

Contractivity of Interconnected Continuous-time and Discrete-time Systems

Emiliano Dall'Anese

Dept. of Electrical and Computer Engineering
Division of Systems Engineering

2025 IEEE CDC Tutorial Session on “Contraction Theory in Control,
Optimization, and Learning”

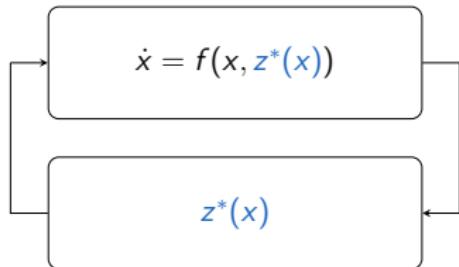
Acknowledgments

Francesco Bullo
UCSB

Yiting Chen
Boston University

Acknowledgments: AFOSR Awards FA9550-23-1-0740 and FA9550-22-1-0059,
NSF Award 2444163

Motivation: optimization-based control

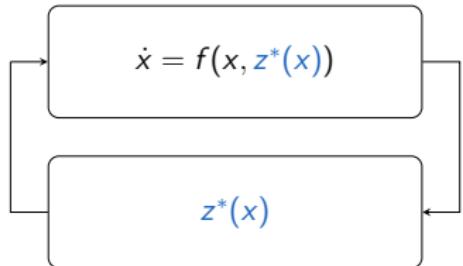


$z^*(x)$: sol. of an optimization problem

$$z^*(x) := \arg \min_{u \in \mathcal{U}} C(u, x)$$

$$\text{s. to: } h(u, x) \leq 0$$

Motivation: optimization-based control



$z^*(x)$: sol. of an optimization problem

But available:

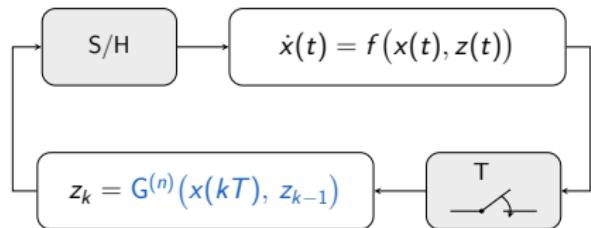
- approximately (computation)
- in a sampled-data fashion (sensing)

Working setup

$$\dot{x}(t) = f(x(t), z(t))$$

$$z_k = G^{(n)}(x(kT), z_{k-1})$$

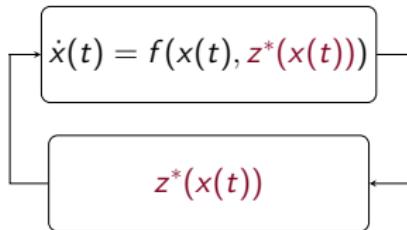
$$z(t) = z_k, \quad t \in [kT, (k+1)T)$$



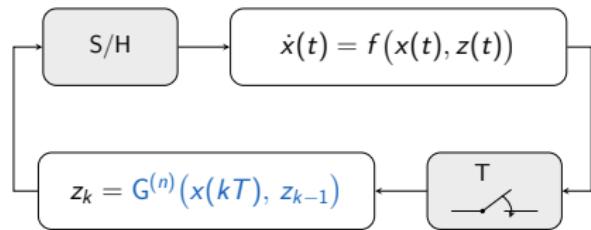
- (Def.) $G^{(1)}(x, z) = G(x, z), \dots, G^{(n)}(x, z) = G(x, G^{(n-1)}(x, z)), \quad n \in \mathbb{Z}_{\geq 0}$
- $\text{Lip}_z(G) < 1 \Rightarrow$ existence and uniqueness of $z^*(x)$
- $\lim_{n \rightarrow \infty} G^{(n)}(x, z) = z^*(x)$ and $z^*(x) = G(x, z^*(x))$ for any $x \in \mathcal{X}$

Wlog, $f(0, 0) = 0$ and $G(0, 0) = 0$.

Connection between the two systems



"Reduced system"



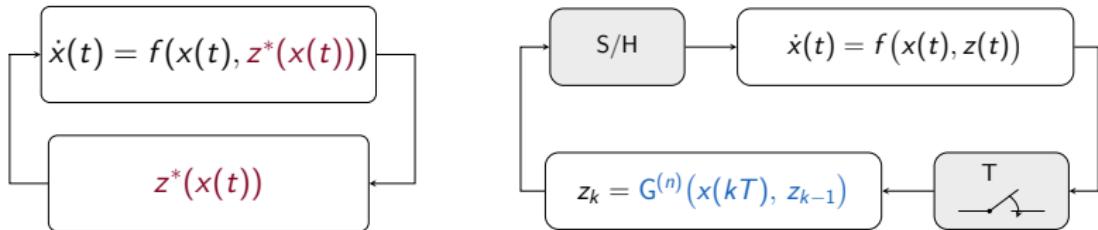
CT-DT interconnection

- $\dot{x}(t) = f(x(t), z^*(x(t)))$ is obtained from the CT-DT interconnection by:

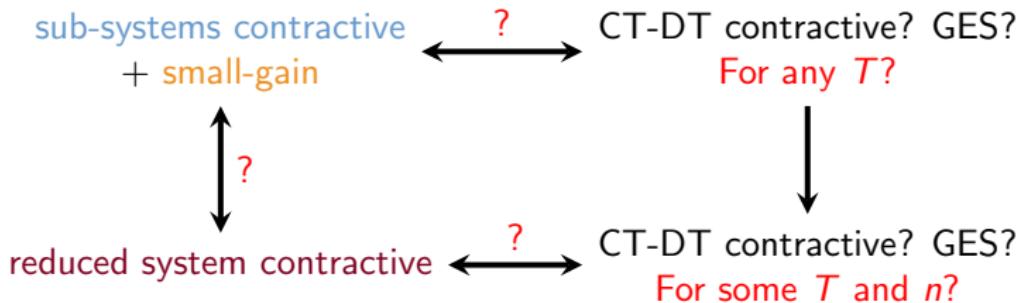
$$n \rightarrow \infty \quad \text{and} \quad T \rightarrow 0^+$$

- Inspired by two-time-scale CT systems [Kokotović-Sannuti'68, ...]

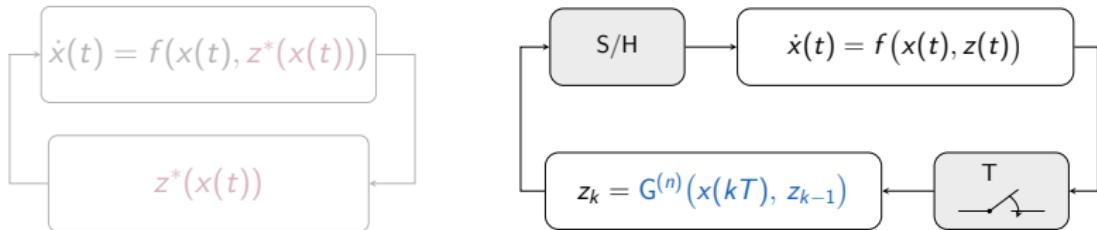
Research goals



How are their contractivity and stability properties related to each other?



Small-gain condition



Theorem (Contractivity plus small gain implies DT contractivity) Assume:

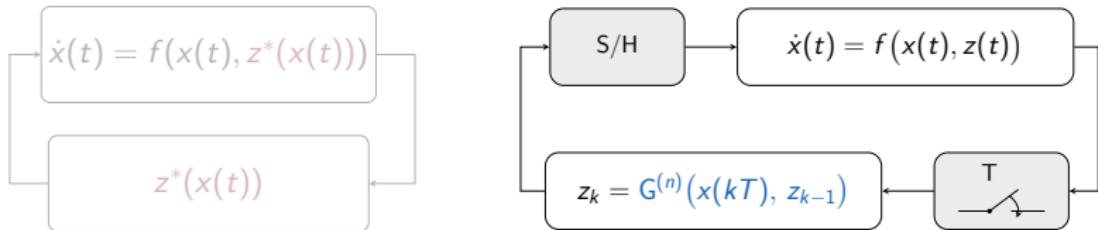
- **CT contractivity**: $\text{osLip}_x(f) < 0$
- **DT contractivity**: $\text{Lip}_z(G) \in (0, 1)$
- **Interconnection**: $-\text{osLip}_x(f)(1 - \text{Lip}_z(G)) > \text{Lip}_z(f)\text{Lip}_x(G)$

Then, the following holds independent of n and T :

$$\begin{bmatrix} \|x_1(kT) - x_2(kT)\| \\ \|z_1(kT) - z_2(kT)\| \end{bmatrix} \leq \mathcal{A}^k \begin{bmatrix} \|x_1(0) - x_2(0)\| \\ \|z_1(0) - z_2(0)\| \end{bmatrix}, \forall k \in \mathbb{Z}_{\geq 0}$$

where \mathcal{A} is Shur (and positive).

Contractivity and small-gain condition



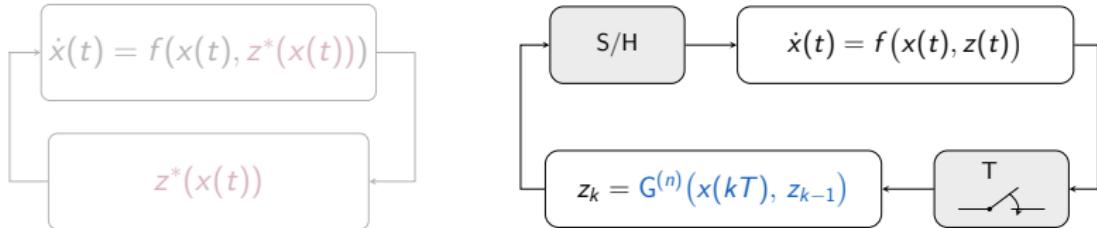
Theorem (Contractivity plus small gain implies DT contractivity) Assume:

- **CT contractivity**: $\text{osLip}_x(f) < 0$
- **DT contractivity**: $\text{Lip}_z(G) \in (0, 1)$
- **Interconnection**: $-\text{osLip}_x(f)(1 - \text{Lip}_z(G)) > \text{Lip}_z(f)\text{Lip}_x(G)$

Then, the following holds independent of n and T :



Contractivity and small-gain condition



Theorem (Contractivity plus small gain implies GES) Assume:

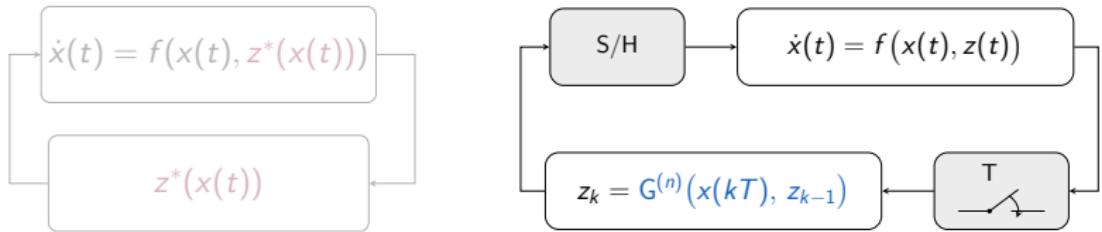
- **CT contractivity**: $\text{osLip}_x(f) < 0$
- **DT contractivity**: $\text{Lip}_z(G) \in (0, 1)$
- **Interconnection**: $-\text{osLip}_x(f)(1 - \text{Lip}_z(G)) > \text{Lip}_z(f)\text{Lip}_x(G)$

Then, the following holds independent of n and T :

$$\left\| \begin{bmatrix} \|x(t)\| \\ \|z(t)\| \end{bmatrix} \right\|_{2,[\eta]} \leq \kappa e^{ct} \left\| \begin{bmatrix} \|x(0)\| \\ \|z(0)\| \end{bmatrix} \right\|_{2,[\eta]}, \quad \forall t \geq 0$$

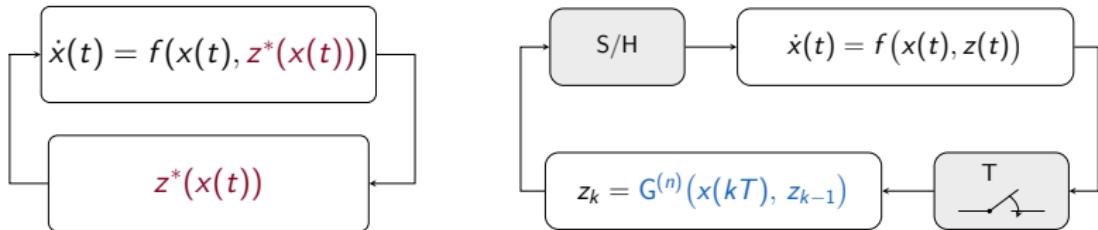
where $c := \ln\left(\frac{1+\rho(\mathcal{A})}{2}\right)^{\frac{1}{T}} < 0$ and for some $\kappa > 0$.

Implication diagram



$\text{osLip}_x(f) < 0, \text{Lip}_z(G) < 1$
+ small-gain \longrightarrow CT-DT is T -DTC and GES
for any n and T

Contractivity and small-gain condition



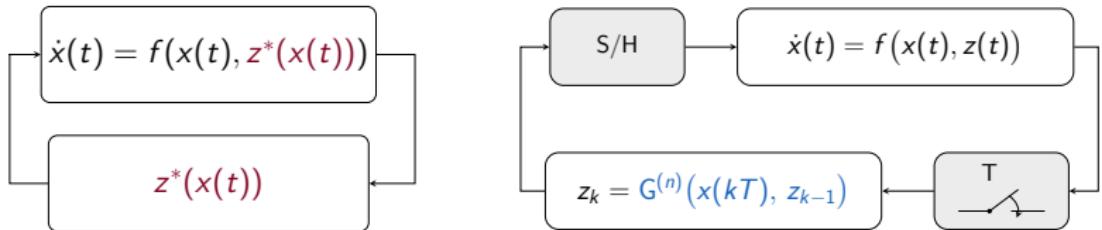
Theorem (Contractivity plus small gain implies RS contractivity) Assume:

- **CT contractivity:** $\text{osLip}_x(f) < 0$
- **DT contractivity:** $\text{Lip}_z(G) \in (0, 1)$
- **Interconnection:** $-\text{osLip}_x(f)(1 - \text{Lip}_z(G)) > \text{Lip}_z(f)\text{Lip}_x(G)$

Then,

$$\text{osLip}_x(f(x, z^*(x))) < 0.$$

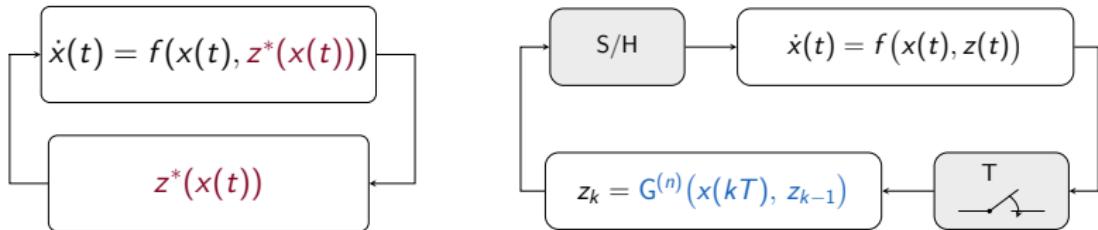
Implication diagram



$\text{osLip}_x(f) < 0, \text{Lip}_z(G) < 1$
+ small-gain \longrightarrow CT-DT is T -DTC and GES
for any n and T

$\text{osLip}_x(f(x, z^*(x))) < 0$
 $\text{Lip}_z(G) < 1$

Stability from contractivity of the reduced system



Reduced system
 $[n = \infty, T \rightarrow 0^+]$

CT-DT interconnection
 $[n < \infty, T > 0]$

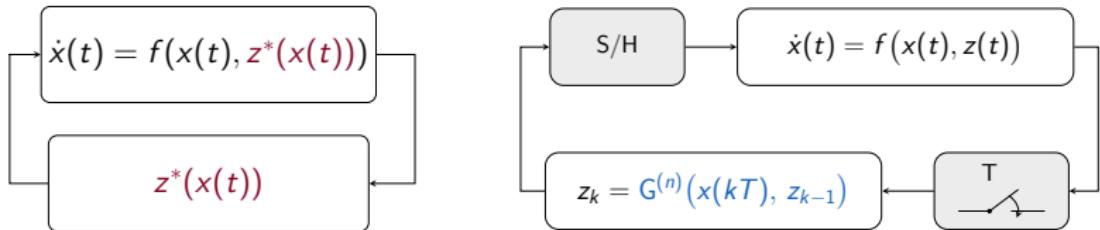
Theorem (RS contractivity implies stability of CT-DT interconnection) Suppose:

- DT sub-system contractivity: $\text{Lip}_z(G) \in (0, 1)$
- Reduced system contractivity: $\text{osLip}_x(A + Bz^*) < 0$

Then, $\forall n \in \mathbb{Z}_{>0} \exists T(n) > 0$ s.t. for any $T < T(n)$ the CT-DT intercon. is GES.

[with explicit transient estimates] [local version of the result available too]

Stability from contractivity of the reduced system



Reduced system
 $[n = \infty, T \rightarrow 0^+]$

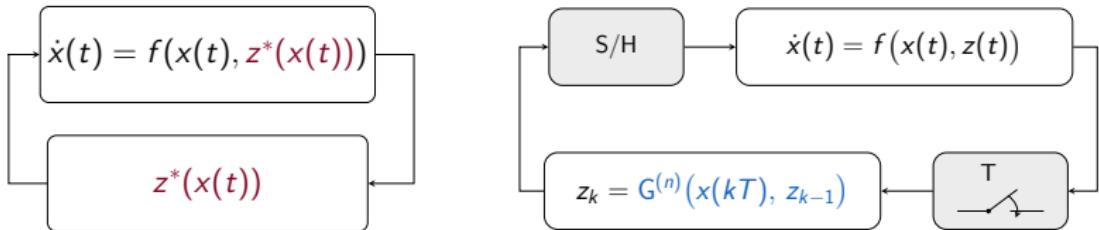
CT-DT interconnection
 $[n < \infty, T > 0]$

- *Simply:* If one cannot implement $z^*(x)$, pick n , then sample “fast enough”
- T_G sec to perform $G(x_k, z_{k-1})$; then

$$(nT_G + \text{sensing} + \text{actuation}) < T(n)$$

- **Classical online optimization setup:** $T_G + \text{sensing} + \text{actuation} < T(1)$

Implication diagram

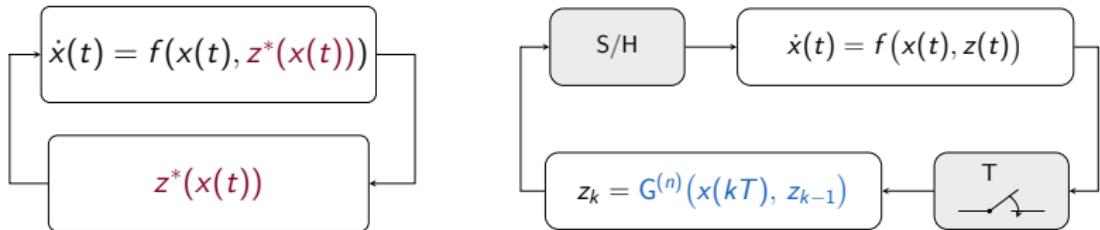


$\text{osLip}_x(f) < 0, \text{Lip}_z(G) < 1$
+ small-gain \longrightarrow CT-DT is T -DTC and GES
for any n and T

\downarrow

$\text{osLip}_x(f(x, z^*(x))) < 0$
 $\text{Lip}_z(G) < 1$ \longrightarrow $\forall n \in \mathbb{Z}_{>0} \exists T(n) > 0$:
for $T < T(n)$ CT-DT is GES

Implication diagram



$\text{osLip}_x(f) < 0, \text{Lip}_z(G) < 1$
+ small-gain \longrightarrow CT-DT is T -DTC and GES
for any n and T

\downarrow
 $\text{osLip}_x(f(x, z^*(x))) < 0$
 $\text{Lip}_z(G) < 1$ \longrightarrow $\forall n \in \mathbb{Z}_{>0} \exists T(n) > 0$:
for $T < T(n)$ CT-DT is GES

Details

Some (ugly) details:

$$T(n) = \frac{1}{\xi} \log \left(\frac{\xi(1 - [\text{Lip}_z(G)]^n)}{C_2(n) + C_1/\zeta} + 1 \right)$$

with $\xi := -\text{osLip}_x(f(x, z^*(x)))$ and

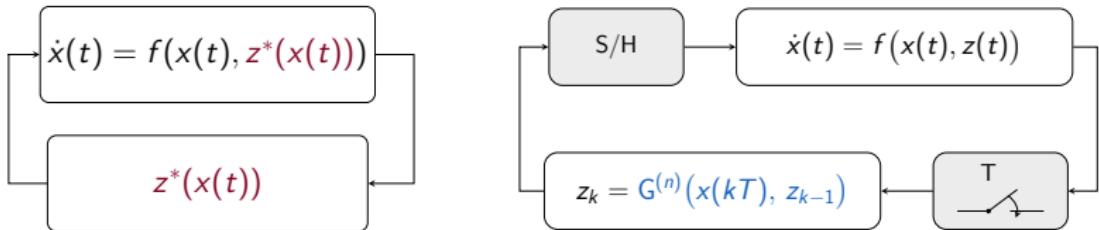
$$C_1 := \frac{\text{Lip}_z(f)\text{Lip}_x(G)}{1 - \text{Lip}_z(G)} \left(\text{Lip}_x(f) + \frac{\text{Lip}_z(f)\text{Lip}_x(G)}{1 - \text{Lip}_z(G)} \right),$$

$$C_2(n) := [\text{Lip}_z(G)]^n \frac{\text{Lip}_x(G)\text{Lip}_z(f)}{1 - \text{Lip}_z(G)}.$$

but (useful) observations:

- $T(n)$ is strictly increasing w.r.t n and bounded above
- For fixed $\text{Lip}_z(f)$, $\text{Lip}_z(G)$, $\text{Lip}_x(G)$, $T(n)$ increases with the increasing of ξ
- $T(\infty)$ corresponds to a classical sample-data setup

Main applications



Model predictive control (MPC)

→ Time distributed or real-time
[Diehl et al'05], [Liao-McPherson et al'20]

Feedback optimization

→ Online feedback optimization
[Colombino et al'20], [Hauswirth et al'20]

CBF and CLF controllers

→ “Early termination” of QP solvers
[Ames et al'14], [Allibhoy-Cortes'23]

- MPC with horizon of N intervals of length Δ
- Discretize system as $x_{k+1} = \Phi x_k + \Psi u_k$, $\Phi := e^{A\Delta}$, $\Psi := \int_0^\Delta e^{A(\Delta-\tau)} B d\tau$
- **Example of MPC:**

$$z^*(\textcolor{orange}{x}) := \arg \min_{u \in \mathbb{R}^{m(N-1)}, x \in \mathbb{R}^{nN}} \sum_{i=1}^{N-1} (\|x_i\|_Q^2 + \|u_i\|_R^2 + \|x_N\|_P^2) + b_i(x_i)$$

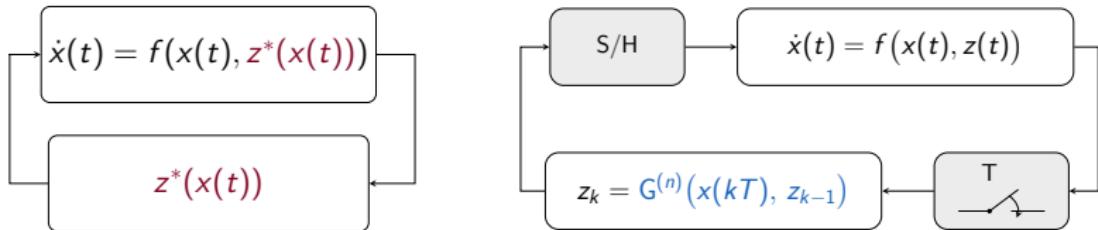
s. to : $x_{i+1} = \Phi x_i + \Psi u_i, \quad i = 1, \dots, N-1$

$x_1 = \textcolor{orange}{x}$

where

$$b_i(x_i) = \gamma \sum_{i=1}^N \left\| \max \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 10 \\ 3 \end{bmatrix} - x_i \right\} \right\|^2 + \gamma \sum_{i=1}^N \left\| \max \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_i - \begin{bmatrix} -10 \\ -3 \end{bmatrix} \right\} \right\|^2$$

Batch and online MPC



Batch, continuous MPC

$$z^*(x(t)) := \arg \min_{u \in \mathbb{R}^{m(N-1)}} \tilde{f}(z; (x(t)))$$

Example of online MPC

$$\begin{aligned} G(x, z) &= z - \alpha \nabla_z \tilde{f}(z; x) \\ z_k &= G^{(n)}(x(kT), z_{k-1}) \end{aligned}$$

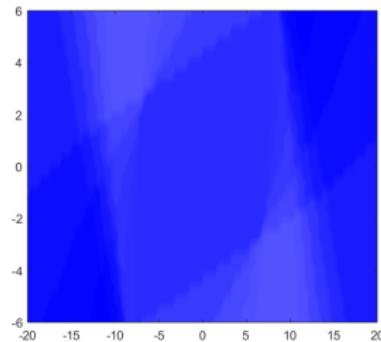
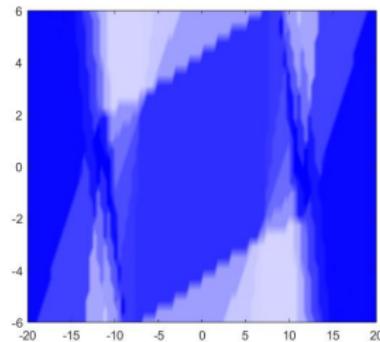
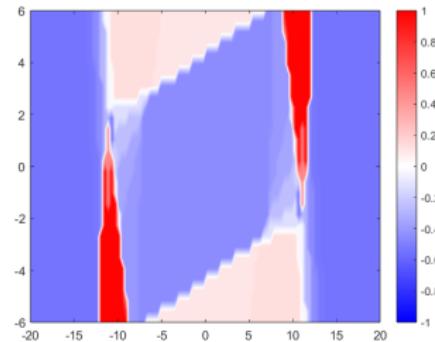
Other examples:

$G(x, u)$: Approx. Newton iteration [Diehl et al'05]

$G(x, u, \lambda)$: Primal-dual iteration [Liao-McPherson et al'20]

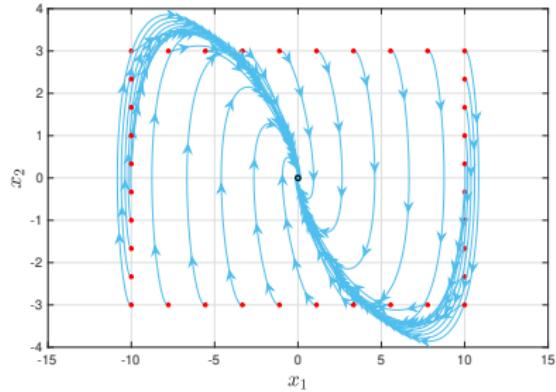
Contractivity of the continuous MPC

Contour plot of $\mu_{2,P}(A + B\Pi_1 J_{z^*}(x))$

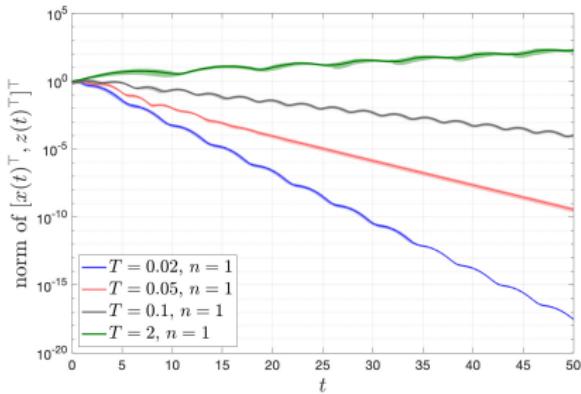


$\gamma = 1$ (left), $\gamma = 10$ (center), and $\gamma = 100$ (right).

Stability of the online MPC



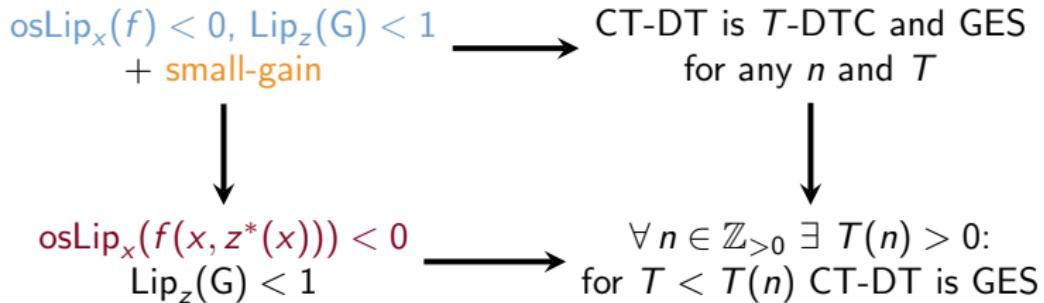
Phase portrait of the online MPC
when $n = 1$ and $T = 0.02$



Statistics for 100 randomly picked, i.i.d.
initial conditions $x(0), z(0)$.

Concluding remarks

- Interconnection of CT and DT systems



- Application to optimization-based control of physical systems
 - DT control due to sampling and computation
 - Application to MPC: fix n and sample fast
 - Stability of single-step MPC

Thank you!

edallane@bu.edu

