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Chapter Six

Boundary estimation and tracking

The aim of this chapter is to provide an example of a motion coordination
algorithm that can be used in a specific sensing task. This is the task of
detection and estimation of an evolving boundary in two dimensions by a
robotic sensor network. This type of operation can be of interest in the
validation of oceanographic and atmospheric models, as well as for the de-
marcation of hazardous environments. In the ocean, a boundary can delimit
areas where there are abrupt changes in temperature, which can influence
the marine biodiversity in those areas. In the atmosphere, a boundary can
establish the front of a highly polluting expanding substance. The con-
tainment of a spreading fire is another situation that can translate into the
specific task of boundary estimation and tracking.

Under full knowledge and centralized computation, various methods exist
in the literature to solve the boundary estimation task. A first challenge
that we face when designing coordination algorithms for robotic networks is
the determination of the extent to which these tasks can be performed in a
distributed way and under limited information. In this regard, the algorithm
presented in this chapter to track environmental boundaries is distributed,
in the sense that it does not require the use of a central station or “fusion
center.” Our algorithm builds on basic notions from interpolation theory
and employs distributed linear iterations and consensus algorithms. The
algorithm can be seen as part of a general effort to investigate distributed
filters for estimation tasks.

A second challenge is posed by sudden events that may occur when per-
forming sensing tasks, such as the detection of an intruder or an abrupt
change in the concentration of some chemical. These events require a spe-
cific action on the part of the network. Since the timing of such events is
not known a priori, this requires coordination algorithms that specify event-
driven, asynchronous responses of the robotic network. We deal with this
issue by building on the robotic network model proposed in Chapter 3. Our
exposition here on boundary estimation relies on Susca (2007) and Susca
et al. (2008).
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The chapter is organized as follows. The first section extends the syn-
chronous model proposed in Chapter 3 to include the event-driven, asyn-
chronous operation of a robotic network. The second section reviews some
basic facts on interpolation theory for boundaries. In the third section,
we introduce the Estimate Update and Balancing Law to solve the
boundary estimation task and analyzes its correctness. We end the chap-
ter with three sections on, respectively, bibliographic notes, proofs of the
results presented in the chapter, and exercises. Throughout the exposition,
we make extensive use of polygonal approximations, geometric decomposi-
tions, and consensus algorithms. The convergence analysis is based on the
LaSalle Invariance Principle and on distributed linear iterations.

6.1 EVENT-DRIVEN ASYNCHRONOUS ROBOTIC NETWORKS

In what follows, we model “event-driven asynchronous” robotic networks.
This model describes groups of agents that reset their processor states upon
certain asynchronous events, that is, events that do not necessarily happen
simultaneously for all agents. For example, a relevant event might be a robot
reaching a location or leaving a region. The following event-driven model is
convenient to describe our algorithm for boundary estimation, but its appli-
cability extends beyond this particular scenario. Following our discussion of
synchronous robotic networks in Section 3.1, the event-driven model consists
of the following ingredients: a robotic network, as in Definition 3.2, and an
event-driven control and communication law, as defined next.

Definition 6.1 (Event-driven control and communication law). An
event-driven control and communication law ECC for a robotic network S
consists of the following sets:

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial values;

and the following maps:

(i) (msg-trig[i], msg-gen[i], msg-rec[i]), i ∈ I, called the message-trigger
function, message-generation function, and message-reception func-
tion, respectively, such that

(a) msg-trig[i] : X [i] × W [i] → {true, false},

(b) msg-gen[i] : X [i] × W [i] × I → A,

(c) msg-rec[i] : X [i] × W [i] × A × I → W [i];
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(ii) (stf-trig
[i]
k , stf

[i]
k ), i ∈ I, k ∈ {1, . . . , K

[i]
stf}, called the kth state-

transition trigger function and the kth (processor) state-transition
function, respectively, such that

(a) stf-trig
[i]
k : X [i] × W [i] → {true, false},

(b) stf
[i]
k : X [i] × W [i] → W [i]; and

(iii) ctl[i] : X [i] × W [i] → U [i], i ∈ I, called (motion) control functions.

If the network S is uniform and all sets and maps of the law ECC are inde-

pendent of the identifier, that is, for all i ∈ I and k ∈ {1, . . . , Kstf = K
[i]
stf},

W [i] = W, (stf-trig
[i]
k , stf

[i]
k ) = (stf-trigk, stfk), ctl

[i] = ctl,

(msg-trig[i], msg-gen[i], msg-rec[i]) = (msg-trig, msg-gen, msg-rec),

then ECC is said to be uniform and is described by the tuple

(A, W, {W
[i]
0 }i∈I , (msg-trig, msg-gen, msg-rec), {stf-trigk, stfk}

Kstf

k=1, ctl). •

Observe that a key difference between Definitions 3.9 and 6.1 is that the
message-generation and state-transition functions are substituted by sets

of maps (msg-trig[i], msg-gen[i], msg-rec[i]) and (stf-trig
[i]
k , stf

[i]
k ). A second

difference is that the control function depends only upon the current robot
position, and not the position at last sample time.

The event-driven control and communication law models situations in
which the agent physical and processor states need to satisfy certain con-
straints before a message should be sent. For example, in each triplet
(msg-trig[i], msg-gen[i], msg-rec[i]), the map msg-trig[i] acts as a trigger for
agent i to send a message to its neighbors, the map msg-gen[i] computes the
message to be sent, and msg-rec[i] specifies how agent i updates its proces-
sor state when receiving a message. In hybrid systems terminology (van der
Schaft and Schumacher, 2000), the map msg-trig[i] can be seen as a guard

map. Similarly, in the pair (stf-trig
[i]
k , stf

[i]
k ), the map stf-trig

[i]
k acts as a trig-

ger for agent i to update its processor state. If several stf-trig
[i]
k are satisfied

at the same time, then the agent can freely choose among the corresponding
state transition functions to update the processor state. This freedom means
that our dynamical system is described by a set-valued map and leads to
non-deterministic evolutions.

The evolution of a robotic network dictated by an event-driven control
and communication law is asynchronous: there is no common time schedule
for all robots to send messages, receive messages, and update their processor
states. Only when an event happens, an agent sends a message or updates
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its state. The asynchronous event-driven evolution can be loosely described
in the following way:

(i) Starting from the initial conditions, the physical state of each agent

evolves in continuous time according to the control function ctl[i].

(ii) At every instant of time t1 ∈ R≥0 such that the message-trigger func-

tion for agent i satisfies msg-trig[i](x[i](t1), w
[i](t1)) = true, agent i

generates a non-null message according to msg-gen[i] and sends it
to all its out-neighbors. At time t1, each out-neighbor j of agent
i receives a messages and processes it according to msg-rec[j]. If
multiple messages are received at the same time, then we allow all
possible orders of execution of the message-reception function.

(iii) Additionally, at every instant of time t2 ∈ R≥0 such that one of the

state-transition triggers satisfies stf-trig
[i]
k (x[i](t2), w

[i](t2), y
[i](t2)) =

true, agent i updates its processor state w[i] according to stf
[i]
k . If

multiple state transitions are triggered at the same time, then we
allow all possible orders of execution of the state-transition func-
tions.

(iv) If one or multiple state-transition and message triggers are equal to
true at the same time, then we assume that all state transitions
take place first, and immediately after the messages are generated
and transmitted.

(v) If one or multiple state-transition triggers are equal to true at the
same time at which messages are received, then we allow all possible
orders of execution of the state-transition and message-reception
functions.

(vi) In order to avoid the possibility of an infinite number of message
transmissions or state transitions in finite time, we introduce a
“dwell logic.” Let δ > 0 be a dwell time common to all agents.
For each agent i, if a message was generated at time t1 by agent
i, then no additional message is to be generated before time t1 + ε
by agent i independently of the value of its message-trigger func-
tion. Similarly, for each agent i, if a state-transition function was
executed at time t2 by agent i, then no additional state-transition
function is to be executed before time t2+ε by agent i independently
of the value of its state-transition-trigger function.

Remark 6.2 (Dwell time prevents Zeno behavior). Note that: (1) a
dwell time is introduced only for the purpose of properly defining an exe-
cution for a general event-drive control and communication law; (2) infinite
numbers of message transmissions or state transitions in finite time will not
take place during the execution of the algorithm that we present later in the
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chapter; and (3) we refer the reader interested in comprehensive treatments
of the so-called Zeno behavior to van der Schaft and Schumacher (2000);
Johansson et al. (1999). •

Finally, as we did in Chapter 3, we now give a formal definition of the
asynchronous evolution of an event-driven control and communication law
on a robotic network.

Definition 6.3 (Asynchronous event-driven evolution with dwell
time). Let ECC be an event-driven control and communication law for the
robotic network S. For δ ∈ R>0, the evolution of (S, ECC) with dwell time

δ from initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of

absolutely continuous curves x[i] : R≥0 → X [i], i ∈ I, and piecewise-constant
curves w[i] : R≥0 → W [i], i ∈ I, such that at almost all times,

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

x[i](t), w[i](t)
))

, (6.1.1)

ẇ[i](t) = 0, (6.1.2)

with x[i](0) = x
[i]
0 and w[i](0) = w

[i]
0 , i ∈ I, and such that:

(i) For every i ∈ I and t1 ∈ R>0, a message is generated by agent i and
received by all its out-neighbors j, that is,

y
[j]
i (t1) = msg-gen[i]

(

x[i](t1), w
[i](t1), j

)

,

w[j](t1) = msg-rec[j]
(

x[j](t1), lim
t→t−1

w[j](t), y
[j]
i (t1), i

)

,

if msg-trig[i](x[i](t1), w
[i](t1)) = true and agent i has not trans-

mitted any message to its out-neighbors during the time interval
]t1 − δ, t1[∩R>0. Here, agent j is an out-neighbor of agent i at time
t1 if (i, j) ∈ Ecmm

(

x[1](t1), . . . , x
[n](t1)

)

.

(ii) For every i ∈ I, k ∈ {1, . . . , K
[i]
stf}, and t2 ∈ R>0, the state-transition

function stf
[i]
k is executed, that is,

w[i](t2) = stf
[i]
k

(

x[i](t2), lim
t→t−2

w[i](t)
)

,

if stf-trig
[i]
k (x[i](t2), w

[i](t2)) = true and there has been no execution

of stf
[i]
k during the time interval ]t2 − δ, t2[∩R>0. •

This model of event-driven control and communication law and of asyn-
chronous evolution is adopted in the rest of this chapter.
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6.2 PROBLEM STATEMENT

In this section, we formalize the network objective. We begin by reviewing
some important facts on interpolations of planar boundaries by means of in-
scribed polygons. After introducing the robotic network model, we make use
of notions from the theory of linear interpolations to formalize the boundary
estimation task.

6.2.1 Linear interpolations for boundary estimation

Consider a simply connected set Q in R
2, that we term the body. We are

interested in obtaining a description of the boundary ∂Q of a convex body.
In particular, we will consider the symmetric difference error metric (Gruber,
1983) to measure the goodness of an approximation to ∂Q. The symmetric
difference δS between two compact bodies C, B ⊆ R

2 is defined by

δS(C, B) = A(C ∪ B) − A(C ∩ B),

where, given a set S ⊂ R
2, A(S) is its Lebesgue measure. This definition

is illustrated in Figure 6.1. We note that the symmetric difference admits
alternative definitions (see Exercise E6.1). In what follows, we search for

Figure 6.1 The symmetric difference between the two quadrilaterals is the area corre-
sponding to the region colored in light gray.

approximations to a convex body Q by means of inscribed polygons. A
convex polygon is inscribed in Q if all its vertices belong to the boundary of
Q. We denote an inscribed polygon with m vertices by Qm. The symmetric
difference between the body Q and the polygon Qm takes the simpler form

δS(Q, Qm) = A(Q) − A(Qm).

The inscribed polygons that are critical points of δS can be characterized as
follows.
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Lemma 6.4 (Characterization of critical inscribed polygons for the
symmetric difference). Let Q be a convex planar body with a continu-
ously differentiable boundary. Let Qm be an inscribed polygon with vertices
{q1, . . . , qm} in counterclockwise order. For i ∈ {1, . . . , m}, let t(qi) be the
tangent vector to ∂Q at qi. Then, Qm is a critical point of δS if and only if

t(qi) is parallel to (qi+1 − qi−1), (6.2.1)

for all i ∈ {1, . . . , m}, where q0 = qm and qm+1 = q1.

Note that the characterization of critical inscribed polygons in Lemma 6.4
can be satisfied not only by polygons that are maximizers, but also by saddle
points (see Exercise E6.2). On the other hand, we would like to make use of
a characterization that can be extended to nonconvex bodies and that relies
as much as possible on local information that agents can collect.

In what follows, we describe the method of empirical distributions, based
on the asymptotic formula provided in the following lemma. We start with
some useful notation. As in Section 1.1, let ∂Q be twice continuously
differentiable and let γarc : [0, L] → ∂Q be a counterclockwise arc-length
parametrization of ∂Q. Additionally, let κsigned : [0, L] → R, κabs : [0, L] →
R≥0, and ρ : [0, L] → R≥0 be, respectively, the signed curvature, the absolute
curvature, and radius of curvature of the boundary. For convex bodies, the
following result is proved in McLure and Vitale (1975), and Gruber (1983).

Lemma 6.5 (Optimal polygonal approximation of a convex body).
Let Q be a convex planar body whose boundary is twice continuously differen-
tiable and has strictly positive signed curvature κsigned. If Q∗

m is an optimal
approximating polygon of Q, then

lim
m→+∞

m2δS(Q, Q∗
m) =

1

12

∫ L

0
ρ(s)2/3ds.

To compute an optimal approximating polygon for a strictly convex body,
McLure and Vitale (1975) suggest the following method of empirical distri-
butions. Let q1, . . . , qm be consecutive points on ∂Q ordered counterclock-
wise and, for i ∈ {1, . . . , m}, define si ∈ [0, L] by requiring qi = γarc(si).
The positions qi, i ∈ {1, . . . , m}, along ∂Q are said to obey the method of
empirical distributions if

∫ si

si−1

ρ(s)2/3ds =

∫ si+1

si

ρ(s)2/3ds (6.2.2)

for all i ∈ {1, . . . , m}, where we set s0 = sm and sm+1 = s1. Interpolating
polygons computed according to the method of empirical distributions con-
verge to an optimal polygon approximation Q∗

m as m → ∞. Roughly speak-

11

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 6: Boundary estimation and tracking

ing, this property translates into the placement of more interpolation points
on those parts of the boundary that have higher curvature. Figure 6.2.1
illustrates an approximating polygon with empirically distributed vertices.
As final comment about convex bodies, it is useful to know from Gruber

Figure 6.2 Equidistant interpolation points according to the integral in equation (6.2.2).
The solid green line represents the boundary and the dashed red line represents
the optimal approximating polygon.

(1983) that, for α > 0,

∫ L

0
ρ(s)αds =

∫ L

0
κabs(s)

1−αds. (6.2.3)

Next, we discuss the case of nonconvex bodies whose boundary can be
parameterized by a twice continuously differentiable curve. We begin with
a definition: given a twice continuously differentiable curve γ : [0, L] → R

2,
an inflection point of γ is a point q ∈ γ([0, L]) with the property that, for
q = γ(sq), sign(κsigned(sq − ε)) 6= sign(κsigned(sq + ε)) for every ε ∈ R>0

sufficiently small. Nonconvex bodies have an arbitrary number of inflection
points; we restrict our attention to nonconvex bodies with a finite number
of them. Because the radius of curvature of a nonconvex body is unbounded
at inflection points, equality (6.2.2) is ill posed in general. Therefore, in
order to extend the method of empirical distributions to nonconvex bodies,
we introduce the following notions of distance along a boundary. Given two
points qi = γarc(si) and qj = γarc(sj), with si < sj , we define

Dcurvature(qi, qj) =

∫ sj

si

κabs(s)
1/3ds,

Darc(qi, qj) = sj − si.

Note that the quantity Darc(qi, qj) is always strictly positive for qi 6= qj ,
whereas the quantity Dcurvature(qi, qj) vanishes if the points qi and qj are
connected by a straight line. Additionally, for λ ∈ [0, 1], we define the

12
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pseudo-distance Dλ between the vertices qi and qj as

Dλ(qi, qi+1) = λDcurvature(qi, qj) + (1 − λ)Darc(qi, qi+1).

The empirical distribution criterion (6.2.2) is substituted by the following
one when the boundary is nonconvex. We look for approximations of ∂Q,
{q1, . . . , qm}, such that Dλ(qi−1, qi) = Dλ(qi, qi+1) for all i ∈ {1, . . . , m}.
This choice has the following interpretation. Taking λ ≈ 1 leads to an
interpolation that satisfies a modified method of empirical distributions.
The method is modified in the sense that we adopt the distance Dcurvature

instead of the integral of the curvature radius; our informal justification for
this step is equality (6.2.3). Instead, taking λ ≈ 0 leads to an interpolation
that divides the boundary into segments of equal arc-length. A choice of
λ ∈ (0, 1) leads to a polygon approximation that is midway between these
two options. For sufficiently large λ < 1, the resulting polygon has a higher
number of vertices in the portions of the boundary with higher curvature and
the distance between any two consecutive interpolation points is guaranteed
to be positive.

6.2.2 Network model and boundary estimation task

Next, we formulate a robotic network model and the boundary estimation
objective. Assume that Q is a simply connected subset of R

2 with differ-
entiable boundary ∂Q. Consider the network Sbndry = (I,R, Ecmm), with
I = {1, . . . , n}. In this network, each robot is described by a tuple

(∂Q, [−vmin, vmax], ∂Q, (0, e)), (6.2.4)

where e is the vector field tangent to ∂Q describing counterclockwise motion
at unit speed; we assume that unit speed is an admissible speed, that is, we
assume that 1 ∈ [−vmin, vmax]. We assume that each robot can sense its
own location p[i] ∈ ∂Q, i ∈ I, and can communicate with its clockwise and
counterclockwise neighbors along ∂Q. In other words, the communication
graph Ecmm is the ring graph or the Delaunay graph on ∂Q. Later, we shall
assume that Q varies in a continuously differentiable way with time, and
that, therefore, agents move along its time-varying boundary.

Next, assume that the processor state of each agent contains a set of nip

interpolation points used to approximate ∂Q, that is, the processor state is
given by q[i] ∈ (R2)nip , for i ∈ I. We illustrate the combination of agents
and interpolation points along the boundary in Figure 6.3.

For ε ∈ R>0 and λ ∈ [0, 1], the boundary estimation task Tε-bndry : (∂Q)n×
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Figure 6.3 Agents and interpolation points on the boundary ∂Q.

((R2)nip)n → {true, false} for Sbndry is the coordination task

Tε-bndry(p
[1], . . . , p[n], q[1], . . . , q[n]) = true if and only if

∣

∣

∣
Dλ(q

[i]
α−1, q

[i]
α ) −Dλ(q[i]

α , q
[i]
α+1))

∣

∣

∣
< ε, α ∈ {1, . . . , nip} and i ∈ I.

Roughly speaking, this task is achieved when the nip interpolation points
are approximately uniformly placed along the boundary according to the
counterclockwise pseudo-distance Dλ.

A second objective is our desire to space the agents equally far apart
along the boundary. As in Example 3.22, for ε > 0, we define the agent
equidistance task Tε-eqdstnc : (∂Q)n → {true, false} to be true if and only
if

∣

∣Darc(p
[i−1], p[i]) −Darc(p

[i], p[i+1])
∣

∣ < ε, for all i ∈ I,

where Darc is the counterclockwise arc-length distance along ∂Q. In other
words, Tε-eqdstnc is true when, for every agent, the (unsigned) distances to
the closest clockwise neighbor and to the closest counterclockwise neighbor
are approximately equal.

6.3 ESTIMATE UPDATE AND CYCLIC BALANCING LAW

Here, we propose a coordination algorithm for a robotic network to achieve
the boundary estimation task. The algorithm requires individual agents to
maintain and continuously update an approximation of the boundary that
asymptotically meets the criterion of the method of empirical distributions.
The algorithm is an event-driven control and communication law, as defined
in Section 6.1. To facilitate the understanding, the algorithm is presented
in an incremental way. First, we specify an estimate update law for a sin-
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gle robot. Second, we consider multiple robots cooperatively performing
the estimate update law to achieve the boundary estimation task. Third
and finally, we introduce a cyclic balancing algorithm to achieve a robot
equidistance task.

6.3.1 Single-robot estimate update law

Let Q be a simply connected subset of R
2 with a differentiable moving

boundary ∂Q. Consider a single robot described by (6.2.4) that moves
along ∂Q. Assume that the processor state contains a set of interpolation
points {q1, . . . , qnip

} used to approximate ∂Q. We begin with an informal
description of the Single-Robot Estimate Update Law and we illustrate
in Figure 6.4 the two actions characterizing this law:

[Informal description] The agent moves counterclockwise along
the moving boundary ∂Q, collecting estimates of its tangent and
curvature. Using these estimates, the agent executes the fol-
lowing two actions. First, it updates the positions of the in-
terpolation points so that they take value on the estimate of
∂Q. In other words, as sufficient information is available, each
interpolation point qα, α ∈ {1, . . . , nip}, is projected onto the
estimated boundary. Second, after an interpolation point qα has
been projected, the agent collects sufficient information so that
it can locally optimize the location of qα along the estimate of
∂Q. Here, by an estimate of the time-varying ∂Q, we mean the
trajectory of the agent along the moving boundary.

project

optimize

Figure 6.4 The two actions characterizing the Single-Robot Estimate Update Law.

Next, we begin our detailed description of the algorithm by specifying
what variables the agent maintains in its memory. The processor state of
the agent consists of the following variables:

(i) A counter nxt taking values in {1, . . . , nip} that specifies which in-
terpolation point the agent is going to project next.
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(ii) A boundary representation comprised of the pairs

{(qα, vα) ∈ (R2)2 | α ∈ {1, . . . , nip}},

where qα is the position of the interpolation point α and vα repre-
sents the tangent vector of ∂Q at qα.

(iii) A curve of the form path : [0, t] → R
2. This curve is the trajectory

followed by the agent from initial time until present time t. We
assume that the agent updates the variable path continuously. We
let C(R2) be the set of planar curves, that is, twice differentiable
functions from an interval to R

2. With this notation, we may write
path ∈ C(R2).

Figure 6.5 The agent moves along the time-varying boundary ∂Q, here depicted as a
sequence of growing ellipses, and its trajectory is an approximation to ∂Q.

Remark 6.6 (Boundary approximation). For simplicity, we assume
that, at every instant of time, the agent is located exactly on top of the
boundary. This assumption implies that if the boundary is time-invariant,
then the agent trajectory path is locally equal to ∂Q. Furthermore, if the
boundary is slowly time-varying, then the agent’s trajectory path is an es-
timate of the moving boundary ∂Q, as illustrated in Figure 6.5. •

The agent updates its processor state according to the following two rules:

Rule #1: When and how to project onto ∂Q the interpolation point qnxt.
Let qnxt denote the interpolation point about to be projected and let vnxt
denote the corresponding tangent vector. The projection takes place when
the agent crosses the line, denoted by linenxt, that passes through qnxt
and is perpendicular to vnxt. At this crossing time, we define the updated
values for the interpolation point nxt, denoted by q+

nxt, to be the point on
path where the agent’s trajectory crosses the line linenxt. This projection
operation is illustrated in Figure 6.6. We refer to this operation by the map
perp-proj : (R2)2 × C(R2) → R

2; in other words, we write

q+
nxt := perp-proj(qnxt, vnxt, path).
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qnxt

q
+
nxt

qnxt−1

q
+
nxt−1

qnxt−2

q
+
nxt−2

Figure 6.6 The projection of interpolation point qnxt onto the curve path.

Rule #2: When and how to optimize the interpolation point qnxt−1. The
local optimization of the interpolation point (nxt − 1) takes place immedi-
ately after the projection of the interpolation point nxt onto the estimated
boundary. The interpolation point (nxt− 1) is moved along the curve path

in order to balance its two pseudodistances to its clockwise and counter-
clockwise neighboring interpolation points (recall that path is an estimate
of the boundary ∂Q as discussed in Remark 6.6). Specifically, we define the
map cyclic-balance : (R2)3 × C(R2) → R

2 by

cyclic-balance(qnxt−2, qnxt−1, qnxt, path) is point q∗ in the curve path

such that Dλ(qnxt−2, q
∗) =

3

4
Dλ(qnxt−2, qnxt−1) +

1

4
Dλ(qnxt−1, qnxt) .

This map is illustrated in Figure 6.7. With this definition, we update the
interpolation (nxt− 1) to be

q+
nxt−1 := cyclic-balance(qnxt−2, qnxt−1, qnxt, path).

qnxt−1

qnxtq
+
nxt−1

qnxt−2

Figure 6.7 Optimal placement of the interpolation point qnxt−1 along the curve path.

Remark 6.7 (Balancing property of the optimal placement). The
optimal placement q+

nxt−1 can be equivalently defined by

Dλ(q+
nxt−1, qnxt) =

1

4
Dλ(qnxt−2, qnxt−1) +

3

4
Dλ(qnxt−1, qnxt),
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so that it achieves the balancing property that
[

Dλ(qnxt−2, q
+
nxt−1)

Dλ(q+
nxt−1, qnxt)

]

=
1

4

[

3 1
1 3

] [

Dλ(qnxt−2, qnxt−1)
Dλ(qnxt−1, qnxt).

]

This iteration is the same as the cyclic balancing system with parameter
k = 1/4 studied in Exercises E1.30, E5.5, and E6.3. •

Finally, we define one last useful operation. Given a point on the curve
path, it is useful to be able to compute the tangent of the curve path at the
point q. Specifically, given a point q on the curve path, we shall write

v := tangentat(path, q).

In summary, the Single-Robot Estimate Update Law is formally de-
scribed as follows:

Robot: single robot moving at constant speed along ∂Q,
continuously recording its trajectory

Event-driven Algorithm: Single-Robot Estimate Update Law

Processor State: w = (nxt, {(qα, vα)}
nip

α=1, path), where

nxt ∈ {1, . . . , nip},initially equal to index of interpola-
tion point closest to robot moving
counterclockwise

{(qα, vα)}
nip

α=1⊂ R
2 × R

2, initially counterclockwise along boundary
path ∈ C(R2), continuously recording agent’s trajectory

% A state transition is triggered when the agent crosses a certain line
function stf-trig(p, w)

1: linenxt := line through point qnxt perpendicular to direction vnxt
2: if p ∈ linenxt then
3: return true

4: else
5: return false

% The current interpolation point and tangent vector are projected and the
previous interpolation point is optimized along the new boundary

function stf(p, w)

1: {(q+
α , v+

α )}
nip

α=1 := {(qα, vα)}
nip

α=1
2: q+

nxt := perp-proj(qnxt, vnxt, path)

3: q+
nxt−1 := cyclic-balance(qnxt−2, qnxt−1, q

+
nxt, path)

4: v+
nxt := tangentat(path, q+

nxt)

5: v+
nxt−1 := tangentat(path, q+

nxt−1)

6: return (nxt + 1, {(q+
α , v+

α )}
nip

α=1, path)
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The Single-Robot Estimate Update Law may be improved in a num-
ber of ways; here, we present some important algorithmic clarifications.

Remarks 6.8 (Content and representation of the variable path).

(i) The above discussion assumes that, with the information provided
by the variable path, the agent can compute the tangent vector and
the curvature along its trajectory in order to perform the calculation
of the pseudodistance Dλ.

(ii) It is not necessary for the agent to keep in the variable path its
entire trajectory since initial time. In fact, when the agent updates
the location of the interpolation point (nxt− 1) in instruction 4: of
the state-transition function, it is sufficient that path contains the
trajectory of the agent starting from interpolation point (nxt − 2)
until the current agent position. This “limited-length” requirement
may be implemented as follows: the variable path is a curve of the
form path : [tpath, t] → R

2, the variable t denotes the present time,
the variable tpath is initially set equal to 0, and the instruction

tpath := t∗ such that qnxt−1 = path(t∗),

is executed before instruction 6: in the state-transition function.

(iii) In a realistic implementation, the path variable and its first two
derivatives are to be represented with finite resolution over a discrete
time domain. The interested reader is referred to Susca et al. (2008)
for a discussion of the Single-Robot Estimate Update Law

algorithm with a realistic implementation of the path variable in a
finite-length finite-resolution manner. •

Remark 6.9 (Timeout for the projection of interpolation points).
In the definition of the Single-Robot Estimate Update Law, we have
implicitly assumed that the agent crosses the line through qnxt perpendicu-
lar to vnxt. This is certainly the case if ∂Q is static or slowly time-varying.
However, if ∂Q changes drastically, it is conceivable that the agent never
crosses the line through qnxt perpendicular to vnxt. In other words, it can
happen that the state-transition trigger function is always false. This sit-
uation can be prevented by prescribing a timeout such that, if the agent
has not crossed the line after a certain time has elapsed, then the interpo-
lation point nxt is projected onto its trajectory anyway. Formally, let t∗ be
implicitly defined by

Dλ(q+
nxt−1, p(t)) = 2Dλ(qnxt−1, qnxt).

If no crossing has happened at time t, then q+
nxt is set equal to the point

on path that is closest to qnxt. The tangent vector v+
nxt is set equal to
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tangentat(path, q+
nxt). This projection is well-defined and has the property

that if ∂Q is time-invariant, then q+
nxt = qnxt. The algorithm described

by Susca et al. (2008) explicitly incorporates this timeout. •

6.3.2 Cooperative estimate update law

In the previous section, we presented an event-driven algorithm for a single
robot to monitor a boundary. We consider the robotic network Sbndry with
ring communication topology, described in Section 6.2.2, and we develop a
parallel version of the Single-Robot Estimate Update Law that allows
the network to monitor the boundary efficiently (i.e., with more accuracy
than a single robot could). We begin with an informal description of the
Cooperative Estimate Update Law:

[Informal description] Each agent moves counterclockwise along
the moving boundary ∂Q, has its individual copy of the bound-
ary representation, including the interpolation points, and exe-
cutes the Single-Robot Estimate Update Law. Because the
agents are spatially distributed, each agent updates its individ-
ual boundary representation separately. On top of the Single-

Robot Estimate Update Law, the agents run a communi-
cation protocol that transmits the updated interpolation points
along the ring topology. Specifically, every time an agent updates
two interpolation points (using the state-transition function of
the Single-Robot Estimate Update Law and, thus, the
functions perp-proj and cyclic-balance), this agent transmits
these updated interpolation points to its clockwise and counter-
clockwise neighbors. In turn, the neighbors record the updates
in their individual boundary representation.

Next, we give a more detailed description of the algorithm. We assume
that each robot i has a processor state with its local copy of w[i] containing a

counter nxt[i], a boundary representation {(q
[i]
α , v

[i]
α )}

nip

α=1, where nip is equal

for all robots, and its path[i]. The Cooperative Estimate Update Law

is formally described as follows:

Robotic Network: Sbndry, first-order agents moving at unit speed along ∂Q
with absolute sensing of own position, communicating
with clockwise and counterclockwise neighbors

Event-driven Algorithm: Cooperative Estimate Update Law

Alphabet: A = {1, . . . , nip} × (R2)2 × (R2)2 ∪{null}
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Processor State, function stf-trig, and function stf
same as in Single-Robot Estimate Update Law

% A transmission is triggered right after the interpolation points are updated
function msg-trig(p, w)

1: return stf-trig(p, w)

% The updated interpolation points (and reference label) are transmitted
function msg-gen(p, w, i)

1: return
(

nxt, (qnxt−1, vnxt−1), (qnxt−2, vnxt−2)
)

% The received updated interpolation points are stored
function msg-rec(p, w, y, i)

1: {(q+
α , v+

α )}
nip

α=1 := {(qα, vα)}
nip

α=1
2: (nxtrec, y1, y2) := y
3: (q+

nxtrec−1, v
+
nxtrec−1) := y1

4: (q+
nxtrec−2, v

+
nxtrec−2) := y2

5: return (nxt, {(q+
α , v+

α )}
nip

α=1, path)

We conclude this section with an important clarification. We begin with
a useful definition and then give two related remarks.

Definition 6.10 (Two-hop separation). A group of n ≥ 2 agents imple-
menting the Cooperative Estimate Update Law is two-hop separated
along the interpolation points if nxt[i−1] ≤ nxt[i] −2 for all i ∈ I at all times
during the execution of the algorithm. •

Remarks 6.11 (Well-posedness of the Cooperative Estimate Up-
date Law).

(i) The inequality nxt[i−1] ≤ nxt[i] − 2 guarantees that each robot can
correctly implement the algorithm. Indeed, if this inequality is vi-
olated, then the cyclic-balance function performed by robot i
during the state-transition function is invoked with an interpola-

tion point q
[i]
nxt−2 which does not take value in the curve path[i]

(because the boundary might be time-varying). This inequality
therefore guarantees that the algorithm is well-posed. Assuming
two-hop separation guarantees that the projection and optimiza-
tion events happen in the following order: each interpolation point
nxt[i] is projected and later optimized by robot i, strictly before it
is projected by robot (i − 1).

(ii) The two-hop separation property is easily seen to hold when (1) the
number of interpolation points nip is much larger than the num-
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ber of robots n, (2) the robots are approximately equidistant along
∂Q, and (3) the distances between pairs of consecutive interpolation
points are much less than the length of ∂Q divided by n. •

6.3.3 Cyclic balancing algorithm for agent equidistance task

Here, we propose a motion coordination controller to achieve the agent
equidistance task Tε-eqdstnc among the agents moving along the boundary.
This task also leads to the orderly interactions mentioned in the last remark.
Specifically, we extend the Cooperative Estimate Update Law to in-
clude a motion coordination component that makes the agents achieve the
agent equidistance task while moving at approximately unit speed along the
boundary. The control design is straightforward: for robot i at position p[i]

moving in continuous time with speed v[i] along ∂Q, we define

v[i] = 1 + kprop

(

Darc(p
[i], p[i+1]) −Darc(p

[i−1], p[i])
)

, (6.3.1)

where kprop ∈ R>0 is a fixed control gain. In other words, the agent speeds
up or slows down depending upon whether it is closer to the following
or to the preceding agent, respectively. This simple motion control law
is the continuous-time analog of the cyclic balancing system described in
Exercise E1.30; recall that this system was adopted also in the Single-

Robot Estimate Update Law for the purpose of balancing pseudodis-
tances among interpolation points.

To handle the lower and upper bounds constraints on the velocity, that
is, the constraint v ∈ [−vmin, vmax], we introduce a saturation function in
the design (6.3.1). Specifically, we implement

v[i] = sat[vmin,vmax]

(

1 + kprop

(

Darc(p
[i], p[i+1]) −Darc(p

[i−1], p[i])
)

)

, (6.3.2)

where the saturation function sat[a,b] : R → [a, b], for a < b, is defined by

sat[a,b](x) =











a, if x < a,

x, if x ∈ [a, b],

b, if x > b.

The difficulty in implementing controller (6.3.2) in the Cooperative

Estimate Update Law is how to measure the counterclockwise arc-length
distance between robots. To tackle this difficulty, let us begin with a useful
observation. Given the interpolation points {q1, . . . , qnip

} and two points
on the boundary r1, r2, assume that sufficient information is available to
compute the indices [r1] and [r2] of the counterclockwise-closest interpolation
points from r1, r2, respectively. With this notation and the assumption,
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the counterclockwise pseudodistance from r1 to r2 and one of its possible
approximations are as follows:

Darc(r1, r2) = Darc(r1, q[r1]) +

[r2]−2
∑

α=[r1]

Darc(qα, qα+1) + Darc(q[r2]−1, r2)

(6.3.3)

≈ dist2(r1, q[r1]) +

[r2]−2
∑

α=[r1]

dist2(qα, qα+1) + dist2(q[r2]−1, r2).

(6.3.4)

Based on this equality and on this approximation, we propose two meth-
ods to implement the controller (6.3.2). One may implement either of the
following:

(i) The approximation proposed in (6.3.4); this approximated pairwise
counterclockwise arc-length distance may be computed with the in-
formation available to the agents in the Cooperative Estimate

Update Law.

(ii) The exact computation proposed in (6.3.3); in order to perform this
computation, however, the robots require more information. The
processor state is required to store a collection of arc-length dis-
tances Darc(qα, qα+1), α ∈ {1, . . . , nip} that are measured by the
agents as they move, and that are maintained accurate via commu-
nication. In the interest of brevity, we omit a detailed discussion of
this point here.

Finally, independently of the computation or approximation of the arc-
length distances, the implementation of controller (6.3.2) requires each agent
to have a continuous-time estimate of the location of its clockwise and
counterclockwise neighbors: this information may be acquired by either a
dedicated message-exchanging protocol or, possibly, by proximity sensors
mounted on the robots. In the interest of brevity, we omit a detailed dis-
cussion of this point here.

6.3.4 Correctness of the estimate update and cyclic balancing law

We call the Estimate Update and Balancing Law the combination
of the Cooperative Estimate Update Law with the cyclic balancing
control law (6.3.2), with exact arc-length distance computation between
robots.
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We call the Approximate Estimate and Balancing Law the combi-
nation of the Cooperative Estimate Update Law with the cyclic balanc-
ing control law (6.3.2), with (1) finite-resolution finite-length representation
of the path variable in the robots, and (2) approximate arc-length distance
computation between robots.

We state the properties of these laws in the following theorem, whose
proof is postponed to Section 6.6.

Theorem 6.12 (Correctness of the exact and approximate laws).
On the network Sbndry, along evolutions with the two-hop separation prop-
erty:

(i) the Estimate Update and Balancing Law achieves the bound-
ary estimation task Tε-bndry and the agent equidistance task Tε-eqdstnc

for any ε ∈ R>0 if the boundary is time-independent; and

(ii) the Approximate Estimate and Balancing Law achieves the
boundary estimation task Tε-bndry and the agent equidistance task
Tε-eqdstnc for some ε ∈ R>0 if the boundary varies in a continuously
differentiable way and sufficiently slowly with time, and its length is
upper bounded.

Remark 6.13 (Error induced by the evolution of the boundary and
its discretization). In the second statement in the theorem, the constant
ε depends upon the rate of change of the boundary and upon the accuracy
of the various approximations made in the algorithm. •

6.4 SIMULATION RESULTS

In order to illustrate the performance of the algorithms, we include here dif-
ferent simulation results of the Approximate Estimate and Balancing

Law. In the first simulation, the boundary to be estimated is time invariant,
while in the second it is time-varying.

Time-invariant boundary

As a first simulation, we assume that n = 3 agents aim to approximate the
time-invariant boundary ∂Q described by the closed curve

γ(θ) =
(

2 + cos(5θ) + 0.5 sin(2θ)
)

[

cos(θ)
sin(θ)

]

, θ ∈ [0, 2π].

The control gain is kprop = 0.05. The minimum and maximum velocities are
vmin = 0.5 and vmax = 2. The number of interpolation points is nip = 30.
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Pseudodistances are computed with λ = 10
11 . The simulation time is 50

seconds. At initial time, the interpolation points are selected to be the posi-
tions of the agents and other randomly distributed points on the boundary.
Finally, each robot maintains a discretized representation of its trajectory
path with a resolution of 0.01 seconds.

The behavior of the Approximate Estimate and Balancing Law is
illustrated in Figure 6.8. The left- and right-hand figures correspond to
the positions of the interpolation points and the agents at the initial and
final configurations, respectively. In the right-hand figure one can see the
approximating polygon and how close it is to the actual boundary.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Initial Configuration

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Configuration

Figure 6.8 The Approximate Estimate and Balancing Law for a time-invariant
boundary: initial and final configuration of agents (drawn as triangles) and
interpolation points. The right-hand figure shows also the approximating poly-
gon.

Figure 6.9 illustrates the convergence of the algorithm. Although the Ap-

proximate Estimate and Balancing Law uses an approximated version
of the pseudodistances between interpolation points and of the arc-length
distance between agents, we illustrate the performance of the algorithm by
plotting the exact versions of the pseudodistances and arc-length distances.
Regarding the boundary estimation task, the left-hand figure illustrates how
the quantity maxα∈{1,...,nip}Dλ(qα, qα+1) − minα∈{1,...,nip}Dλ(qα, qα+1) does
indeed decrease towards zero, even though it does not vanish because of
the adopted approximations. Regarding the equidistance task, the right
figure illustrates how the agents become uniformly spaced along the bound-
ary. Again, the arc-length distances converge toward a common steady-state
value, even though the convergence is not exact because of the adopted ap-
proximations.
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Figure 6.9 The Approximate Estimate and Balancing Law for a time-invariant
boundary: the left-hand figure shows the largest minus the smallest pseu-
dodistance between neighboring interpolation points. The right-hand figure
shows the three arc-length distances between the three agents.

Slowly time-varying boundary

As a second simulation, we assume that n = 4 agents aim to approximate
the time-varying boundary ∂Q described by the time-varying closed curve

γ(θ, t) =

(

2
tfinal − t

tfinal
+

(

2 + cos(5θ) + 0.5 sin(2θ)
) t

tfinal

)[

cos(θ)
sin(θ)

]

,

with θ ∈ [0, 1], t ∈ [0, tfinal], and tfinal = 200 seconds, as shown in Figure 6.10.
The parameters and initial conditions of the Approximate Estimate and

Balancing Law are the same as in the time-invariant case. The four plots
in Figure 6.10 show the positions of the interpolation points and of the
agents at the four time instants 0, 50, 100, and 200 seconds, respectively.
The last plot also illustrates how close the approximating polygon is to the
actual boundary. From the frames in Figure 6.10, it is clear that the agents
can adapt as ∂Q changes.

6.5 NOTES

For a discussion of hybrid systems we refer to van der Schaft and Schumacher
(2000). Other relevant references include Lygeros et al. (2003), Goebel et al.
(2004), and Sanfelice et al. (2007).

Many methods are currently available (Mehaute et al., 1993) for the ap-
proximation of planar curves; this fact is largely motivated by computational
and signal-processing applications. Among them, the use of interpolated
curves is a standard and important approach. In their most simple version,
interpolations provide polygonal approximations of curves, with generaliza-
tions that make use of splines, or combinations of functions in a certain basis.
In particular, the problem of characterizing the polygons that optimally ap-

26

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 6: Boundary estimation and tracking

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Initial Configuration

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t = 50 sec

−2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
t = 100 sec

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Configuration

Figure 6.10 The Approximate Estimate and Balancing Law for a time-varying
boundary: the configuration of the agents (drawn as triangles) and inter-
polation points at time instants 0, 50, 100, and 200 seconds. The last figure
also shows the approximating polygon.

proximate a closed, convex body is a classical one; see the survey by Gruber
(1983). In particular, the asymptotic formula in Lemma 6.5 was extended
in (Gruber, 1983) to higher dimensions in terms of the Gauss curvature.

Boundary estimation and tracking is useful is numerous applications such
as the detection of harmful algal blooms (Marthaler and Bertozzi, 2003;
Bertozzi et al., 2004), oil spills (Clark and Fierro, 2007), and fire contain-
ment (Casbeer et al., 2005, 2006). Marthaler and Bertozzi (2003) adopt the
so-called “snake algorithm” (from the computer vision literature) to detect
and track the boundary of harmful algal bloom. Each agent is equipped with
a chemical sensor that is able to measure the concentration gradient and with
a communication system that is able to exchange information with a data fu-
sion center. Bertozzi et al. (2004) suggest an algorithm that requires only a
concentration sensor: the agents repeatedly cross the region boundary using
a bang–bang angular velocity controller. Clark and Fierro (2007) use a ran-
dom coverage controller, a collision avoidance controller, and a bang–bang
angular velocity controller to detect and surround an oil spill. Casbeer et al.
(2006) describe an algorithm that allows Low Altitude Short Endurance
Unmanned Vehicles (LASEUVs) to closely monitor the boundary of a fire.
Each of the LASEUVs has an infrared camera and a short-range communi-

27

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 6: Boundary estimation and tracking

cation device to exchange information with other agents, and to download
the information collected to the base station. In Zhang and Leonard (2005),
a formation of four robots tracks at unitary speed, the level sets of a field.
Their relative positions change, so that they can optimally measure the gra-
dient and estimate the curvature of the field in the center of the formation.
In Zhang and Leonard (2007), a controller is proposed to steer a group of
constant-speed robots onto an equally spaced configuration along a close
curve.

6.6 PROOFS

This section presents the main result of the chapter on the correctness of
Theorem 6.12. For the sake of completeness, we review first some notations
and main concepts for Input-to-State-Stability (ISS) of discrete-time sys-
tems, as introduced in Angeli (1999), Jiang and Wang (2001), and Angeli
(1999); Sontag (2008). We then make use of these to prove the result of
Theorem 6.12.

6.6.1 Review of ISS concepts

A function γ : R≥0 → R≥0 is a K-function if it is continuous, strictly
increasing, and γ(0) = 0. A function β : R≥0×R≥0 → R≥0 is a KL-function
if, for each t ∈ R≥0, the function s 7→ β(s, t) is a K-function, and for each
s ∈ R≥0, t 7→ β(s, t) is decreasing and β(s, t) → 0 as t → +∞.

Consider the discrete-time nonlinear system

x(ℓ + 1) = f(x(ℓ), u(ℓ)), (6.6.1)

where ℓ takes values in Z≥0, x takes values in R
n, and u takes values in R

m.
We assume that f : Z≥0 × R

n × R
m → R

n is continuous. In what follows,
we let ‖u‖2,∞ = sup{‖u(ℓ)‖2 | ℓ ∈ Z≥0} ≤ +∞.

Definition 6.14 (Input-to-state stability). The system (6.6.1) is input-
to-state stable (ISS) if there exist a KL-function β and a K-function γ such
that, for each initial condition x0 ∈ R

n at time ℓ0 ∈ Z≥0 and for each
bounded input u : Z≥0 → R

m, the system evolution x satisfies, for each
ℓ ≥ ℓ0,

‖x(ℓ)‖2 ≤ β(‖x0‖2, ℓ − ℓ0) + γ(‖u‖2,∞). •

Definition 6.15 (ISS-Lyapunov function). A function V : R
n → R≥0

is an ISS-Lyapunov function for system (6.6.1) if:

(i) it is continuously differentiable;

28

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 6: Boundary estimation and tracking

(ii) there exist K∞-functions, α1, α2, such that α1(‖x‖2) ≤ V (x) ≤
α2(‖x‖2); and

(iii) there exist a K∞-function α3 and a K-function σ such that

V (f(x, u)) − V (x) ≤ −α3(‖x‖2) + σ(‖u‖2). •

We refer to Jiang and Wang (2001) for a proof of the following result.

Theorem 6.16 (ISS and Lyapunov functions). System (6.6.1) is ISS
if and only if it admits an ISS-Lyapunov function.

6.6.2 Proof of Theorem 6.12

Proof. In the interest of brevity, we prove only the statements that pertain
to the boundary estimation task Tε-bndry, that is, to the task

∣

∣

∣
Dλ(q

[i]
α−1, q

[i]
α ) −Dλ(q[i]

α , q
[i]
α+1))

∣

∣

∣
< ε,

for all α ∈ {1, . . . , nip} and i ∈ I. We refer to Susca et al. (2008) for the
proof of the statements regarding the agent equidistance task.

We begin our analysis with the case of a single robot, that is, we con-
sider the Estimate Update and Balancing Law algorithm, and we
first consider the case of a time-invariant boundary with exact path rep-
resentation and with no approximations in any computation. Define the
shorthand Dα = Dλ(qα, qα+1), for α ∈ {1, . . . , nip}, and the positive vector
D = (D1, . . . ,Dnip

) ∈ R
nip

>0 . We now characterize how the vector D changes
after one application of the state-transition function with counter nxt in
the Single-Robot Estimate Update Law. We refer to an application
of the state-transition function as a projection-and-placement event. Be-
cause the boundary is time-invariant, the projection operation (performed
by the function perp-proj) leaves the interpolation point qnxt unchanged.
Furthermore, as discussed in Remark 6.7, the placement operation (per-
formed by the function cyclic-balance) modifies the interpolation point
qnxt−1 so that

[

Dnxt−2

Dnxt−1

]+

=
1

4

[

3 1
1 3

] [

Dnxt−2

Dnxt−1

]

,

where we adopt the shorthand D+
α = Dλ(q+

α , q+
α+1), for α ∈ {1, . . . , nip}. For
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nxt ∈ {1, . . . , nip}, define Anxt ∈ R
nip×nip by

(Anxt)jk =











3/4, if (j, k) equals (nxt− 1, nxt− 1) or (nxt− 2, nxt− 2),

1/4, if (j, k) or (j, k) equals (nxt− 1, nxt− 2),

δjk, otherwise

and define the undirected graph Gnxt with vertices {1, . . . , nip} and with the
single edge (nxt− 1, nxt− 2). In summary, the matrix Anxt determines the
change of state D+ = AnxtD when a projection-and-placement event takes
place with counter nxt and its associated graph is Gnxt.

Because the boundary has finite length and the agent moves at lower-
bounded speed, an infinite number of projection-and-placement events take
place for each interpolation point. After a re-parametrization of time, let
ℓ ∈ N denote the times at which projection-and-placements events take place
and let nxt(ℓ) ∈ {1, . . . , nip} denote the index corresponding to the event
taking place at time ℓ. At each time ℓ ∈ N, we write

D(ℓ) = Anxt(ℓ)D(ℓ − 1). (6.6.2)

Next, note that Anxt(ℓ), for ℓ ∈ N, is a non-degenerate sequence of symmet-
ric and doubly stochastic matrices. Additionally, note that the undirected
graph ∪τ≥ℓGnxt(τ) is connected. Therefore, by Theorem 1.65 and Corol-
lary 1.70, we know that, for all α ∈ {1, . . . , nip},

lim
ℓ→+∞

Dα(ℓ) =
1

nip

nip
∑

α=1

Dα(0) =
1

nip

(

total pseudodistance length of ∂Q
)

.

This proves that the interpolation points become equally spaced along ∂Q
with respect to pseudodistance and that the boundary estimation task is
achieved in the time-invariant case. In other words, this concludes the proof
of the boundary estimation part of statement (i) for a single robot in The-
orem 6.12.

Next, we consider the Cooperative Estimate Update Law for net-
works of n ≥ 2 agents. Each agent has maintains a local copy of the
pseudodistance vector and of the interpolation points (which always take
value in ∂Q because the boundary is time-invariant). Specifically, for i ∈

{1, . . . , n}, agent i maintains vector D[i] and interpolation points q
[i]
α , for

α ∈ {1, . . . , nip}. We define the aggregate pseudodistance vector D as fol-
lows: we let Dα equal the most recently updated element of the vector

{D
[1]
α , . . . ,D

[n]
α }, that is, the pseudodistance between the most recently up-

dated interpolation points q
[i]
α and q

[i]
α+1, for i ∈ {1, . . . , n}. As before, after

a re-parametrization of time, let ℓ ∈ N denote the times at which projection-
and-placements events take place (independently of which agent i executes
the event) and let nxt(ℓ) ∈ {1, . . . , nip} denote the index corresponding to
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the event taking place at time ℓ (independently of which agent i executes the
event). Note that when agent i updates the interpolation points qnxt(ℓ)−1

and qnxt(ℓ)−2, agent i then transmits the updated points to its immediately
following agent i − 1, so that the processor state of agent i − 1 contains
the correct updated information. Also note that since the boundary is time-
invariant, the updated interpolation points belong to the trajectory path[i−1]

that agent i−1 maintains in its memory: this fact guarantees that agent i−i
can properly perform the cyclic-balance operation. In summary, equa-
tion (6.6.2) is the correct model not only for the Single-Robot Estimate

Update Law but also for the Cooperative Estimate Update Law.
This concludes the proof of the boundary estimation part of statement (i)
for n ≥ 2 robots in Theorem 6.12.

Let us now relax the assumption on the boundary and consider a time-
varying t 7→ ∂Q(t); as before, we first consider the case of a single robot. We
assume that pseudodistances between interpolation points along the agent
path curve are computed exactly. By assumption, the boundary ∂Q varies
in a continuously differentiable way and slowly in time and, therefore, the
projection of the interpolation points is well defined and unique. For the
case of a time-varying boundary, the state trajectory in continuous time
is a curve of the form D : R≥0 → R

nip defined as follows. Note that, in
general, the interpolation points lie outside ∂Q at almost all times, and
therefore it makes no sense to define Dα as the pseudodistance from point
qα to qα+1 along ∂Q. Rather, we give the following definition: D is the
vector of pseudodistances computed by the robot along the curve path. As
a consequence, the state trajectory D is constant for almost all times and it
changes only at projection-and-placement events. Specifically, let ℓ denote
the time at which a projection-and-placements event takes place with cor-
responding index nxt(ℓ) ∈ {1, . . . , nip}. At time ℓ, the Single-Robot Es-

timate Update Law computes new values for the pseudodistances Dnxt−2

and Dnxt−1 based on the processor state of the agent (i.e., based on the
interpolation points and the path variable); these values are the new values
of the state D. Because the boundary has upper-bounded length uniformly
in time and because the agent moves at constant speed, an infinite number
of projection-and-placement events takes place for each interpolation point
and the duration of time between two consecutive events is uniformly upper
bounded. Given this fact, we may let ℓ ∈ N serve as index for all projection-
and-placement times. Clearly, if the boundary does not vary with time, then
the transition D(ℓ) = Anxt(ℓ)D(ℓ−1) describes the projection-and-placement
event at instant ℓ. Because, instead, the boundary is time-varying, we model
the change in D due to the boundary motion by

D(ℓ) = Anxt(ℓ)

(

D(ℓ − 1) + U(ℓ)
)

, (6.6.3)

where U(ℓ) ∈ R
nip is a disturbance. By design, U(ℓ) is nonzero only on
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components (nxt(ℓ) − 1) and (nxt(ℓ) − 2) of D. By the assumptions that
the boundary varies in a continuously differentiable way and slowly with
time, and that its length is upper bounded, we know that U is vanishing in
the rate of change of the boundary. Finally, define the disagreement vector
ℓ → d(ℓ) ∈ span{1nip

}⊥ by

d(ℓ) = D(ℓ) −
1T

nip
D(ℓ)

nip
1nip

. (6.6.4)

From equation (6.6.3) and from the fact that Anxt(ℓ) is doubly stochastic,
the update law for d is

d(ℓ) = Anxt(ℓ)d(ℓ − 1) + u(ℓ), ℓ ∈ N, (6.6.5)

where u(ℓ) = U(ℓ) − 1
nip

1T
nip

U(ℓ)1nip
.

Equation (6.6.5) is the correct update equation even in the case of n ≥ 2
robots moving along a time-varying boundary. This fact is a consequence
of the two-hop separation assumption (see Definition 6.10). Indeed, as ex-
plained in Remarks 6.11, the inequality nxt[i−1] ≤ nxt[i] − 2 guarantees
that each robot can correctly perform each projection-and-placement event.
Given the sequence ℓ ∈ N, define a new sequence ℓk ∈ N, for k ∈ N, as fol-
lows: set ℓ1 = 1, assume without loss of generality that agent 1 is the agent
executing the first projection-and-placement event with index nxt(1), and let
ℓk ≥ 2 be the k-th time when agent 1 performs the projection-and-placement
event with same index nxt(1). Reasoning about the possible positions of all
agents at time ℓk−1 and ℓk, one can see that ℓk − ℓk−1 ≤ 2n · nip. Define
sequence Aℓk

∈ R
nip×nip , for k ∈ N, by A(1) = Anxt(1) and

A(ℓk) = Anxt(ℓk) · · ·Anxt(ℓk−1+2)Anxt(ℓk−1+1), for k ≥ 2.

By Exercise E1.17, each matrix A(ℓk) is doubly stochastic and irreducible,
because it is the product of doubly stochastic matrices and because the
union of the undirected graphs associated with the matrices defining A(ℓk)
is connected. By definition, equation (6.6.5) becomes, for k ∈ N,

d(ℓk) = A(ℓk)d(ℓk−1) +

ℓk
∑

ℓ=ℓk−1+1

Anxt(ℓk) · · ·Anxt(ℓ+1)u(ℓ)

= A(ℓk)d(ℓk−1) + B(ℓk)ustacked(ℓk), (6.6.6)

where the vector ustacked(ℓk) contains all vectors u(ℓk−1 +1), . . . ,u(ℓk), and
the matrix B(ℓk) is defined in the trivial corresponding way.

Define V : R
nip → R≥0 by V (x) = xT x and adopt this function as a
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candidate ISS-Lyapunov function for system (6.6.6). We compute

V (d(ℓk+1)) − V (d(ℓk)) = −d(ℓk)
T R(ℓk)d(ℓk)

+ uT
stacked(ℓk)ustacked(ℓk) + 2uT

stacked(ℓk)A(ℓk)d(ℓk),

where R(ℓk) = Inip
−A(ℓk)

TA(ℓk). Because A(ℓk) is doubly stochastic and
irreducible, we know (from Exercise E1.5) that R(ℓk) is positive semidefinite
and that its simple eigenvalue 0 is associated with the eigenvector 1nip

.

This fact implies that the quantity −xT R(ℓk)x is strictly negative for all
x 6∈ span{1nip

}⊥. To upper bound this quantity by a negative number, we
let As be a generic element of the set of all the possible matrices A(ℓk); such
matrices are the iterated products of at most 2n · nip matrices of the form
Anxt, where each matrix Anxt, nxt ∈ {1, . . . , nip}, appears at least once.
Define the set of nonzero eigenvalues of As by

Ss = {λ ∈ R | det
(

λInip
− (AT

s As − Inip
)
)

= 0} \ {0}

and define the eigenvalue with smallest magnitude among all matrices by
r = mins min{|λ| | λ ∈ Ss}. Note that r > 0, because we are considering a
finite set of matrices. We can then write

V (d(ℓk + 1)) − V (d(ℓk)) ≤ −α3(‖d(ℓk)‖) + σ(‖ustacked(ℓk)‖),

where α3(‖d‖) = 1
2r‖d‖2 and σ(‖ustacked‖) = (2

r + 1)‖ustacked‖
2. By Def-

inition 6.15, the system described by (6.6.6) is input-to-state stable. The
input-to-state stability implies the existence of a positive ε, as in the bound-
ary estimation part of statement (ii) for n ≥ 2 robots in Theorem 6.12. �

6.7 EXERCISES

E6.1 (Alternative expression of the symmetric difference). Show that the sym-
metric difference δS between two compact bodies C, B ⊆ R

3 can be alternatively
expressed as

δS(C, B) = µ(C \ B) + µ(B \ C).

Hint: Use the expressions C = (C \ B) ∪ (C ∩ B) and B = (B \ C) ∪ (C ∩ B).

E6.2 (Characterization of critical inscribed polygons for the symmetric dif-
ference). Prove Lemma 6.4. Also, show that not all critical configurations are
optimal. Specifically, consider the convex body and the gray inscribed triangle
depicted in Figure E6.1(a). Show that the gray triangle is a saddle configuration
for δS by establishing that modifications of the triangle as in Figure E6.1(b) de-
crease its area (and hence increase δS), whereas modifications of the gray triangle
as in Figure E6.1(c) increase its area (and hence decrease δS).

E6.3 (The “n-bugs problem” and cyclic interactions: cont’d). Consider n
robots at counterclockwise-ordered positions θ1, . . . , θn following the cyclic bal-
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(a) (b) (c)

Figure E6.1 An illustration of the fact that polygons satisfying (6.2.1) may not be optimal
for δS .

ancing system described in Exercise E1.30, with parameter k = 1/4:

θi(ℓ + 1) =
1

4
θi+1(ℓ) +

1

2
θi(ℓ) +

1

4
θi−1(ℓ), ℓ ∈ Z≥0.

Show that

distcc
`

θi−1(ℓ), θi(ℓ + 1)
´

=
3

4
distcc

`

θi−1(ℓ), θi(ℓ)
´

+
1

4
distcc

`

θi(ℓ), θi+1(ℓ)
´

.

E6.4 (ISS properties of averaging algorithms with inputs and outputs). This
is a guided exercise to prove some of the ISS properties of averaging algorithms
with inputs and outputs. An averaging algorithm with inputs associated to a
sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} ⊆ R

n×n, a sequence of input
gains {D(ℓ) | ℓ ∈ Z≥0} ⊆ R

n×k, and a sequence of disturbances u : Z≥0 → R
k is

the discrete-time dynamical system

x(ℓ + 1) = F (ℓ)x(ℓ) + D(ℓ)u(ℓ), ℓ ∈ Z≥0. (E6.1)

A natural question to ask is how the evolution of the trajectory x is affected by
the noise u. Let us address this in the following. Define the matrix

P =

2

6

6

6

4

1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
. . .

...
0 . . . 0 1 −1

3

7

7

7

5

∈ R
(n−1)×n.

Note that, with the notation of Exercise E1.7, one can write

T =

»

P
1
n
1T

n

–

.

Define the following output for the dynamical system (E6.1):

yerr = Px =

0

B

@

x1 − x2

...
xn−1 − xn

1

C

A
∈ R

n−1.
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This output can be thought of as an error signal that quantifies the disagreement
among the components of the state. Now, consider the change of variables

z = Tx =

„

yerr

xave

«

,

where xave ∈ R is the average of the components of x.
Verify that system (E6.1) reads in the new variable z as

z(ℓ + 1) = TF (ℓ)T−1 z(ℓ) + TD(ℓ)u(ℓ).

The previous result is a formal statement of the following intuition. Because of
the definition of z and of the special structure of {F (ℓ) | ℓ ∈ Z≥0}, the variable
xave plays no role in the evolution of yerr. Accordingly, we define the error system

by
yerr(ℓ + 1) = Ferr(ℓ)yerr(ℓ) + Derr(ℓ)u(ℓ), (E6.2)

and the average system by

xave(ℓ + 1) = xave(ℓ) + cerr(ℓ)yerr(ℓ) + Dave(ℓ)u(ℓ), (E6.3)

for Derr(ℓ) = PD(ℓ) and Dave(ℓ) = 1
n
1T

nD(ℓ).
Assume now that:

(a) The sequence {F (ℓ) | ℓ ∈ Z≥0} is a non-degenerate sequence of stochastic
matrices.

(b) For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated with F (ℓ).
There exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0 the digraph
G(ℓ + 1)∪ . . .∪G(ℓ + δ) contains a globally reachable node.

(c) The induced norm of {D(ℓ) | ℓ ∈ Z≥0}, for ℓ ∈ Z≥0, is uniformly bounded.
Prove that, under assumptions (a), (b) and (c) on the averaging system with

inputs, the following equivalent statements hold:

(i) the system (E6.1) with output yerr is IOS; and

(ii) the error system (E6.2) is ISS.
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evolution, 9

event-driven
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polygon
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problem
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processor
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state

set, 6

set
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7
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Symbol Index

δS : symmetric difference, 10

Dcurvature(qi, qj) : curvature distance between qi and qj , 12

Darc(qi, qj) : arc-length distance between qi and qj , 12

Dλ(qi, qj) : pseudo-distance between qi and qj , 13

ECC : event-driven control and communication law, 6

msg-gen : message-generation function, 6

msg-rec : message-reception function, 6

msg-trig : message-trigger function, 6

stf-trig : state-transition trigger function, 7

Tε-bndry : boundary estimation task, 14

Tε-eqdstnc : agent equidistance task, 14
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