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Motivation: optimization-based control

ẋ = f (x , z∗(x))

z∗(x)

z∗(x): sol. of an optimization problem

z∗(x) := argmin
u∈U

C (u, x)

s. to: h(u, x) ≤ 0
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Motivation: optimization-based control

ẋ = f (x , z∗(x))

z∗(x)

z∗(x): sol. of an optimization problem

But available:

approximately (computation)

in a sampled-data fashion (sensing)
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Working setup

ẋ(t) = f (x(t), z(t))

zk = G(n)(x(kT ), zk−1)

z(t) = zk , t ∈ [kT , (k + 1)T )

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

• (Def.) G(1)(x , z) = G(x , z), . . . G(n)(x , z) = G(x ,G(n−1)(x , z)), n ∈ Z≥0

• Lipz(G) < 1 ⇒ existence and uniqueness of z∗(x)

• limn→∞ G(n)(x , z) = z∗(x) and z∗(x) = G(x , z∗(x)) for any x ∈ X

Wlog, f (0, 0) = 0 and G(0, 0) = 0.
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Connection between the two systems

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

“Reduced system” CT-DT interconnection

• ẋ(t) = f (x(t), z∗(x(t))) is obtained from the CT-DT interconnection by:

n → ∞ and T → 0+

• Inspired by two-time-scale CT systems [Kokotović-Sannuti’68, . . . ]
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Research goals

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

How are their contractivity and stability properties related to each other?

reduced system contractive CT-DT contractive? GES?
For some T and n?

sub-systems contractive
+ small-gain

CT-DT contractive? GES?
For any T?

?

?

?
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Small-gain condition

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Theorem (Contractivity plus small gain implies DT contractivity) Assume:

CT contractivity: osLipx(f ) < 0

DT contractivity: Lipz(G) ∈ (0, 1)

Interconnection: −osLipx(f )(1− Lipz(G)) > Lipz(f )Lipx(G)

Then, the following holds independent of n and T :[
∥x1(kT )− x2(kT )∥
∥z1(kT )− z2(kT )∥

]
≤ Ak

[
∥x1(0)− x2(0)∥
∥z1(0)− z2(0)∥

]
, ∀ k ∈ Z≥0

where A is Shur (and positive).
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Contractivity and small-gain condition
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Contractivity and small-gain condition

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Theorem (Contractivity plus small gain implies GES) Assume:

CT contractivity: osLipx(f ) < 0

DT contractivity: Lipz(G) ∈ (0, 1)

Interconnection: −osLipx(f )(1− Lipz(G)) > Lipz(f )Lipx(G)

Then, the following holds independent of n and T :∥∥∥∥[∥x(t)∥∥z(t)∥

]∥∥∥∥
2,[η]

≤ κect
∥∥∥∥[∥x(0)∥∥z(0)∥

]∥∥∥∥
2,[η]

, ∀ t ≥ 0

where c := ln( 1+ρ(A)
2 )

1
T < 0 and for some κ > 0.
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Implication diagram

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

reduced system contractive CT-DT contractive? GES
For some T and n?

osLipx(f ) < 0, Lipz(G) < 1
+ small-gain

CT-DT is T -DTC and GES
for any n and T
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Contractivity and small-gain condition

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Theorem (Contractivity plus small gain implies RS contractivity) Assume:

CT contractivity: osLipx(f ) < 0

DT contractivity: Lipz(G) ∈ (0, 1)

Interconnection: −osLipx(f )(1− Lipz(G)) > Lipz(f )Lipx(G)

Then,
osLipx(f (x , z

∗(x))) < 0.
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Implication diagram

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

osLipx(f (x , z
∗(x))) < 0

Lipz(G) < 1
CT-DT contractive? GES

For some T and n?

osLipx(f ) < 0, Lipz(G) < 1
+ small-gain

CT-DT is T -DTC and GES
for any n and T
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Stability from contractivity of the reduced system

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Reduced system CT-DT interconnection
[n = ∞,T → 0+] [n < ∞,T > 0]

Theorem (RS contractivity implies stability of CT-DT interconnection) Suppose:

DT sub-system contractivity: Lipz(G) ∈ (0, 1)

Reduced system contractivity: osLipx(A+ Bz∗) < 0

Then, ∀ n ∈ Z>0 ∃ T (n) > 0 s.t. for any T < T (n) the CT-DT intercon. is GES.

[with explicit transient estimates] [local version of the result available too]
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Stability from contractivity of the reduced system

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Reduced system CT-DT interconnection
[n = ∞,T → 0+] [n < ∞,T > 0]

• Simply: If one cannot implement z∗(x), pick n, then sample “fast enough”

• TG sec to perform G(xk , zk−1); then

(nTG + sensing+ actuation) < T (n)

• Classical online optimization setup: TG + sensing+ actuation < T (1)
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Implication diagram

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

osLipx(f (x , z
∗(x))) < 0

Lipz(G) < 1
∀ n ∈ Z>0 ∃ T (n) > 0:

for T < T (n) CT-DT is GES

osLipx(f ) < 0, Lipz(G) < 1
+ small-gain

CT-DT is T -DTC and GES
for any n and T
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Details

Some (ugly) details:

T (n) =
1

ξ
log

(
ξ(1− [Lipz(G)]

n)

C2(n) + C1/ζ
+ 1

)
with ξ := −osLipx(f (x , z

∗(x)) and

C1 :=
Lipz(f )Lipx(G)

1− Lipz(G)

(
Lipx(f ) +

Lipz(f )Lipx(G)

1− Lipz(G)

)
,

C2(n) :=[Lipz(G)]
n Lipx(G)Lipz(f )

1− Lipz(G)
.

but (useful) observations:

T (n) is strictly increasing w.r.t n and bounded above

For fixed Lipz(f ), Lipz(G), Lipx(G), T (n) increases with the increasing of ξ

T (∞) corresponds to a classical sample-data setup
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Main applications

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Model predictive control (MPC) → Time distributed or real-time

[Diehl et al’05], [Liao-McPherson et al’20]

Feedback optimization → Online feedback optimization

[Colombino et al’20], [Hauswirth et al’20]

CBF and CLF controllers → “Early termination” of QP solvers

[Ames et al’14], [Allibhoy-Cortes’23]

E. Dall’Anese December 11, 2025 16 / 22



MPC

• MPC with horizon of N intervals of length ∆

• Discretize system as xk+1 = Φxk +Ψuk , Φ := eA∆, Ψ :=
∫ ∆

0
eA(∆−τ)Bdτ

• Example of MPC:

z∗(x) := arg min
u∈Rm(N−1), x∈RnN

N−1∑
i=1

(
∥xi∥2Q + ∥ui∥2R+∥xN∥2P

)
+ bi (xi )

s. to : xi+1 = Φxi +Ψui , i = 1, . . . ,N − 1

x1 = x

where

bi (xi ) = γ
N∑
i=1

∥∥∥∥max

{[
0
0

]
,

[
10
3

]
− xi

}∥∥∥∥2 + γ

N∑
i=1

∥∥∥∥max

{[
0
0

]
, xi −

[
−10
−3

]}∥∥∥∥2
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Batch and online MPC

ẋ(t) = f (x(t), z∗(x(t)))

z∗(x(t))

S/H ẋ(t) = f
(
x(t), z(t)

)

zk = G(n)
(
x(kT ), zk−1

) T

Batch, continuous MPC

z∗(x(t)) := arg min
u∈Rm(N−1)

f̃ (z ; (x(t)))

Example of online MPC

G(x , z) = z − α∇z f̃ (z ; x)

zk = G(n)(x(kT ), zk−1)

Other examples:
G(x , u): Approx. Newton iteration [Diehl et al’05]

G(x , u, λ): Primal-dual iteration [Liao-McPherson et al’20]
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Contractivity of the continuous MPC

Contour plot of µ2,P(A+ BΠ1Jz∗(x))

γ = 1 (left), γ = 10 (center), and γ = 100 (right).
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Stability of the online MPC

-15 -10 -5 0 5 10 15

-4
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4

Phase portrait of of the online MPC
when n = 1 and T = 0.02

Statistics for 100 randomly picked, i.i.d.
initial conditions x(0), z(0).
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Concluding remarks

• Interconnection of CT and DT systems

osLipx(f (x , z
∗(x))) < 0

Lipz(G) < 1
∀ n ∈ Z>0 ∃ T (n) > 0:

for T < T (n) CT-DT is GES

osLipx(f ) < 0, Lipz(G) < 1
+ small-gain

CT-DT is T -DTC and GES
for any n and T

• Application to optimization-based control of physical systems

DT control due to sampling and computation

Application to MPC: fix n and sample fast

Stability of single-step MPC
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Thank you!
edallane@bu.edu
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