

Contraction Theory for Optimization, Control, and Neural Networks

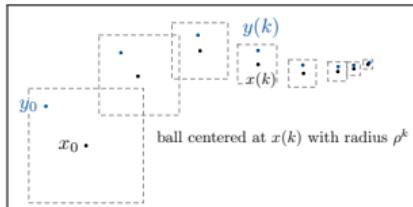
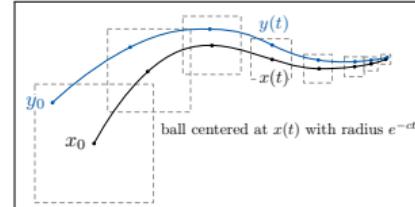
Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
<https://fbullo.github.io>

Tutorial Session on **Contraction Theory in Control, Optimization, and Learning**

Speakers: **Samuel Coogan** (Georgia Institute of Technology), **Emiliano Dall'Anese** (Boston University), **Ian Manchester** (University of Sydney), and **Giovanni Russo** (University of Salerno)

2025 IEEE CDC Tutorial Session, Dec 11, 2025



16:30–17:10

Speaker: Francesco Bullo (UC Santa Barbara)

Title: Introduction to Contraction Theory and Advances in Equilibrium Tracking (40 minutes)

17:10–17:30

Speaker: Emiliano Dall'Anese (Boston University)

Title: Contractivity of Interconnected Continuous- and Discrete-Time Systems (20 minutes)

17:30–17:50

Speaker: Giovanni Russo (University of Salerno)

Title: Contraction in Neural Networks and Biologically Plausible Optimization (20 minutes)

17:50–18:10

Speaker: Samuel Coogan (Georgia Institute of Technology)

Title: Linear Differential Inclusions and Contraction Analysis (20 minutes)

18:10–18:30

Speaker: Ian Manchester (University of Sydney)

Title: Neural Networks Designed with Contraction-Theoretic Guarantees (20 minutes)

Acknowledgments

Simone Betteti
Univ Padova

Veronica Centorrino
SSM → ETH

Alexander Davydov
UCSB → Rice University

Anand Gokhale
UC Santa Barbara

Zahra Marvi
Univ Minnesota

Ryotaro Shima
Toyota Research Labs

Andrew Alleyne
Univ Minnesota

Emiliano Dall'Anese
Boston University

Yu Kawano
Hiroshima University

Anton Proskurnikov
Politecnico Torino

Giovanni Russo
Univ Salerno

AFOSR

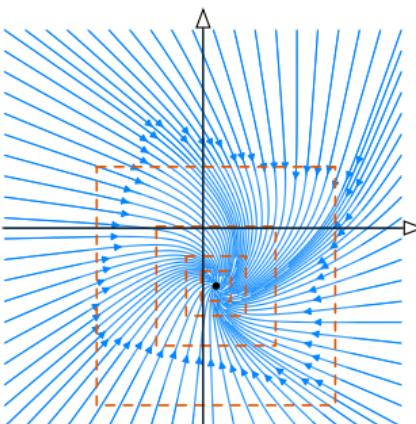
ARO

ONR

Frederick Leve @AFOSR FA9550-22-1-0059
Marc Steinberg @ONR N00014-22-1-2813
Derya Cansever @ARO W911NF-24-1-0228

contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces



highly-ordered transient and asymptotic behavior, no anonymous constants/functions

search for contraction properties

design engineering systems to be contracting

verify correct/safe behavior via known Lipschitz constants

- **Origins**

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3(1):133–181, 1922.

- **Dynamics:**

G. Dahlquist. *Stability and error bounds in the numerical integration of ordinary differential equations*. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology, No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. I. *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika*, 5:52–90, 1958. URL <http://mi.mathnet.ru/eng/ivm2980>. (in Russian)

- **Computation:**

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. *IEEE Transactions on Circuit Theory*, 19(5):480–486, 1972.

- **Systems and control:**

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. *Automatica*, 34(6):683–696, 1998.

Contraction conditions without Jacobians

- ① **one-sided Lipschitz maps** in: G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial value problems. In G. A. Watson, editor, *Numerical Analysis*, pages 60–72. Springer, 1976. doi and E. Hairer, S. P. Nørsett, and G. Wanner. *Solving Ordinary Differential Equations I. Nonstiff Problems*. Springer, 1993. doi (Section 1.10, Exercise 6)
- ② **uniformly decreasing maps** in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks. *IEEE Transactions on Circuits and Systems*, 23(6): 355–379, 1976. doi
- ③ no-name in: A. F. Filippov. *Differential Equations with Discontinuous Righthand Sides*. Kluwer, 1988. ISBN 902772699X (Chapter 1, page 5)
- ④ **maps with negative nonlinear measure** in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001. doi
- ⑤ **dissipative Lipschitz maps** in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 461(2059):2257–2267, 2005. doi
- ⑥ **maps with negative lub log Lipschitz constant** in: G. Söderlind. The logarithmic norm. History and modern theory. *BIT Numerical Mathematics*, 46(3):631–652, 2006. doi
- ⑦ **QUAD maps** in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. *Physica D: Nonlinear Phenomena*, 213(2):214–230, 2006. doi
- ⑧ **incremental quadratically stable maps** in: L. D'Alto and M. Corless. Incremental quadratic stability. *Numerical Algebra, Control and Optimization*, 3:175–201, 2013. doi



Contraction Theory for Dynamical Systems, Francesco Bullo, KDP, 1.2 edition, 2024, ISBN 979-8836646806
252 pages and 94 exercises (with solutions)

- **Table of Contents:**

1. A Primer on Fixed Point Theory
2. Norms and Induced Matrix Norms
3. Strongly Contracting Systems
4. Weakly Contracting and Monotone Systems
5. Semicontracting Systems

Examples: neural networks, gradient dynamics, Lur'e systems, traffic networks, diffusively-coupled dynamical systems, and more

- PDF text and slides freely available at <https://fbullo.github.io/ctds>
- paperback and hardcover at: ([link to amazon](#))
- 12h recorded minicourse at: ([link to youtube](#))

- v1.3 edition, forthcoming in mid 2026
"Continuous improvement is better than delayed perfection"
Mark Twain

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

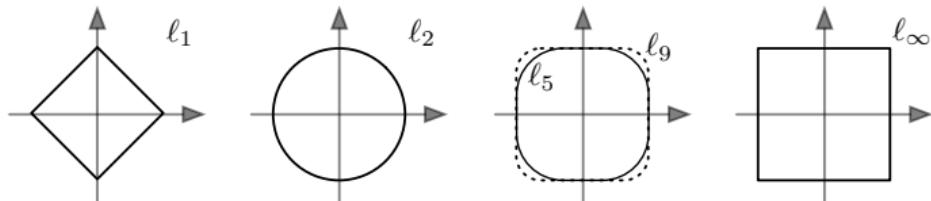
§3. Chapter #3: Contracting stochastic dynamics

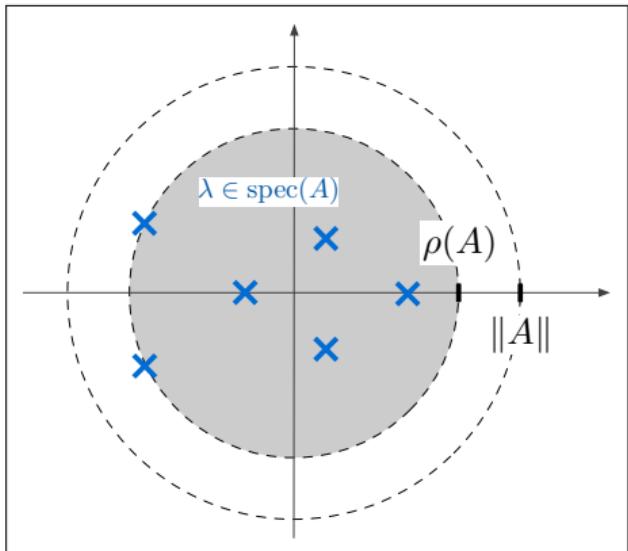
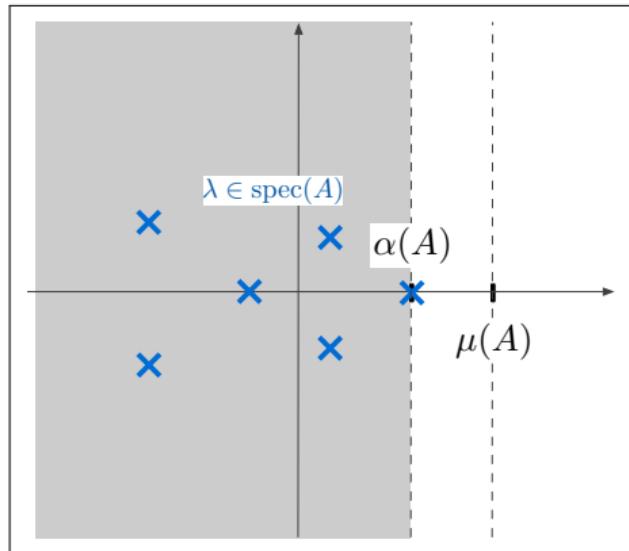
- Incremental input and noise to state stability

§4. Future work

Induced matrix norms

Vector norm	Induced matrix norm	Induced matrix log norm
$\ x\ _1 = \sum_{i=1}^n x_i $	$\ A\ _1 = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^n a_{ij} $ = max column "absolute sum" of A	$\mu_1(A) = \max_{j \in \{1, \dots, n\}} (a_{jj} + \sum_{i=1, i \neq j}^n a_{ij})$ absolute value only off-diagonal
$\ x\ _2 = \sqrt{\sum_{i=1}^n x_i^2}$	$\ A\ _2 = \sqrt{\lambda_{\max}(A^\top A)}$	$\mu_2(A) = \lambda_{\max}\left(\frac{A + A^\top}{2}\right)$





$x_{k+1} = \mathsf{F}(x_k)$ on \mathbb{R}^n with norm $\|\cdot\|$ and induced norm $\|\cdot\|$

Lipschitz constant

$$\begin{aligned}\text{Lip}(\mathsf{F}) &= \inf\{\ell > 0 \mid \|\mathsf{F}(x) - \mathsf{F}(y)\| \leq \ell\|x - y\| \quad \text{for all } x, y\} \\ &= \sup_x \|D\mathsf{F}(x)\|\end{aligned}$$

For **scalar map** f , $\text{Lip}(f) = \sup_x |f'(x)|$

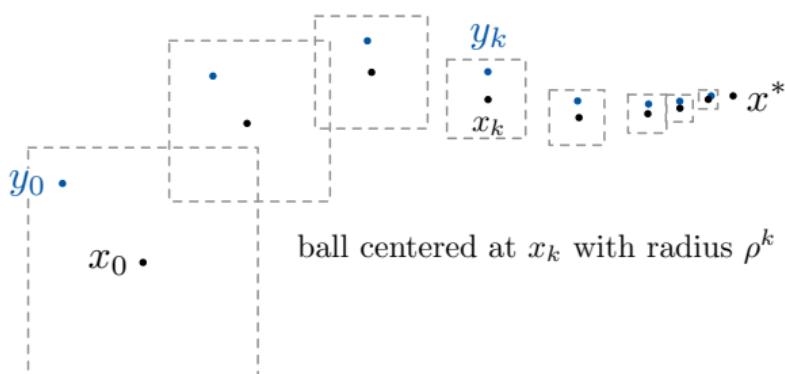
For **affine map** $\mathsf{F}_A(x) = Ax + a$

$$\begin{array}{llll}\|x\|_{2,P^{1/2}} = (x^\top Px)^{1/2} & \text{Lip}_{2,P^{1/2}}(\mathsf{F}_A) = \|A\|_{2,P^{1/2}} \leq \ell & \iff & A^\top PA \preceq \ell^2 P \\ \|x\|_\infty = \max_i |x_i| & \text{Lip}_\infty(\mathsf{F}_A) = \|A\|_\infty \leq \ell & \iff & |A|\mathbb{1}_n \leq \ell\mathbb{1}_n\end{array}$$

Banach contraction theorem for discrete-time dynamics:

If $\rho := \text{Lip}(F) < 1$, then

- ① F is **contracting**: $\|x(k) - y(k)\| \leq \rho^k \|x_0 - y_0\|$
- ② F has a globally exp stable equilibrium x^*



$\dot{x} = F(x)$ on \mathbb{R}^n with norm $\|\cdot\|$ and induced log norm $\mu(\cdot)$

One-sided Lipschitz constant

$$\text{osLip}(F) = \sup_x \mu(DF(x))$$

For **scalar map** f , $\text{osLip}(f) = \sup_x f'(x)$

For **affine map** $F_A(x) = Ax + a$

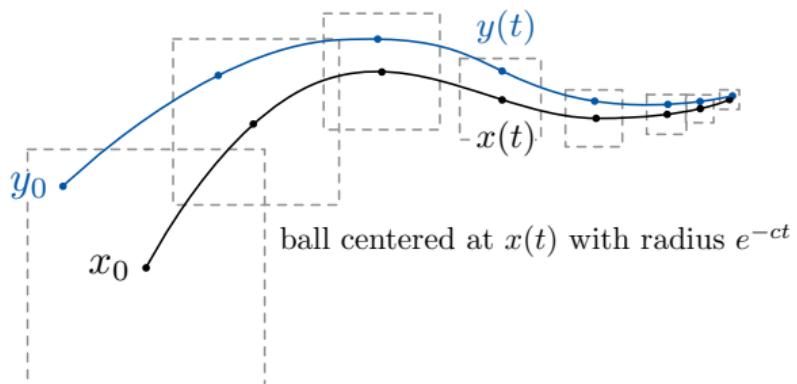
$$\text{osLip}_{2,P}(F_A) = \mu_{2,P}(A) \leq \ell \iff A^\top P + AP \preceq 2\ell P$$

$$\text{osLip}_{\infty,\eta}(F_A) = \mu_{\infty,\eta}(A) \leq \ell \iff a_{ii} + \sum_{j \neq i} |a_{ij}| \eta_i / \eta_j \leq \ell$$

Banach contraction theorem for continuous-time dynamics:

If $-c := \text{osLip}(F) < 0$, then

- ① F is **infinitesimally contracting**: $\|x(t) - y(t)\| \leq e^{-ct} \|x_0 - y_0\|$
- ② F has a globally exp stable equilibrium x^*



§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

§4. Future work

Properties of contracting dynamics

- ① initial conditions are forgotten, and
monotonic decrease (no overshoot) in distance between trajectories
- ② two canonical Lyapunov functions
- ② robustness properties
 - bounded input, bounded output (iss)
 - finite input and noise state stability
 - robustness margin wrt unmodeled dynamics
 - robustness margin wrt delayed dynamics
- ③ modularity and interconnection properties
- ④ accurate numerical integration and equilibrium point computation
- ⑤ periodic input, periodic output

Property #1: Canonical Lyapunov functions

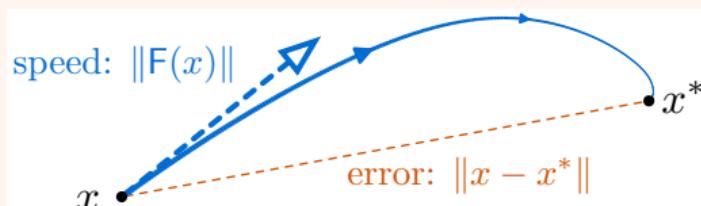
Given vector field F with $\text{osLip}(F) = -c < 0$ and equilibrium point x^* , define

$$x \mapsto \|x - x^*\| \quad \text{and} \quad x \mapsto \|F(x)\|$$

Then

$$\|x(t) - x^*\| \leq e^{-ct} \|x_0 - x^*\| \quad (\text{error})$$

$$\|F(x(t))\| \leq e^{-ct} \|F(x_0)\| \quad (\text{speed})$$



Property #2: Robustness with respect to unmodeled dynamics

$$\dot{x} = F(x) + \Delta(x)$$

- **contractivity:** $\text{osLip}(F) \leq -c < 0$
- **bounded disturbance:** $\text{osLip}(\Delta) \leq d < c$

Then

- ① $F + \Delta$ is strongly contracting with rate $c - d$
- ② the unique equilibria x_F^* of F and $x_{F+\Delta}^*$ of $F + \Delta$ satisfy

$$\|x_F^* - x_{F+\Delta}^*\| \leq \frac{\|\Delta(x_F^*)\|}{c - d}$$

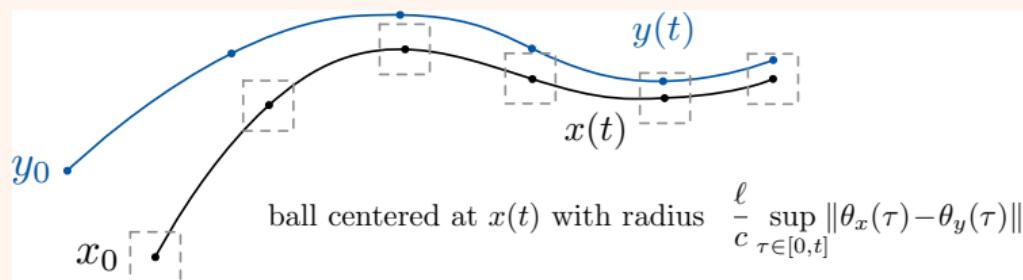
Property #3: Robustness with respect to inputs

$$\dot{x} = F(x, \theta(t))$$

- **contractivity wrt x :** $\text{osLip}_x(F) \leq -c < 0$, uniformly in θ
- **Lipschitz wrt θ :** $\text{Lip}_\theta(F) \leq \ell$, uniformly in x

Then **incremental ISS property**:

$$\|x(t) - y(t)\| \leq e^{-ct} \|x_0 - y_0\| + \frac{\ell}{c} (1 - e^{-ct}) \sup_{\tau} \|\theta_x(\tau) - \theta_y(\tau)\|$$



Property #4: Network Contraction Theorem. Consider interconnected subsystems

$$\dot{x}_i = F_i(x_i, x_{-i}), \quad \text{for } i \in \{1, \dots, n\}$$

satisfying

- **contractivity wrt x_i :** $\text{osLip}_{x_i}(F_i) \leq -c_i < 0$, uniformly in x_{-i}
- **Lipschitz wrt $x_j, j \neq i$:** $\text{Lip}_{x_j}(F_i) \leq \ell_{ij}$, uniformly in x_{-j}
- the Lipschitz constants matrix $\Gamma = \begin{bmatrix} -c_1 & \dots & \ell_{1n} \\ \vdots & & \vdots \\ \ell_{n1} & \dots & -c_n \end{bmatrix}$ is **Hurwitz**

Then **interconnected system** is contracting with rate $|\alpha(\Gamma)|$

Property #5: Euler Discretization Theorem

Given arbitrary norm $\|\cdot\|$ and differentiable $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$,

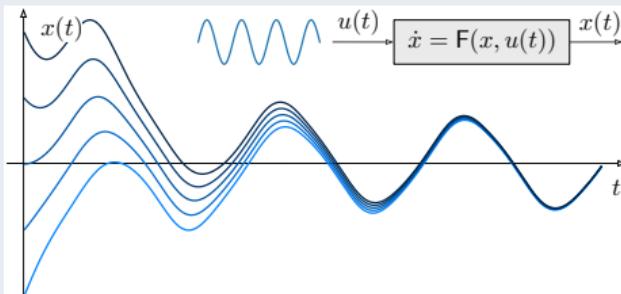
Equivalent statements

- ① $\dot{x} = F(x)$ is infinitesimally contracting
- ② there exists $\alpha > 0$ such that $x_{k+1} = x_k + \alpha F(x_k)$ is contracting

Property #6: Entrainment in systems with periodic time-dependence

For time-varying vector field $\mathbf{F}(t, x)$

- ① $\text{osLip}_x(\mathbf{F}) \leq -c < 0$, uniformly in t
- ② \mathbf{F} is T -periodic in t



Then

- ① there exists a unique periodic solution $x^* : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^n$ with period T
- ② for every initial condition x_0 ,

$$\|x(t, x_0) - x^*(t)\| \leq e^{-ct} \|x_0 - x^*(0)\|$$

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

§4. Future work

- ➊ **gradient descent flows** under strong convexity assumptions
(proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)
- ➋ **Lur'e systems** under assumptions on nonlinearity and LMI conditions
(Lipschitz, incrementally passive, monotone, conic, etc)
- ➌ **neural network dynamics** under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)
- ➍ **interconnected systems** under contractivity and small-gain assumptions (TAC, review)
(Hurwitz Metzler matrices, network small-gain theorem, etc)
- ➎ **data-driven learned models (imitation learning)**
- ➏ **incremental ISS systems**
- ➐ **feedback linearizable systems with stabilizing controllers**

Example #1: Gradient descent for strongly convex function

Given differentiable ν -strongly convex $f : \mathbb{R}^n \rightarrow \mathbb{R}$, **gradient descent dynamics**

$$\dot{x} = F_G(x) := -\nabla f(x)$$

F_G is infinitesimally contracting wrt $\|\cdot\|_2$ with rate ν

Property #7: Kachurovskii's Theorem: For differentiable $f : \mathbb{R}^n \rightarrow \mathbb{R}$, equivalent statements:

- ① f is **strongly convex** with parameter ν (and minimum x^*)
- ② $-\nabla f$ is **ν -strongly infinitesimally contracting** (with equilibrium x^*)

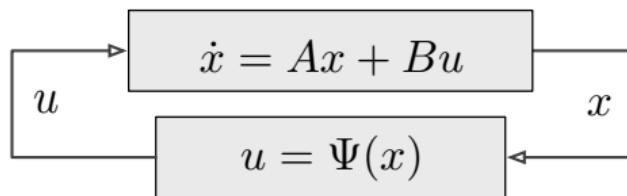
Example #1 (cont'd): Optimization-based contracting dynamics

Many convex optimization problems can be solved with contracting dynamics

$$\dot{x} = F(x, \theta)$$

	Convex Optimization	Contracting Dynamics
Unconstrained	$\min_{x \in \mathbb{R}^n} f(x, \theta)$	$\dot{x} = -\nabla_x f(x, \theta)$
Constrained	$\min_{x \in \mathbb{R}^n} f(x, \theta)$ s.t. $x \in \mathcal{X}(\theta)$	$\dot{x} = -x + \text{Proj}_{\mathcal{X}(\theta)}(x - \gamma \nabla_x f(x, \theta))$
Composite	$\min_{x \in \mathbb{R}^n} f(x, \theta) + g(x, \theta)$	$\dot{x} = -x + \text{prox}_{\gamma g_\theta}(x - \gamma \nabla_x f(x, \theta))$
Equality	$\min_{x \in \mathbb{R}^n} f(x, \theta)$ s.t. $Ax = b(\theta)$	$\dot{x} = -\nabla_x f(x, \theta) - A^\top \lambda,$ $\dot{\lambda} = Ax - b(\theta)$
Inequality	$\min_{x \in \mathbb{R}^n} f(x, \theta)$ s.t. $Ax \leq b(\theta)$	$\dot{x} = -\nabla f(x, \theta) - \gamma^{-1} A^\top \text{relu}(Ax + \gamma \lambda - b(\theta)),$ $\dot{\lambda} = -\gamma \lambda + \text{relu}(Ax + \gamma \lambda - b(\theta))$

Example #2: Systems in Lur'e form



For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times n}$, **nonlinear system in Lur'e form**

$$\dot{x} = Ax + B\Psi(x) =: F_{\text{Lur'e}}(x)$$

where $\Psi : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is described by an **incremental multiplier matrix** M

For $P = P^\top \succ 0$, following statements are equivalent:

① $F_{\text{Lur'e}}$ infinitesimally contracting wrt $\|\cdot\|_{2,P}$ with rate $\eta > 0$ for each Ψ described by M ,

② $\exists \lambda \geq 0$ such that $\begin{bmatrix} PA + A^\top P + 2\eta P & PB \\ B^\top P & 0_{m \times m} \end{bmatrix} + \lambda M \preceq 0$

Example #2: Regularized MPC (linear systems, convex input costs)

Given $x(k+1) = Ax(k) + Bu(k)$, the MPC optimization problem is:

$$\min_{u(k), \dots, u(k+H-1)} \left(\sum_{h=0}^{H-1} \|x(k+h)\|_Q^2 + \|u(k+h)\|_R^2 + \underbrace{\mathbf{V}(u_{k+h})}_{\text{regularization}} \right) + \underbrace{\|x(k+H)\|_{Q_{\text{terminal}}}^2}_{\text{control Lyapunov function}}$$

If input cost \mathbf{V} is twice differentiable and $0 \preceq \text{Hess}(\mathbf{V}(u)) \preceq \Theta$ for all u , then

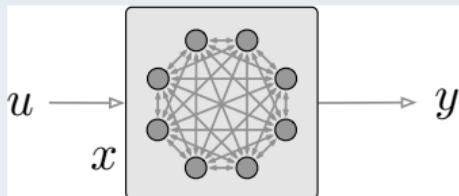
- ① contractivity with factor $\eta < 1$ if there exist $P \succ 0$ and diagonal $\Lambda \succeq 0$ satisfying:

$$\begin{bmatrix} A^\top PA - \eta^2 P & A^\top PB\Pi_1 \\ \Pi_1^\top B^\top PA & \Pi_1^\top B^\top PB\Pi_1 \end{bmatrix} + \begin{bmatrix} 0 & I \\ -C & -D \end{bmatrix}^\top \begin{bmatrix} 0 & \Lambda \otimes I \\ \Lambda \otimes I & -2\Lambda \otimes \Theta^{-1} \end{bmatrix} \begin{bmatrix} 0 & I \\ -C & -D \end{bmatrix} \preceq 0$$

for projection matrix Π_1 and appropriate C and D

- ② there exists $0 \preceq \Theta \preceq \theta_{\max} I$ such that LMI is solvable

Example #3: Firing-rate networks for implicit ML via ℓ_∞



$$\begin{aligned}\dot{x} &= -x + \Phi(Ax + Bu + b) && (\text{recurrent NN}) \\ x &= \Phi(Ax + Bu + b) && (\text{implicit NN}) \\ x_{k+1} &= (1 - \alpha)x_k + \alpha\Phi(Ax_k + Bu + b) && (\text{Euler discret.})\end{aligned}$$

If

$$\mu_\infty(A) < 1 \quad \left(\text{i.e., } a_{ii} + \sum_{j \neq i} |a_{ij}| < 1 \text{ for all } i \right)$$

- recurrent NN is infinitesimally contracting with rate $1 - \mu_\infty(A)_+$
- implicit NN is well posed
- Euler discretization is contracting at $\alpha^* = (1 - \min_i(a_{ii})_-)^{-1}$

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

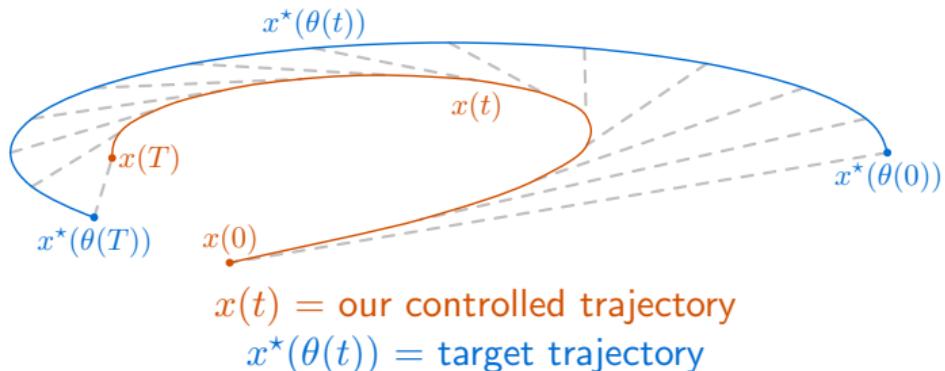
§4. Future work

① parametric contracting dynamics for parametric convex optimization

$$\min \mathcal{E}(x, \theta) \iff \dot{x} = \mathsf{F}(x, \theta) \rightsquigarrow x^*(\theta)$$

② contracting dynamics for time-varying strongly-convex optimization

$$\min \mathcal{E}(x, \theta(t)) \iff \dot{x} = \mathsf{F}(x, \theta(t)) \rightsquigarrow x^*(\theta(t))$$



For parameter-dependent vector field $\mathbf{F} : \mathbb{R}^n \times \mathbb{R}^d \rightarrow \mathbb{R}^n$ and differentiable $\theta : \mathbb{R}_{\geq 0} \rightarrow \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathbf{F}(x(t), \theta(t))$$

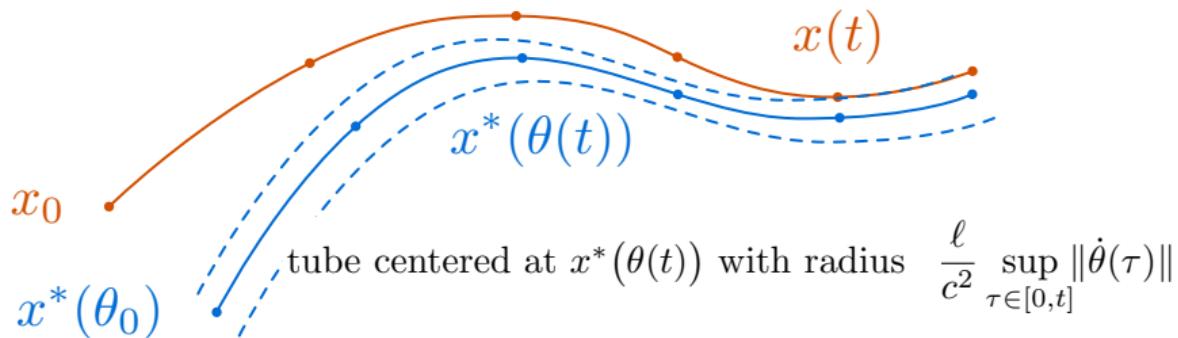
- **contractivity wrt x :** $\text{osLip}_x(\mathbf{F}) \leq -c < 0$
- **Lipschitz wrt θ :** $\text{Lip}_\theta(\mathbf{F}) \leq \ell$

Equilibrium tracking

error : $\|x(t) - x^*(\theta(t))\| \leq e^{-ct} \|x_0 - x^*(\theta_0)\| + \frac{\ell}{c^2} \sup_{\tau \in [0, t]} \|\dot{\theta}(\tau)\|$

speed : $\|\mathbf{F}(x(t), \theta(t))\| \leq e^{-ct} \|\mathbf{F}(x_0, \theta_0)\| + \frac{\ell}{c} \sup_{\tau \in [0, t]} \|\dot{\theta}(\tau)\|$

Equilibrium tracking and tube invariance



$$\begin{aligned}\dot{x}(t) &= F(x(t), \theta(t)) \\ x^*(\theta(t)) &= \text{equilibrium trajectory}\end{aligned}$$

Time-varying contracting dynamics with feedforward prediction

$$\dot{x}(t) = F(x(t), \theta(t)) - \underbrace{\left(D_x F(x(t), \theta(t))\right)^{-1} D_\theta F(x(t), \theta(t)) \dot{\theta}(t)}_{\text{differentiable } F}$$

Asymptotically-exact equilibrium tracking

$$\begin{aligned} \text{error : } \|x(t) - x^*(\theta(t))\| &\leq \frac{1}{c} e^{-ct} \|F(x_0, \theta_0)\| & \ell_x = \text{Lip}_x(F) &\leq \frac{\ell_x}{c} e^{-ct} \|x_0 - x^*(\theta_0)\| \\ \text{speed : } \|F(x(t), \theta(t))\| &\leq e^{-ct} \|F(x_0, \theta_0)\| \end{aligned}$$

Discretized equilibrium tracking for parametrized dynamics $\dot{x} = F(x, \theta(t))$

contraction rate c , Lipschitz constants ℓ_x and ℓ_θ

pick step size α so that $\gamma = \text{Lip}(I_n + \alpha F) < 1$

define *discrete time* $t_k = \alpha k$

forward Euler :

$$x_{k+1} \leq x_k + \alpha F(x_k, \theta(t_k))$$

$$\text{error : } \|x_k - x^*(\theta(t_k))\| \leq \gamma^k \|x_0 - x^*(\theta_0)\| + \frac{\ell_\theta}{c(1-\gamma)} \sup_{k>0} \frac{\|\theta(t_{k+1}) - \theta(t_k)\|}{t_{k+1} - t_k}$$

Outline

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

§4. Future work

Given $\dot{x} = F(x) + G(x)u$ with nominal controller $u_{\text{nom}}(x)$

Safe control design: render forward invariant safe set $\{x \in \mathbb{R}^n \mid h_i(x) \geq 0, \ i \in \{1, \dots, k\}\}$

Safety filter (parametric QP with linear inequalities)

$$\begin{aligned} u^*(x) = \operatorname{argmin} \quad & \|u - u_{\text{nom}}(x)\|_2^2 \\ \text{s.t.} \quad & \dot{h}_i(x, u) \geq -\alpha(h_i(x)), \quad i \in \{1, \dots, k\} \quad \text{(safety constraints)} \\ & \|u\|_\infty \leq \bar{u} \quad \text{(actuator constraints)} \end{aligned}$$

High-performance constrained control methods rely on **online optimization**. However,

- even for a QP, complexity grows **cubically** with decision variables,
- per-step optimization creates a **scalability** bottleneck.

Design approach: design **contracting solver** with approximation error $\|u(t) - u_{\text{nom}}\|$

Approach #1: Projected gradient for relaxed constraints

- ① relax safety constraints into logarithmic barriers in cost function

$$\mathcal{E}_\eta(u, x) = \|u - u_{\text{nom}}(x)\|_2^2 - \eta \sum_{i=1}^k \log\left(\nabla h_i(x)^\top (F(x) + G(x)u) + \alpha(h_i(x))\right)$$

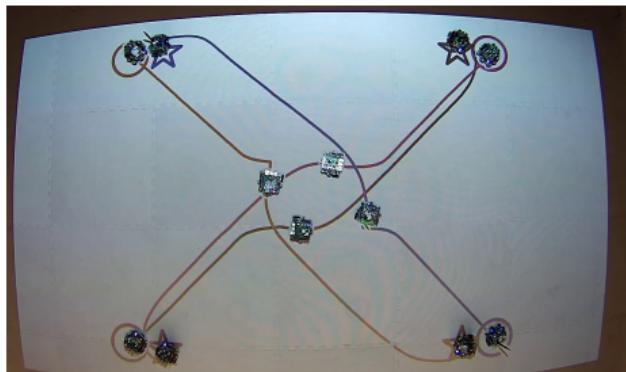
- ② adopt projected gradient dynamics

$$\dot{u} = -u + \text{Proj}_{\|u\|_\infty \leq \bar{u}}\left(u - \nabla_u \mathcal{E}_\eta(u, x)\right) + \text{FeedForward}_\eta(u(t), x(t))$$

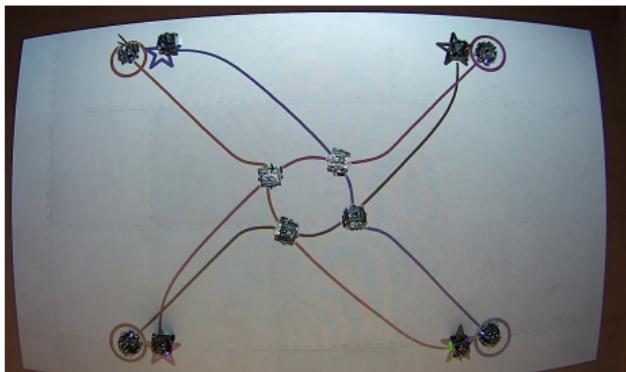
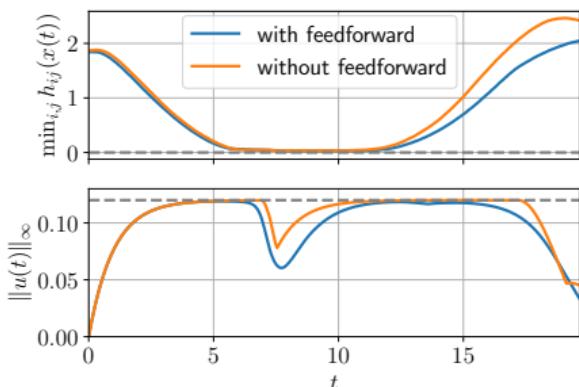
- ③ discretize using forward Euler

Results: Robotic experiments in the Robotarium

No feedforward



With feedforward



Videos:

- experiment without feedforward
- experiment with feedforward

Code: [github link](#)

contracting systems as controllers = promising approach to optimization-based control

Approach #2: Control barrier proximal dynamics

Assume

- ① $\dot{x} = F(x) + Bu$ and
- ② \mathcal{C} is convex described by affine $h(x) = Hx - h_0$

Safety filter (parametric QP with linear inequalities)

$$\begin{aligned} u^*(x) = \operatorname{argmin} \quad & \|u - u_{\text{nom}}(x)\|_2^2 && \text{(performance)} \\ \text{s.t.} \quad & Au \leq b(x) && \text{(safety \& actuator constraints)} \end{aligned}$$

Control Barrier Proximal Dynamics (CBPD)

$$\begin{aligned} \dot{u} &= -u + u_b(x) - \frac{1}{\gamma} A^\top \operatorname{relu}(Au - b(x) + \gamma \lambda) \\ \dot{\lambda} &= -\gamma \lambda + \operatorname{relu}(Au - b(x) + \gamma \lambda) \end{aligned}$$

Time-scaling for reduced tracking error

Given contracting controller $\tau \dot{u} = F(u, x)$, contraction rate c and Lipschitz constant ℓ_x

$$\text{osLip}_u\left(\frac{F}{\tau}\right) = \frac{-c}{\tau}, \quad \text{Lip}_x\left(\frac{F}{\tau}\right) = \frac{\ell_x}{\tau}$$

With initially safe controller (i.e., zero transient error)

$$\|u(t) - u^*(x(t))\| \leq \tau \frac{\ell_x}{c^2} \|\dot{x}(t)\| = \tau \bar{\delta}(t)$$

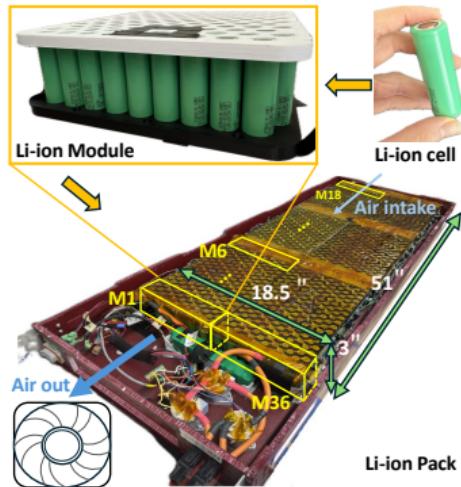
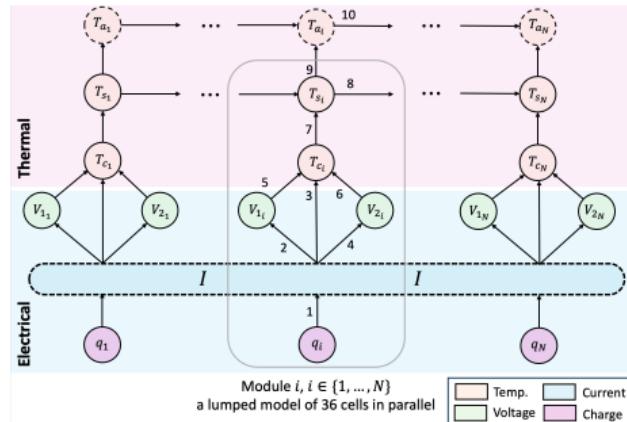
CBPD-based safety guarantee CBPD Controller renders the safe set invariant with an **arbitrarily small** violation safety margin bounded by

$$m = \frac{\tau}{\alpha} K \bar{\delta}$$

Tracking error translates to safety margin.

Design variables 1) time scale τ (i.e, solver rate) 2) CBF parameter α

Results: Electro-thermal management of battery pack systems

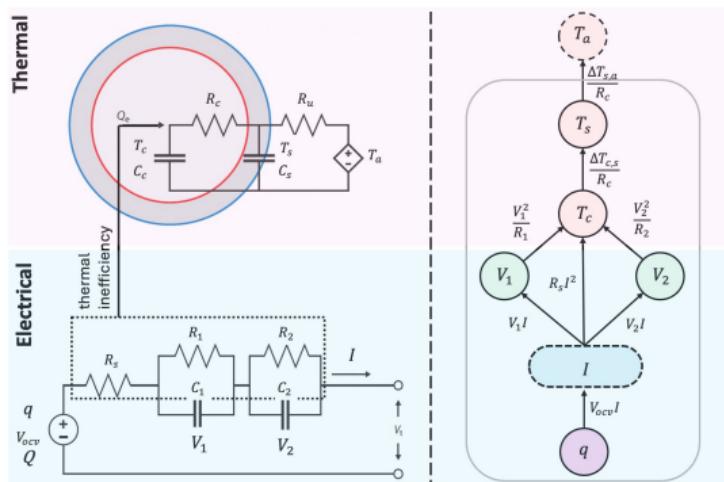


System description: The UMN solar EV battery pack has 36 series modules (M1–M36), each with 36 parallel Li-ion cells (1296 total).

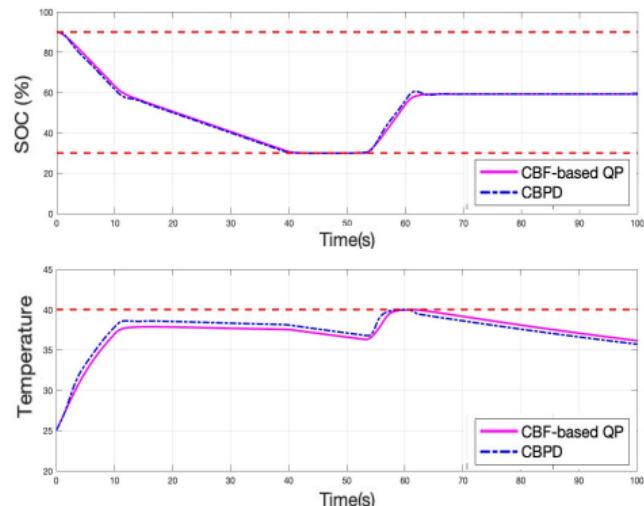
Model description: Validated conservation-based graph model: each module is a lumped model, with thermal connections capturing spatial variations across the pack.

Simulation results for single battery: CBPD vs QP

- Lithium-ion cell control with state of charge (SOC) and temperature constraints.
- Conservation-based electro-thermal model, vertices: system states and edges: power flow.



(left) cell equivalent circuit, (right) conservation-based graph model



Evolution of SOC and temp. by applying: (a) CBF, and (b) CBPD.

- Similar dynamics and safety for both controllers.
- CBPD is 1–2 orders of magnitude faster.

Max deviation	Runtime ratio
3%	3700%

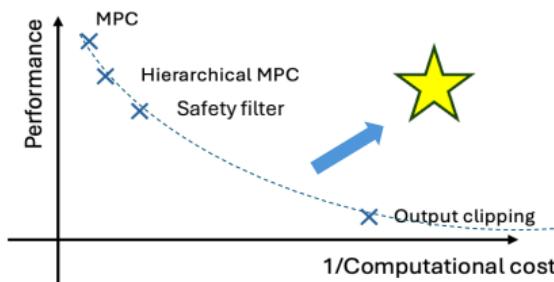
Table: CBF vs CBPD comparison

Simulation results for battery pack: CBPD vs PI control

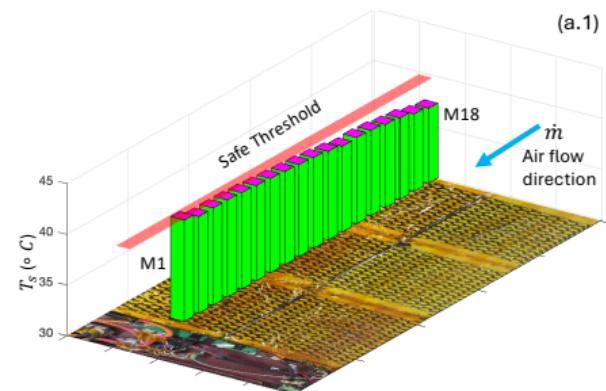
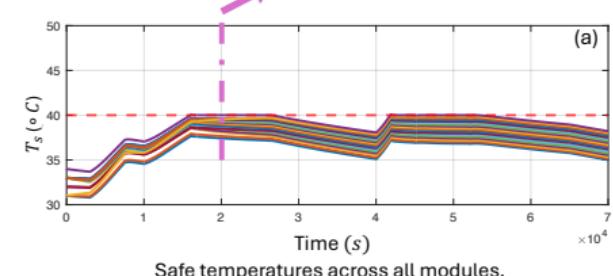
Objective: Keeping all module temperatures below a safe threshold with minimal control effort.

$$\min I_f^2 \text{ s.t. } \max_{i \in \{1, \dots, N\}} \{T_{s,i}\} \leq \bar{T}$$

Comp. cost comparable to a switched PI controller
(Per-call runtime: PI = 3.095 ms, CBPD = 3.171 ms).



CBPD's scalability enables spatially accurate thermal management in battery packs.



Safe temperatures across all modules.

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

§4. Future work

§1. Chapter #1: A tutorial review

- Definitions
- Theorems
- Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control

- Equilibrium tracking
- Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics

- Incremental input and noise to state stability

§4. Future work

theory:

- ① equilibrium tracking
 - discrete-time, stochastic, distributed, internal model principle
- ② local, weak, k -, periodic, and other generalizations of contractivity
- ③ local contractivity, invariant sets, and region of attraction

examples & applications:

- ① optimization-based control: contractivity of *MPC*
 - Lure-based approaches to global and local contractivity
- ② catalog of contracting dynamics with sharp Lipschitz estimates
 - discrete-time and discretized solvers: *Newton-Raphson*, *interior point*, etc
- ③ *hybrid integral control action* for nonlinear overshoot regulation

Examples of contracting dynamics:

- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. *IEEE Control Systems Letters*, 7:1724–1729, 2023.

Applications to machine learning:

- S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021.
- S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended linearization and global guarantees. In *Advances in Neural Information Processing Systems*, 2024.

Application to neuroscience:

- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. *Neural Computation*, 36(6):1163–1197, 2024.

Applications to optimization-based control:

- Z. Marvi, F. Bullo, and A. G. Alleyne. Control barrier proximal dynamics: A contraction theoretic approach for safety verification. *IEEE Control Systems Letters*, 8:880–885, 2024.
- Y. Chen, F. Bullo, and E. Dall'Anese. Sampled-data systems: Stability, contractivity and single-iteration suboptimal MPC. *IEEE Transactions on Automatic Control*, 2025. Submitted
- Z. Marvi, F. Bullo, and A. G. Alleyne. Air cooled battery pack thermal management via control barrier proximal dynamics. *IEEE Transactions on Control Systems Technology*, June 2025b. Submitted
- A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, 70(11):7446–7460, 2025.