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Introductory examples and problems

To motivate the kinds of problems we consider in this book, we use this in-
troductory chapter to present some simple examples for which the problems
are fairly easily understood. The short presentation in this chapter is more
informal than will be encountered in the remainder of the book. We draw
the examples in this chapter from three loosely defined collections of phys-
ical systems: aerospace and underwater vehicles, robotic manipulators and
multi-body systems, and constrained systems. These examples will give us an
opportunity to discuss a variety of topics, and motivate the introduction of
appropriate mathematical tools.

For each example, we will introduce the notion of degrees-of-freedom, con-
figuration, velocity, state variables, forces, and constraints. We also pose some
natural control theoretic questions that arise naturally for the example sys-
tems. This allows us to introduce some of the sorts of questions we address in
the book, although we delay answering these questions for the actual text of
the book.

Many readers might be familiar with “vector mechanics.” This sort of me-
chanics is useful for modeling, say, a point mass moving in the plane R? or in
the three-dimensional space R®. We refer to these vector spaces as Euclidean
spaces. However, only in exceptional circumstances can the configuration of a
Lagrangian system be described by a vector in a vector space. In the natural
mathematical setting, the system’s configuration space is described loosely
as a curved space, or more accurately as a differentiable manifold. In Chap-
ter 4 we shall be precise about what we mean by this, and about how the
mathematical objects of differential geometry represent the physical objects
of mechanics. In this chapter we will be a little vague and descriptive about
what we might mean by this correspondence. We hope, however, that the il-
lustrative character of the examples we give exhibits the value of taking an
approach that will unify all of these examples in one framework.

We close the chapter with a broad overview of the research literature on
topics related to those we cover. A reader who is new to the subject can
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look here to get started in reading the literature. In the text of the book are
contained many more references.

1.1 Rigid body systems

The first example we consider is from the class of systems modeled by rigid
bodies. In applications, such systems include many aerospace and marine ve-
hicle systems. The system we consider here is about the simplest example in
this class, and can be thought of as a model for a simplified hovercraft, as de-
picted in Figure 1.1. Let us go through the elements of the model. The planar
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Figure 1.1. Planar rigid body

system has obviously three degrees-of-freedom, since it can translate in the
plane, and rotate about its center of mass. The configuration is given by the
following variables: 6 describes the relative orientation of the body reference
frame Xpody = (Obody; {b1, b2}) with respect to the inertial reference frame
spatial = (Ospatial; {51, 52}). The vector (z,y) denotes the position of the cen-
ter of mass measured with respect to the inertial reference frame gpatial. We
shall write ¢ = (0, z,y), but sometimes it will also be convenient to represent
q as the matrix

cosf) —sinf x
sinf cosf gy
0 0 1

This representation emphasizes the matrix group structure that the configu-
ration space enjoys; we refer the reader to the discussion in Chapter 5 where
this structure is examined systematically under the name of “homogeneous
representation.”

The velocity of the system can be written either with respect to the inertial
coordinate system Ygpatial, Or With respect to the body-fixed coordinate system
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Thody- If we denote the components of the spatial velocity as ¢ = (9, Z,y) and
the components of the body velocity as (w, vy, vy), we have

0 1 0 0 w
z| = |0 cos@ —sinf| |v;
Y 0 sinf cosd Uy

The state of the system is given by ¢ along with its spatial velocity ¢. How-
ever, it will sometimes be convenient to work with body rather than spatial
velocities, although the reasons for this choice are not obvious, at this time.

Having determined the system’s state, it is possible now to present the
system’s total energy as the sum of kinetic and potential energy. The kinetic
energy is equal to

1 J 0
KE = —4"G(¢q)¢, where G(q)= |0 m
2
0 0 m

and where m is the mass of the body and J is its moment of inertia about the
center of mass. If we assume that the body moves in a plane perpendicular
to the direction of the gravitational forces, the potential energy is zero. As
we shall see in Section 4.3, the kinetic and potential energies together allow
us to write the equations of motion for the system, at least in the absence of
external forces.

Since our interest is primarily with control systems, we will certainly have
external forces, and these will be forces that the user can specify. For the
planar body, the force we consider is applied to a point on the body that is
a distance h > 0 from the center of mass, along the body b;-axis, as shown
in Figure 1.1. Physically, this force might be thought of as being supplied by
a variable-direction thruster on the body. By resolving the force into compo-
nents in the body b; and b, directions, we consider this as a two-input system.
In this case, one can readily ascertain, either “by hand,” or by applying the
methods of Section 4.3, that the equations of motion are

Jo = — hUQ7
miE = uy cos — us sin b,

my = wuqp sin 6 + us cos 0,

where u, is the component of F' in the body b,-direction, a € {1,2}. These
equations provide a model for planar vehicles, for example, a hovercraft that
glides on the surface of a body of water with negligible friction.

For these innocuous looking equations, one can ask the following control-
theoretic questions.

1. Is it possible to steer from a given initial state to any desired final state?

2. Is it possible to steer the system from rest at an initial configuration ¢; to
a final configuration g¢o, also at rest?
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3. If the answer to either of the first two questions is, “Yes,” how does one
accomplish the stated objective?

Questions 1 and 2 are referred to in the control theory literature as control-

lability questions. These and related issues shall be addressed in Chapter 7,

and also in Chapter 8. Question 3 is a design question, dealing with what is

called motion planning in the literature. We shall provide partial answers to

this question in Chapter 13.

One may also wish to consider these questions in the event that the di-
rection of the force is fixed to the body, i.e., the ratio between u; and uy is
specified. Physically, this may happen if one is no longer able to vary the di-
rection of the thruster. We note that in the original case there are two inputs,
while in the latter case, there is only one. In either case, there are fewer inputs
than degrees-of-freedom. As we shall see, that this has the effect of making the
problem significantly more difficult than a system that has as many actuators
as degrees-of-freedom. A system is “fully actuated” if each degree-of-freedom
is actuated, and is otherwise “underactuated.” (This is slightly imprecise, and
we shall be more precise about this in Section 4.6.)

1.2 Manipulators and multi-body systems

The next example is drawn from robotic manipulation. These problems gen-
erally include robotic arms composed of rigid links and joints. Joints can be
revolute, prismatic, or spherical. We present a planar chain for simplicity; a
treatment of manipulators in three-dimensional Euclidean space is provided
via the product of exponentials formula [Murray, Li, and Sastry 1994]. The sys-
tem we consider is a planar two-link manipulator; see Figure 1.2. For i € {1, 2},

lag

Figure 1.2. A two-link planar manipulator

we let 6; denote the orientation of the ith link measured counterclockwise from
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the positive horizontal axis. If we suppose the bottom of the first link to be
stationary in an inertial reference frame, the configuration of the system is
specified by ¢ = (61,62). Thus this system has two degrees-of-freedom. The
kinetic and potential energy of the ith link are

KE; = 17,02 + Lm;(i? + ¢92), PE; =miagy;,  i€{1,2},  (L1)
where (x;,y;) is the position of the center of mass, J; is the moment of inertia
of the ¢th link about its center of mass, and m; is the mass of the ith link.
Also, a4 denotes the acceleration due to gravity. While these equalities for
kinetic and potential energy are easy to write down, they involve quantities
such as (z1,¥y1,T2,y2) that are related explicitly to the actual configuration
q = (01,02). Tt is important to emphasize that, for any mechanical system,
given the configuration ¢, one must be able to uniquely compute the position
and orientation of each component of the system as a function of ¢. For the
two-link manipulator, we must be able to write (x1,y1,x2,y2) as a function
of (01,02). Indeed, we clearly have

T = %61 cos 61, T9 = {1 cosO; + %EQ cos O, 1.2)
y1 = S0sin,  yo = sinfy + Sy sin 6y, '

where /1 and /5 are the lengths of the links. Furthermore, it is possible to
differentiate these relationships with respect to time and obtain an expression
for (1,91, 42,92) as a function of the state (61,602,061, 65).

In summary, the only necessary variables to describe the system’s kinetic
and potential energy are its configuration variables. After some simplification,
one can show that

KE = 34" G(g)4, (1.3)
where
G(q) _ {1 + i(ml + 4m2)€% %m2€1£2 008(91 — 02)
§m2€1€2 COS(01 — 92) JQ + imgég

The explicit expression for the total gravitational potential energy can also be
easily written, although we do not give it here. As with the planar rigid body
of Section 1.1, the total kinetic and potential energies suffice to ascertain the
unforced equations of motion. We do not provide these equations here, since
they are a bit cumbersome. The reader is asked to derive the forced version
of these equations using Newtonian mechanics in Exercise E1.3.

Again, we are interested in applying forces to the system. For the system
of Figure 1.2, natural input forces to the system are torques applied at the
base of the first link, and/or at the joint between the two links (in our general
setup, forces and torques are both called “forces”). This allows a possibility
of at least three natural input configurations for the system. For any of the
input configurations, we may ask the questions posed at the end of Section 1.1.
Furthermore, we will also be interested in the following analysis and design
questions.
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1. Does the system, subject to no control forces, have any equilibrium con-
figurations?

2. When is an equilibrium configuration stable? More precisely, for all initial
conditions near the equilibrium configuration, when can it be guaranteed
that the trajectories of the mechanical system remain near the equilibrium
configuration?

3. Which configurations can be turned into stable equilibrium configurations
by means of control forces? Can this be done in such a manner that the
mechanical structure of the system is preserved?

4. TIs it possible to specify the controls as functions of ¢ and ¢ in order to
ensure that the resulting set of second-order differential equations will
asymptotically approach the equilibrium configuration as ¢t — +o0?

5. Given a reference trajectory, is it possible to specify the controls as func-
tions of ¢ and ¢, as well as of the reference trajectory, in order to ensure
that the resulting set of second-order differential equations will asymptot-
ically follow the reference trajectory as t — 4o00?

Questions 1 and 2 fall under the umbrella of stability theory, and are dealt
with in Chapter 6. Questions 3, 4, and 5 are design questions. The first two
of these problems are dealt with in Chapters 10, 11, and 12. Question 5 is
considered in Chapters 11 and 12.

1.3 Constrained mechanical systems

The third class of systems from which we pull an example is those systems
subject to velocity constraints. In particular, we focus on systems with rolling
or skating constraints, that is, constraints on the instantaneous velocity of
the system. In many physical applications, such systems arise in the case of
vehicles with wheels. In this case, the constraint imposed is that the wheel
roll without sliding on a horizontal plane.

The simple system we consider here is a disk of radius p shown in Fig-
ure 1.3. One may wish to think of this as a simple model for a unicycle. We
assume that the rider is able to perfectly maintain their balance, so that the
disk always remains exactly upright. The coordinates ¢ = (z,v, 0, ¢) as shown
in Figure 1.3 describe the configuration of the system ((z,y) being taken
relative to the coordinate frame {s;, sz} in the plane). Since these four co-
ordinates uniquely characterize the position of the disk, the system has four
degrees-of-freedom. Note, however, that not all velocities of the system are
admissible. Indeed, the constraint that the disk roll without slipping means
exactly that ) )

—pcosfp =0, y—psinfp=0.

This can be determined from Figure 1.4. One may also express this by saying
that every admissible velocity is a linear combination of velocities of the form
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Figure 1.3. The rolling disk

(&, 9) = pd(cos 0, sin 6)

Figure 1.4. Depiction of constraints for rolling disk (the view is from above)

(0,0,1,0), (pcos@,psiné,0,1).

This means that at each configuration (z,y, 6, ¢), there are only two of the
possible four directions available for the system to move. Note, however, that
this does not mean that the configurations of the system are restricted. In
Section 4.5 we will see how to systematically derive the equations of motion
for systems with velocity constraints.

For the rolling disk, the kinetic energy is easy to compute, and is given by

m 0 0 0

Top oo, 0O m 0 0
KE = 54 G(q)g, where G = 0 0 Jym O
0 0 0 Jwn

Here m is the mass of the disk, J.op is the moment of inertia of the disk about
its center, and Jypin is the moment of inertia of the disk about the vertical axis.
Note that this function is defined without regard for the velocity constraints.

As forces applied to the rolling disk, one may consider combinations of two
torques, one that “rolls” the disk, and the other that “spins” the disk. With
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these inputs, one can then consider the control-theoretic questions posed at
the end of Section 1.1. Let us also throw in another sort of question, so that
we can early on address a somewhat common (but thankfully decreasingly so)
misconception about control theory for mechanical systems. For the rolling
disk, one can ask the following question, which has nothing to do with the
mechanical nature of the problem, and is only concerned with the constraints.

1. Is it possible to connect two configurations with a sequence of curves that
satisfy the constraint of rolling without slipping?

Related to this is the following question, which brings us back to the mechan-
ical realm.

2. Is it possible to follow, with a trajectory of the forced mechanical system,
any curve in the set of configurations that satisfies the velocity constraints?

This latter question is dealt with systematically in our framework in Chap-
ter 8, using the language of kinematic reductions.

1.4 Bibliographical notes

Both mechanics and control theory have rich histories. We intend to restrict
ourselves to how these two overlap. We refer the reader to [Dugas 1957] for a
history of mechanics. One of the first books devoted to an uncompromisingly
geometric treatment of mechanics is the classic of Abraham and Marsden
[1967], a substantial revision of which appeared in 1978. Another classic text
in geometric methods in mechanics is that of Arnol’d [1978]. The history of
feedback control is surveyed in [Mayr 1970]. Mathematical control theory is
a younger subject, and a good source with which to judge its progress is
the collection of seminal papers in [Bagar 2001]. Recent differential geomet-
ric treatments of control theory may be found in the books [Agrachev and
Sachkov 2004, Bloch 2003, Isidori 1995, 1999, Jurdjevic 1997, Nijmeijer and
van der Schaft 1990, Sastry 1999]. In particular, the book of Agrachev and
Sachkov [2004] provides a rather thorough discussion of many core ideas in
mathematical geometric control theory.

An early paper that explicitly identifies the differential geometric bond be-
tween mechanics and control theory is that of Brockett [1977]. In this paper,
Brockett looks at the forced spherical pendulum and a few single degree-
of-freedom systems as motivational examples. Control problems in both the
Lagrangian and Hamiltonian framework are identified. On the Hamiltonian
side, some connections are drawn between Hamiltonian and gradient systems,
something followed up on by Crouch [1981]. Brockett also considers passivity
methods for stabilization, these having been introduced by Willems [1972].
The importance of the controllability problem, made more appealing for me-
chanical systems by their differential geometric structure, was also commented
upon by Brockett.
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During the course of the next fifteen years, there was only essentially
isolated activity in terms of the development of a general theory of mechan-
ics and control theory. An important contribution is that by Takegaki and
Arimoto [1981] on the stabilization via so-called proportional-derivative con-
trol of certain robotic manipulators. These results led to a successful line of
research, and we refer the reader to Chapters 10, 11, and 12 for details con-
cerning this literature. One paper of a general nature was that of Bonnard
[1984], which touches on two important subjects, one being controllability of
mechanical systems, and the other being mechanical systems on Lie groups
(considered in detail by us in Chapter 5). The work of Crouch [1981] also
addresses the relationships between ideas in control theory and differential
geometry, with many of the geometric ideas being those that arise in mechan-
ics. Another early paper where geometric techniques are prominent is that of
[Crouch 1984], where stabilization is addressed. Constituting one of the few
fully developed forays into the theory of control theory and mechanics during
this period is the sequence of papers, [van der Schaft 1981/82, 1982, 1983,
1985, 1986], that developed a fairly complete picture of Hamiltonian control
theory. A treatment of Hamiltonian control systems also appears as part of
the work of Willems [1979] on physical systems modeling.

Around 1990 there began to appear some concentrated interest in devel-
oping the theory of mechanical control systems. This activity came from two
directions.

On the one hand, in the geometric mechanics community there arose an
interest in understanding the role of external forces and constraints in geomet-
ric mechanics, since these had largely been ignored in the geometrization of
mechanics (this was pointed out by Brockett [1977]). Papers dealing with the
inclusion of constraints in the modern geometric framework include [Bloch,
Krishnaprasad, Marsden, and Murray 1996, Koiller 1992] in the Lagrangian
setting, and [Bates and Sniatycki 1993, van der Schaft and Maschke 1994] in
the Hamiltonian setting. When one considers external forces for a mechanical
system, questions from control theory arise quite naturally. An early represen-
tative of this development is the work of van der Schaft on Hamiltonian control
systems mentioned above, and the work of Bloch and Crouch [1992] (devel-
oped further in [Bloch and Crouch 1995]) on control for mechanical systems
with nonholonomic constraints. This latter work is, as far as we know, the first
place where the affine connection features prominently in the development of
control theory for mechanical systems. Work on controllability of mechanical
systems was done by Bloch, Reyhanoglu, and McClamroch [1992Db], a geomet-
ric mechanics based treatment of stabilization appears in the paper of Bloch,
Krishnaprasad, Marsden, and Sdnchez de Alvarez [1992a], and an approach
to stabilization of mechanical systems using vibrational methods is under-
taken by Baillieul [1993]. From this point on, there has been a fairly steady
growth in the development of the geometric features of control theory for me-
chanical systems, including, for example, the plenary presentations of Murray
[1995] and Leonard [1998], a new series of IFAC Workshops on Lagrangian
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and Hamiltonian Methods for Nonlinear Control, and the PhD theses of the
authors [Bullo 1998, Lewis 1995]. Indeed, since about 1995, there has been
a significant growth in the research literature on the subject of geometric
control theory for mechanical systems. We shall not comment at this point
on specific research papers; this shall be done in the text at relevant junc-
tures. However, we do point out the recent appearance of a few books in the
area that represent at least partial culminations of efforts by various groups.
An early such representative is Chapter 12 of Nijmeijer and van der Schaft
[1990], which gives a rather complete picture of Hamiltonian control theory
from the point of view of Poisson geometry. A recent book with a treatment
similar in spirit with ours is the book by Bloch [2003]. This book represents
the work of Bloch with various coworkers, principally Baillieul, Crouch, Kr-
ishnaprasad, Marsden, Murray, and Zenkov. As such, it covers a variety of
perspectives in the control theory of mechanical systems, particularly those
with nonholonomic constraints. Systems are treated from both the Hamilto-
nian and Lagrangian points of view, and special emphasis is given to systems
with symmetry. The aims of our book are less sweeping, generally focusing on
the geometric perspective offered by the simple mechanical structure.

A second point of view from which arose the increased interest in control
theory for mechanical systems is from the applications side, with a focus on
stabilization and passivity techniques. Representative of this, the books [Ari-
moto 1996, Ortega, Loria, Nicklasson, and Sira-Ramirez 1998] provide a thor-
ough account of stabilization for Lagrangian systems using passivity methods.
The methodology in these books differs from ours in that there is less reliance
on differential geometry and more focus on electrical and electromechanical
systems. This makes the books amenable to researchers looking to quickly
apply tools to problems.

The above cited works form an extremely incomplete overview of the ex-
isting and ongoing research in the area of mechanical control systems. In the
body of the text we have attempted to provide references to specific papers
that are related to topics in the book. As such, the bibliography at the end
of the book is incomplete. We hope that the interested reader can use it as a
starting point, albeit a biased one, for entering the research literature.

Exercises

E1.1 Use Newton’s and Euler’s laws to derive the equations of motion for the
planar body subject to the variable-direction force in Section 1.1.

E1.2 Suppose that the force applied to the planar body of Section 1.1 is restricted
so as to always point in the direction of the body bi-axis, making the system
a single-input system.
(a) Try to deduce the character of the motion of the body subjected to such
a force. Test your intuition with numerical simulations using various
inputs wu1(t), including wi(t) = 1 and wi(t) = cos(t), for t € [0,27].
(Assume J =m = 1.)
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(b) Next, do the same when the force applied to the planar body is restricted
so as to always point in the direction of the body bs-axis. Can you detect
any qualitative difference between the two cases?

Use Newton’s and Euler’s laws to derive the equations of motion for the
two-link manipulator subjected to two torques in Section 1.2.

For the two-link manipulator of Section 1.2, consider the question, “Can one

steer the system from a given configuration at rest to another configuration,

also at rest?”

(a) If the system is fully actuated, why is this question trivial?

(b) What do you think is the answer to the question when the system is
underactuated?

Use Newton’s and Euler’s laws to derive the equations of motion for the
rolling disk subjected to two torques in Section 1.3.

Consider a spherical pendulum; that is a point mass in three-dimensional
space constrained to move on a spherical surface. Let (z,y, z) denote Carte-
sian coordinates relative to the orthonormal frame {s1, s2, s3} in the figure.
The system has two degrees-of-freedom with coordinates (0, ¢) as in Fig-
ure E1.1 (the distance from the origin to the point mass is equal to 1).
Answer the following questions.

Figure E1.1. Coordinates for spherical pendulum

(a) Write the (x,y, z) position of the point mass in terms of the coordinates
(6,0).

(b) Compute the kinetic energy in terms of the coordinates (6, ¢) and their
time derivatives.

(¢) Compute the potential energy assuming a gravitational field along the
S3-axis.

(d) Show that the system satisfies the constraint ¢z + gy + 2z = 0. Is this
a constraint only on velocities, or does it also constrain the evolution of
(z,y,2)?

For a realistic model of a bicycle, answer the following questions.
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(a) Determine the configuration space.

(b) Write down a set of coordinates.

(¢) Determine the velocity constraints that result from the wheels rolling
without slipping.

For which (if any) of the examples presented in Sections 1.1, 1.2, and 1.3 is it
true that the coordinate “vector” g describing the configuration of the system
can be legitimately thought of as being an element of Euclidean space? For
those systems for which this is not true, indicate why.



