t, x, W)
·Wij = h(t, Wij, xi, xj)

⟹

1.There is a synaptic change between 
two neurons when both are active.


2.The learning rule for the synapse  
should depend only on the activity of 
neuron  and neuron .

Wij

j i

xi

xj

xk

·Wij ≠ 0

·Wjk ≠ 0

xl
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A. Shafiei, H. Jesawada, K. Friston, GR, "Distributionally Robust Free Energy Principle for Decision-Making", Nature Communications, 
in press
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Free Energy Minimization 19

A unifying theory for:

✓self-organization

✓brain function

✓sentient behaviors

✓…

A unifying framework 
for:

✓mirror descent

✓maximum entropy

✓diffusion 
processes

✓…

Autonomous Decision-Making!
A. Shafiei, H. Jesawada, K. Friston, GR, "Distributionally Robust Free Energy Principle for Decision-Making", Nature Communications, 
in press



Normative Framework for Policy Composition 20

Agent/Environment dynamics:

xk−1
Agent

uk

 p (xk, uk ∣ xk−1) = p (xk ∣ xk−1, uk) p (uk ∣ xk−1)

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Normative Framework for Policy Composition 20

Agent/Environment dynamics:

xk−1
Agent

uk

 p (xk, uk ∣ xk−1) = p (xk ∣ xk−1, uk) p (uk ∣ xk−1)

Minimize : Error + Entropywk

Subject to:  policy = mixture( ) of primitiveswk

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Normative Framework for Policy Composition 20

Agent/Environment dynamics:

xk−1
Agent

uk

 p (xk, uk ∣ xk−1) = p (xk ∣ xk−1, uk) p (uk ∣ xk−1)

Minimize : Error + Entropywk

Subject to:  policy = mixture( ) of primitiveswk

‣Error: DKL (p(xk, uk ∣ xk−1) ∣ ∣ q(xk, uk ∣ xk−1))

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Normative Framework for Policy Composition 20

Agent/Environment dynamics:

xk−1
Agent

uk

 p (xk, uk ∣ xk−1) = p (xk ∣ xk−1, uk) p (uk ∣ xk−1)

Minimize : Error + Entropywk

Subject to:  policy = mixture( ) of primitiveswk

‣Error: DKL (p(xk, uk ∣ xk−1) ∣ ∣ q(xk, uk ∣ xk−1))

DKL (p ∣ ∣ q) := ∫ p(z)ln
p(z)
q(z)

dz
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Optimization Problem 21

min
wk∈Δnπ

Error
DKL (p (xk, uk ∣ xk−1) ∣ ∣ q (xk, uk ∣ xk−1)) − ε

Entropy
𝖧(wk)
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Optimization Problem 21

min
wk∈Δnπ

Error
DKL (p (xk, uk ∣ xk−1) ∣ ∣ q (xk, uk ∣ xk−1)) − ε

Entropy
𝖧(wk)

s.t.  p (uk ∣ xk−1) =
nπ

∑
α=1

wα
k πα (uk ∣ xk−1)

Mixture-of-primitives

w⋆
k ∈ arg

p⋆
u (uk ∣ xk−1) =

nπ

∑
α=1

wα,⋆
k πα (uk ∣ xk−1)u⋆

k ∼

Agent 

Action
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The Softmax Gradient Flow 22

Goal: dynamical system that provably converges to optimal solution
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The Softmax Gradient Flow 22

Goal: dynamical system that provably converges to optimal solution

τ ·wk = − wk + softmax (−ε−1 ∇Error(wk))
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The Softmax Gradient Flow 22

Goal: dynamical system that provably converges to optimal solution

τ ·wk = − wk + softmax (−ε−1 ∇Error(wk))

softmax (x)i =
exp(xi)

∑i exp(xi)

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



The Softmax Gradient Flow 22

Goal: dynamical system that provably converges to optimal solution

τ ·wk = − wk + softmax (−ε−1 ∇Error(wk))

‣ Equilibrium is the optimal solution

‣ Simplex is forward invariant

‣ Naturally interpreted as firing-rate
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The Softmax Gradient Flow 22

Goal: dynamical system that provably converges to optimal solution

τ ·wk = − wk + softmax (−ε−1 ∇Error(wk))

‣ Equilibrium is the optimal solution

‣ Simplex is forward invariant

‣ Naturally interpreted as firing-rate

‣ Contracting energy model!

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Example: Group Coordination 23

1

rsep

rali

rcoh

v

2π − α

C Heins, et al., Collective behavior from surprise minimization. PNAS, vol. 121, e2320239121, 2025

Some boids aware of final 
destination + keep cohesiveness

See Movie

https://drive.google.com/file/d/135j6HnBeuGSXdnKmtFeMxZ4ikBTmA1kr/view?usp=sharing
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Thank you for your attention!
giovarusso@unisa.it
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