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Speaker: Emiliano Dall’Anese (Boston University)

Title: Contractivity of Interconnected Continuous- and Discrete-Time Systems (20 minutes)
17:30-17:50

Speaker: Giovanni Russo (University of Salerno)

Title: Contraction in Neural Networks and Biologically Plausible Optimization (20 minutes)
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Speaker: Samuel Coogan (Georgia Institute of Technology)

Title: Linear Differential Inclusions and Contraction Analysis (20 minutes)

18:10-18:30

Speaker: lan Manchester (University of Sydney)

Title: Neural Networks Designed with Contraction-Theoretic Guarantees (20 minutes)
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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior, no anonymous constants/functions

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. €

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972. d

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):

683-696, 1998. @
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http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

Contraction conditions without Jacobians

@ one-sided Lipschitz maps in: G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial
value problems. In G. A. Watson, editor, Numerical Analysis, pages 60~72. Springer, 1976. & and
E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I|. Nonstiff Problems.
Springer, 1993. & (Section 1.10, Exercise 6)

@ uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic
nonlinear networks: Stability of autonomous networks. /[EEE Transactions on Circuits and Systems, 23(6):
355-379, 1976. ¢

© no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer, 1988.
ISBN 902772699X (Chapter 1, page 5)

@ maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new
approach to exponential stability analysis for Hopfield-type neural networks. |[EEE Transactions on Neural
Networks, 12(2):360-370, 2001. ¢

@ dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under
environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2059):2257-2267, 2005. @

@ maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and
modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006. 4

@ QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled
ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006. ¢

@ incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability.
Numerical Algebra, Control and Optimization, 3:175-201, 2013. ¢
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http://dx.doi.org/10.1007/BFb0080115
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

Textbook “Contraction Theory for Dynamical Systems”

Contraction Theory
for Dynamical Systems

-

Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.2 edition, 2024, ISBN 979-8836646806
252 pages and 94 exercises (with solutions)

o Table of Contents:
1. A Primer on Fixed Point Theory
2. Norms and Induced Matrix Norms
3. Strongly Contracting Systems
4. Weakly Contracting and Monotone Systems
5. Semicontracting Systems
Examples: neural networks, gradient dynamics, Lur'e systems,
traffic networks, diffusively-coupled dynamical systems, and more

o PDF text and slides freely available at
https://fbullo.github.io/ctds

o paperback and hardcover at: (link to amazon)

o 12h recorded minicourse at: (link to youtube)

e v1.3 edition, forthcoming in mid 2026

" Continuous improvement is better than delayed perfection”
Mark Twain
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https://fbullo.github.io/ctds
https://www.amazon.com/dp/B0B4K1BTF4
https://www.youtube.com/playlist?list=PL7bpQ3f3TaeNyzkEacneUZDm8B2Sc3huJ

§1. Chapter #1: A tutorial review
@ Definitions
@ Theorems
@ Examples

§2. Chapter #2: Equilibrium tracking for optimization-based control
@ Equilibrium tracking
@ Application to safety filters

§3. Chapter #3: Contracting stochastic dynamics
@ Incremental input and noise to state stability

§4. Future work
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Induced matrix norms

Vector norm

Induced matrix norm

Induced matrix log norm
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Discrete-time dynamics and Lipschitz constants

ZTpt1 = F(ag) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ >0 | |[F(z) - F(y)|| < fllz -yl forall z,y}
= sup, || DF(z)|

For scalar map f, Lip(f) = sup, |f'(z)|
For affine map F4(z) = Ax +a

[2llg,pr/2 = (l’TPl')l/2 Lipy p1/2(Fa) = |Allg p1/2 < £ — ATPA <P
|]|co = m?x\xi] Lipoo(Fa) = |A]|co < ¢ — |AlL, < /1,
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Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then

@ Fis contracting: |lz(k) —y(k)|| < p*|lzo — wol|

O F has a globally exp stable equilibrium z*

rosoeee noe Uk
: R A S
A B R R
Yo - | |
ball centered at xj, with radius p*
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Continuous-time dynamics and one-sided Lipschitz constants

&= F(x) on R™ with norm || - || and induced log norm p(-)

One-sided Lipschitz constant
osLip(F) = sup, j1(DF(z)) J

For scalar map f, osLip(f) = sup, f'(x)
For affine map F4(z) = Az +a
= ATP+ AP < 2(P

14
¢ — aii+ Y laglmi/n; < ¢
i

IN

osLipy p(Fa) = p2,p(A)

IN

OSLipoo,n(FA) = /1’00777(‘4)
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Banach contraction theorem for continuous-time dynamics:

If —c := osLip(F) < 0, then
@ F is infinitesimally contracting:  ||z(#) —y(t)|| < e %||zo — yo|
@ F has a globally exp stable equilibrium z*

ct
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§1. Chapter #1: A tutorial review

@ Theorems

§2. Chapter #2: Equilibrium tracking for optimization-based control

§3. Chapter #3: Contracting stochastic dynamics

§4. Future work
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Properties of contracting dynamics

@ initial conditions are forgotten, and
monotonic decrease (no overshoot) in distance between trajectories

@ two canonical Lyapunov functions

@ robustness properties
bounded input, bounded output (iss)
finite input and noise state stability
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics

© modularity and interconnection properties
@ accurate numerical integration and equilibrium point computation

© periodic input, periodic output
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Property #1: Canonical Lyapunov functions
Given vector field F with osLip(F) = —c¢ < 0 and equilibrium point z*, define

x|z — x| and x = ||F(2)]|
Then
() —2*|| < e |z — 2| (error)
IF(z@)| < e | (zo)]| (speed)
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Property #2: Robustness with respect to unmodeled dynamics

& =F(z) + Ax)
e contractivity: osLip(F) < —¢ <0
e bounded disturbance:  osLip(A) <d<c

Then
@ F + A is strongly contracting with rate ¢ — d

O the unique equilibria o of F and z¢ 5 of F + A satisfy

A ()l
* * <—
Ik — ot all < F=7E
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Property #3: Robustness with respect to inputs

& = F(z,0(t))
e contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
o Lipschitz wrt 6: Lipy(F) < ¢, uniformly in z

Then incremental ISS property:

lz(t) =y < e “llwo = yoll + é(l—e_“)supfllea:(ﬂ—9y(7)||

L
ball centered at x(t) with radius - sup ||05(7)—0y(7)|
xo'! | C relo,t]
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Property #4: Network Contraction Theorem. Consider interconnected subsystems

= [Fl(azs,

satisfying
@ contractivity wrt z;: osLip,, (

o Lipschitz wrt z;, j # 4. Lip,, (F

@ the Lipschitz constants matrix I' =

F
i)

i),

i) <
<¢

gnl

forie{1,...,

;< 0,

gln

_CTL

n}

uniformly in z_;

uniformly in x_;

is Hurwitz

Then interconnected system is contracting with rate |a(T)|
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Property #5: Euler Discretization Theorem
Given arbitrary norm || - || and differentiable F : R™ — R",

Equivalent statements
Q@ i = F(z) is infinitesimally contracting

@ there exists a > 0 such that zx11 = xx + aF(xy) is contracting
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Property #6: Entrainment in systems with periodic time-dependence

\’”/(t\ AVAVAVAR R e

/N
NN\

For time-varying vector field F(¢, x)
Q osLip,(F) < —c <0, uniformly in ¢

@ F is T-periodic in t

Then
© there exists a unique periodic solution z* : R>g — R™ with period T’

@ for every initial condition x,

|z (t, z0) — 2" (®)|| < e™|lzo — 2"(0)]
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Example contracting systems

© gradient descent flows under strong convexity assumptions
(proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)

@ Lur’e systems under assumptions on nonlinearity and LMI conditions
(Lipschitz, incrementally passive, monotone, conic, etc)

© neural network dynamics under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)

Q interconnected systems under contractivity and small-gain assumptions (TAC, review)
(Hurwitz Metzler matrices, network small-gain theorem, etc)

© data-driven learned models (imitation learning)
Q@ incremental ISS systems

O feedback linearizable systems with stabilizing controllers

24/48



Example #1: Gradient descent for strongly convex function

Given differentiable v-strongly convex f : R® — R, gradient descent dynamics

i = Fo(a) = ~Vf(a)

Fg is infinitesimally contracting wrt | - |2 with rate v )

Property #7: Kachurovskii’s Theorem: For differentiable f : R — R, equivalent
statements:

© f is strongly convex with parameter v (and minimum x*)

@ —V is v-strongly infinitesimally contracting (with equilibrium z*)

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960
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Example #1 (cont'd): Optimization-based contracting dynamics

Many convex optimization problems can be solved with contracting dynamics

& = F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained miRn f(x,0) & =—-Vyf(z,0)
reR™
min  f(x,0)
Constrained | *€R” & = —x + Projy(g)(z — 7Vaf(x,0))
st. xzeX()
Composite miRn f(z,0) +g(x,0) | & =—x+prox,, (r —yVuf(z,0))
xzeR™
min  f(z,0) i =~V f(z,0) — AT
Equality zER™ v f(,0) ’
st. Az =0(0) A=Az —b(0)
min  f(z,0) i =~V [f(z,0) — 7 "Arelu(Az + YA — b(0
Inequality zeR™ T f(@,0) = relu(Az + v 9)),

st. Az <b(0)

A = =y + relu(Az + v\ — b(0))
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Example #2: Systems in Lur'e form

z = Ax + Bu

)

u= V() <

For A € R"*™ and B € R™*", nonlinear system in Lur’e form
&= Ax+ BY(x) =:FpLyre(z)

where ¥ : R™ — R™ is described by an incremental multiplier matrix M

For P = PT > 0, following statements are equivalent:

@ Frure infinitesimally contracting wrt || - ||2,p with rate nn > 0 for each W described by M,

PA+ATP+2nP PB

>
@ )\ > 0 such that BTp O

+ M <0
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Example #2: Regularized MPC (linear systems, convex input costs)

Given z(k + 1) = Ax(k) + Bu(k), the MPC optimization problem is:
H-1

(k+h k+h \4 k+H)3,
o, min 1(Zum + )G+ ulk+ )+ Viwen) )+ lelk+ )R,

regularization control Lyapunov function

If input cost V is twice differentiable and 0 < Hess(V (u)) < © for all u, then

@ contractivity with factor n < 1 if there exist P > 0 and diagonal A > 0 satisfying:

ATPA — 2P ATPBI'Il] [0 Ir[o AT Ho I

I]B"PA T/B'PBI,| " |-C -D| |A®I —2A®07!||-C —D]jo

for projection matrix II; and appropriate C' and D

@ there exists 0 < © < Oax] such that LMI is solvable

R. Shima, A. Gokhale, A. Davydov, and F. Bullo. Regularized model predictive control: Contractivity and applications, Sept. 2025.
Working Document
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Example #3: Firing-rate networks for implicit ML via /.,

t=—x+ ®(Ax + Bu+0b) (recurrent NN)
- Y x = ®(Ax + Bu+1b) (implicit NN)
zr1 = (1 — o)z + a®(Azy + Bu+b) (Euler discrt.)

Hoo(A) < 1 (i.e., ai; + Z#i laij| <1 for all i)

e recurrent NN is infinitesimally contracting with rate 1 — p(A)+

o implicit NN is well posed
1

e Euler discretization is contracting at o* = (1 — min;(a;;)—)~
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Parametric and time-varying convex optimization

© parametric contracting dynamics for parametric convex optimization

miné(z,0) <= & =F(z,0) N A ()

© contracting dynamics for time-varying strongly-convex optimization

min&(z,0(t)) < i&=F(z,0(t)) A C163))

x(t) = our controlled trajectory
x*(0(t)) = target trajectory
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Equilibrium tracking

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ © C R

@ contractivity wrt x: osLip,(F) < —¢ <0
<

e Lipschitz wrt 6: Lipy(F) < ¢

(1/3)

Equilibrium tracking

eror: la()- OO < - (B0)]| + 5 sup ()]
€™ reloy]
speed 1 ||F(z(2),00))]| < e ¢||F(xo0,60)| + £ sup 16(7)]

C relo,t]
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Equilibrium tracking and tube invariance

sup [|6(7)||
C” relo,1]

#(t) = F(z(t),0(1))

x*(6(t)) = equilibrium trajectory
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Exact equilibrium tracking with feedforward control

Time-varying contracting dynamics with feedforward prediction

i(t) = F(x(8),6() — (DaF(a(t),60(1)” DoF(a(2),6(1)) 6(t)

—~
differentiable F

Asymptotically-exact equilibrium tracking

1 :
error:[lz(t) 2" (O(®))l| < —e”"[|F(zo,60)I =

speed : |F(z(2),0(1))]

IN

e_CtH F(.CIZ(), 90) H

Ve .
(%,C “\|zo — 2*(6o)||
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Discretized equilibrium tracking

Discretized equilibrium tracking for parametrized dynamics & = F(x, 6(t))
contraction rate ¢, Lipschitz constants £, and /g

pick step size « so that v = Lip(I, + aF) < 1

define discrete time t;, = ak

forward Euler : Tkl <z + OéF(l‘k, O(tk))
/ —0(t
sup 10(tk+1) — 0(tx)]|
(1=7) >0 tr1 — tk

error :[lzg — 2" (Ot < *llzo — 2" (B0)| + -

Z. Marvi, F. Bullo, and A. G. Alleyne. Discrete control barrier proximal dynamics: Quantized multi-actuator and sampled-data systems.
Automatica, 2025a. Submitted
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Application to safety filters and control barrier functions

Given & = F(x)+ G(z)u  with nominal controller unom ()
Safe control design: render forward invariant safe set {x € R" | hj(z) >0, i € {1,...,k}}
Safety filter (parametric QP with linear inequalities)

u*(z) = argmin ||t — Unom ()3

st hi(z,u) > —a(hi(x), ie{l,...,k} (safety constraints)
(actuator constraints)

[ullo <@

High-performance constrained control methods rely on online optimization. However,
@ even for a QP, complexity grows cubically with decision variables,
@ per-step optimization creates a scalability bottleneck.

Design approach: design contracting solver with approximation error ||u(t) — tnom||
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Approach #1: Projected gradient for relaxed constraints

@ relax safety constraints into logarithmic barriers in cost function

k
En(u,2) = llu— tnom(@) 3 = 1> log(Vhi(x) T (F(@) + Gla)u) + a(hi(z)))

=1

© adopt projected gradient dynamics
U = —u + Projjy| ., Sﬂ<u — Vu&n(u, :L’)) + FeedForward,, (u(t), z(t))

© discretize using forward Euler
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Results: Robotic experiments in the Robotarium

No feedforward

With feedforward

—— with feedforward
—— without feedforward

15

Videos:

@ experiment without feedforward

@ experiment with feedforward

Code: github link

contracting systems as controllers =
promising approach to optimization-based control
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https://motion.me.ucsb.edu/talks/Robotarium-no-feedforward.mp4
https://motion.me.ucsb.edu/talks/Robotarium-with-feedforward.mp4
https://github.com/davydovalexander/time-varying-convex

Approach #2: Control barrier proximal dynamics

Assume
Q &= F(z)+ Bu and
@ C is convex described by affine h(z) = Hx — hg

Safety filter (parametric QP with linear inequalities)

u*(x) = argmin  |ju — Unom(*/w”%

st.  Au <b(z) (safety & actuator constraints)

(performance)

v

Control Barrier Proximal Dynamics (CBPD)

1
= —u+up(x) — ;AT relu(Au — b(z) + y\)

A = =y + relu(Au — b(z) +N)
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Time-scaling for reduced tracking error
Given contracting controller 74 = F(u,x) , contraction rate ¢ and Lipschitz constant /,

. F —c . F !/
OSLIpu(?) = Lip,(—) = ?x

-
With initially safe controller (i.e., zero transient error)

[u(t) — v (z(t))] < Ti%llﬂb(t)ll = 70(t)

CBPD-based safety guarantee CBPD Controller renders the safe set invariant with an
arbitrarily small violation safety margin bounded by

m = ZKS
o

Tracking error translates to safety margin.
Design variables 1) time scale 7 (i.e, solver rate) 2) CBF parameter «
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Results: Electro-thermal management of battery pack systems

Module i, i € (1, .., N} T lrems. T
alumped model of 36 cellsin parallel | ==y
ge [ charge

Li-ion Pack

System description: The UMN solar EV battery pack has 36 series modules (M1-M36), each
with 36 parallel Li-ion cells (1296 total).

Model description: Validated conservation-based graph model: each module is a lumped
model, with thermal connections capturing spatial variations across the pack.
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Simulation results for single battery: CBPD vs QP

@ Lithium-ion cell control with state of charge (SOC) and temperature constraints.
Conservation-based electro-thermal model, vertices: system states and edges: power flow.

Thermal

SOC (%)

0 CBF-based QP
--=-CBPD
r ® r

inefficiency

Ry Ry

Electrical

C;

l_
V2

Temperature

A

I

Qf =
C;

CBF-based QP
----CBPD

& ) ® ® 100

o © » © © )
Time(s)

(left) cell equivalent circuit, (right) conservation-based graph model  Evolution of SOC and temp. by applying: (a) CBF, and (b) CBPD.

Max deviation | Runtime ratio
3% 3700%

Table: CBF vs CBPD comparison

@ CBPD is 1-2 orders of magnitude faster.

@ Similar dynamics and safety for both controllers. J
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Simulation results for battery pack: CBPD vs Pl control

Objective: Keeping all module temperatures below a
safe threshold with minimal control effort.

(a.1)

. 19 — |
min /7 s.t.  max {Ts;} <T e o
ZG{L...,N} < direction

Comp. cost comparable to a switched Pl controller S
(Per-call runtime: Pl = 3.095 ms, CBPD = 3.171 ms).

© MPC B (a.2)
2 b4 Safe Threshold: T = 40°C
S N sl i HN kU S
£ X_ Hierarchical MPC s
£ X.._ Safetyfilter o3
5 =
a 20 . |
M1 4 M18
" X-Output clipping _ ‘ ‘ ‘ ‘ ‘
1/Computational cost

Time (s) x10t
Safe temperatures across all modules.

CBPD's scalability enables spatially accurate thermal
management in battery packs. J
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Ongoing and future work

theory:

© equilibrium tracking
discrete-time, stochastic, distributed, internal model principle

@ local, weak, k-, periodic, and other generalizations of contractivity

© local contractivity, invariant sets, and region of attraction

examples & applications:

@ optimization-based control: contractivity of MPC
Lure-based approaches to global and local contractivity

@ catalog of contracting dynamics with sharp Lipschitz estimates
discrete-time and discretized solvers: Newton-Raphson, interior point, etc

© hybrid integral control action for nonlinear overshoot regulation
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Examples of contracting dynamics:
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks
with symmetric weights. IEEE Control Systems Letters, 7:1724-1729, 2023. 4
Applications to machine learning;:
@ S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. 4
@ S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics:

Extended linearization and global guarantees. In Advances in Neural Information Processing Systems,
2024. @

Application to neuroscience:
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse
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