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The Proximal Gradient Flow

Consider a composite minimization problem

mg}l J,u) + glx)

f(x, u) is convex and differentiable in x g

— IR Is convex, closed, and proper (ccp)

n

Equivalence property:

1. x™ is minimizer for : min f(x, ) + g(x)
xeR"

2. x™ is fixed point for : x = prox,.(x —y V/(x, u)) for all y

Proximal gradient dynamics: x=—x+ proxyg(x — vV /f(x,u))

S. Hassan-Moghaddam, M. R. Jovanovic, “Proximal gradient flow and Douglas-Rachford splitting dynamics: Global exponential stability via integral quadratic constraints”,
Automatica, 2021.

V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction”, Neural Computation, vol. 36, pp. 1163-1197, 2024



Proximal Flows as Neural Networks

X = argmin fx, 1) + g(x) <> x* is an equilibrium point of:
xeR" X=—Xx++ pI’OXg(X — Vf(X, u))

V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction”, Neural Computation, vol. 36, pp. 1163-1197, 2024



Proximal Flows as Neural Networks

X = argmin fx, 1) + g(x) <> x* is an equilibrium point of:
xeR" X=—Xx++ pI’OXg(X — Vf(X, u))

X=—x+ proxg(Wx + Bu)

V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction”, Neural Computation, vol. 36, pp. 1163-1197, 2024



Proximal Flows as Neural Networks

* - . _ _
x* = argmin f(x, u) + g(x) <& x* is an equilibrium point of:
YR X=—-Xx++ proxg(x — Vf(x,u))
[ Nodes/Statesx X=—Xx+ proxg(Wx + Bu)
Synaptic Matrix W
Input Output
u > > V=X

Firing-Rate Neural Network!

X=—x4+D(Wx+ u)

\_
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Firing-Rate Neural Network

)'c+ ( Wx+ u) = fulx,u)

state”™ activation function
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Firing-Rate Neural Network

X + ( u) = fr(x, u)

state™ activation function synaptic matrix
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Firing-Rate Neural Network
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Firing-Rate Neural Network
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state ™ activation function synaptic matrix  stimulus
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B FNN can be positive B Naturally models inhibition
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Sparse Reconstruction
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Sparse Reconstruction

Applications In:
® machine learning
® signal processing
® compressed sensing
® neuroscience

Input image

Unknown

min(Reconstruction Error + Sparsity constraint)

J. Wright and Y. Ma, “High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications”, Cambridge University Press, 2022.
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Positive Firing-Rate Competitive Network (PFCN)

Sparse Reconstruction Problem

|
min —||u — Dxll% + AS(x)
xeR" 2

m X 1 mXn
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Positive Firing-Rate Competitive Network (PFCN)

Sparse Reconstruction Problem Firing-Rate Competitive Networks
|
min EHM — Dx||5 + AS(x) & i=—x+ proxﬂs((ln — D'D)x + DTu)
xeR”
[0}
@
6
| @
mx 1 m X n 1O
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xeR" n>m @
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Positive Firing-Rate Competitive Network

x=—-x+ReLU((I,—=D'D)x+D"u— 1) := fppcp) (PFCN)

Property (On the positiveness of the PFCN)

The PFCN is a positive system, that is the state variables are never negative,
given a non-negative initial state
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Positive Firing-Rate Competitive Network

x=—-x+ReLU((I,—=D'D)x+D"u— 1) := fppcp) (PFCN)

Property (On the positiveness of the PFCN)

The PFCN is a positive system, that is the state variables are never negative,
given a non-negative initial state

IZ Recurrent Connection
,tz Exhibit non-negative states
I Effective model inhibition and excitation
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Contractivity of Competitive Firing-Rate Neural Networks

X=—-—x+ ReLU((In —D'D)x+D"u— /1) (PFCN)
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xx \y(t)
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Contractivity of Competitive Firing-Rate Neural Networks

X=—-—x+ ReLU((In —D'D)x+D"u— /1) (PFCN)

x(0)  y(0)

x(2) y(?)

-

N

U /

V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Euclidean Contractivity of Neural Networks with Symmetric Weights", IEEE Control Systems Letters, vol. 7, pp. 1724-1729,
2023

V. Centorrino, A. Gokhale, A. Davydov, GR, F. Bullo, "Positive Competitive Networks for Sparse Reconstruction”, Neural Computation, vol. 36, pp. 1163-1197, 2024



Contractivity of Competitive Firing-Rate Neural Networks

X=—-—x+ ReLU((In —D'D)x+D"u— /1) (PFCN)

x(0)  y(0)
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exponential decay
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U /
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Embed Learning

Sparse Coding

1
min — ||u— Dx||? + AS(x)
x,D 2
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Embed Learning

Sparse Coding X = —x, + D(t,x, W)
minEHLt—Dtz + AS(x) W, = h(t, W, x;, x)
x,D
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Embed Learning

Sparse Coding X, =—x 4+ @ x, W)
minzﬂu—Dtz + AS(x) W, = h(t, Wy, x;, x;)
x,D
1.There Is a synaptic change between X, X;

two neurons when both are active.

2.The learning rule for the synapse W,

should depend only on the activity of
neuron j and neuron 1.

Wy #0 X,

V. Centorrino, F. Bullo, GR, "Modelling and Contractivity of Neural-Synaptic Networks with Hebbian Learning”, Automatica, vol. 164, 111636, 2024
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Free Energy Minimization

A. Shafiel, H. Jesawada, K. Friston, GR, "Distributionally Robust Free Energy Principle for Decision-Making"”, Nature Communications,
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Free Energy Minimization

A unifying theory for:

v'self-organization
v'brain function

v'sentient behaviors

V...
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Free Energy Minimization

A unifying theory for: A unifyin? framework
or:

v'self-organization v'mirror descent

v'brain function vmaximum entropy

v'sentient behaviors vdiffusion
processes
Y... v
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Free Energy Minimization

A unifying theory for: A unifyin? framework
or:

v'self-organization v'mirror descent

v'brain function vmaximum entropy

v'sentient behaviors vdiffusion
processes
Y... v

Autonomous Decision-Making!

A. Shafiel, H. Jesawada, K. Friston, GR, "Distributionally Robust Free Energy Principle for Decision-Making"”, Nature Communications,
IN press



Normative Framework for Policy Composition
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Normative Framework for Policy Composition

Agent .
| X J Minimize w, . Error + Entropy
£
s
4

| U

Agent/Environment dynamics:

Subject to: policy = mixture(w,) of primitives

% (Xk9 u, | Xk—l) =P (Xk | Xk-l»“k)l? (“k | Xk—l)

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Normative Framework for Policy Composition

| X Agent Minimize w, . Error + Entropy
| 'l
4

| U, -Error: D (p(xe e | X)) | 1 g 0y | X421))

Agent/Environment dynamics:

Subject to: policy = mixture(w,) of primitives

% (Xk9 u, | Xk—l) =P (Xk | Xk-l»“k)l? (“k | Xk—l)

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Normative Framework for Policy Composition

Agent .
| X J Minimize w, . Error + Entropy

®

Q -Error: Dy (P(Xk, w | x| | gxXp,u | Xk—l))

Agent/Environment dynamics:

Subject to: policy = mixture(w,) of primitives

p(z) i
q(z)

Dy (p114q) = JP(Z)IH

% (Xk» u, | Xk—l) =P (Xk | Xk-l»“k)l? (“k | Xk—l)
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Optimization Problem

Error

, Entropy
min Dy (P (Xk, uy | Xk—l) |1 ¢q (Xk9 u, | Xk—l)) — & H(wy)

W, EA,

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Optimization Problem

Error Entropy

min DKL( (Xk» | Xk—l) |1 ¢ (Xk9 u, | Xk—l)) —¢ H(wy

W, EA,

st p(ulx_) = Z “ (g | Xe_y)

I\/Iixture-of-primitivels

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025
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Optimization Problem

, Error E“tEOPV
W,’: € arg Wfkféiil DKL (P (Xka u, | Xk_1) | | g (Xka u, | Xk_1)) — & H(w,)
S.t. p (“k | Xk—l) = Z wpn® (“k | Xk—l)
a=1

Mixtu re-ofv-primitivels

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Optimization Problem

, Error E“tEOPV
w € arg Wiréiil Dk (P (X | X21) || g (%0 | Xk—l)) — & H(wy)
S.t. p (“k | Xk—l) = Z wpn® (“k | Xk—l)
a=1

Mixtu re-ofv-primitivels

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



The Softmax Gradient Flow

Goal: dynamical system that provably converges to optimal solution

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



The Softmax Gradient Flow

Goal: dynamical system that provably converges to optimal solution

TW, = — W, + softmax (—e~! VError(w,))
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The Softmax Gradient Flow

Goal: dynamical system that provably converges to optimal solution

TW, = — W, + softmax (—e~! VError(w,))

exp(x;)
Zi eXp (xi)

softmax (X), =

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



The Softmax Gradient Flow

Goal: dynamical system that provably converges to optimal solution

ka - — Wk + SOftmaX (—8_1 V ErrOr(Wk)>

» Equilibrium is the optimal solution
» Simplex is forward invariant

» Naturally interpreted as firing-rate

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025
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The Softmax Gradient Flow

Goal: dynamical system that provably converges to optimal solution

TW, = — W, + softmax (—e~! VError(w,))

» Equilibrium is the optimal solution
» Simplex is forward invariant

» Naturally interpreted as firing-rate

» Contracting energy model!

F. Rossi, V. Centorrino, F. Bullo, GR, "Neural Policy Composition from Free Energy Minimization", 2025



Example: Group Coordination

Some boids aware of final
destination + keep cohesiveness
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See Movie

C Heins, et al., Collective behavior from surprise minimization. PNAS, vol. 121, €2320239121, 2025



https://drive.google.com/file/d/135j6HnBeuGSXdnKmtFeMxZ4ikBTmA1kr/view?usp=sharing

X,: position, velocity
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Thank you for your attention!

] giovarusso@unisa.it
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