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Chapter Five

Deployment

The aim of this chapter is to present various solutions to the deployment
problem. The deployment objective is to optimally place a group of robots
in an environment of interest. The approach taken here consists of identify-
ing aggregate functions that measure the quality of deployment of a given
network configuration and designing control and communication laws that
optimize these measures.

The variety of algorithms presented in the chapter stems from two causes.
First, different solutions arise from the interplay between the spatially dis-
tributed character of the coordination algorithms and the limited sensing
and communication capabilities of the robotic network. As an example, dif-
ferent solutions are feasible when agents have range-limited communication
capabilities or when agents have omnidirectional line-of-sight visibility sen-
sors. Second, there is no universal notion of deployment. Different scenarios
give rise to different ways of measuring what constitutes a good deploy-
ment. As an example, a robotic network might follow a different strategy
depending on whether or not it has information about areas of importance
in the environment: in the first case, by incorporating the knowledge on the
environment; or in the second, by assuming a worst-case scenario, where
important things can be happening precisely at the furthest-away location
from the network configuration.

Our exposition here follows Cortés et al. (2004, 2005), and Cortés and
Bullo (2005). Our approach makes extensive use of the multicenter functions
from geometric optimization introduced in Chapter 2. It is not difficult to
synthesize continuous-time gradient ascent algorithms using the smoothness
results presented in Section 2.3, and characterize their asymptotic conver-
gence properties (as we ask the reader to do in Exercises E2.14 and E2.15).
However, following the robotic network model of Chapter 3, we are interested
in discrete-time algorithms. In general, gradient ascent algorithms imple-
mented in discrete time require the selection of appropriate step sizes that
guarantee the monotonic evolution of the objective function. This is usually
accomplished via line search procedures, (see e.g., Bertsekas and Tsitsiklis,
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1997). In this chapter, we show that the special geometric properties of the
multicenter functions and their gradients allow us to identify natural target
locations for the robotic agents without the need to perform any line search.

The chapter is organized as follows. In the first section, we formally de-
fine the notions of deployment via task maps and multicenter functions. In
the next section, we present motion coordination algorithms to achieve each
deployment task. Specifically, we introduce control and communication laws
based on various notions of geometric centers. We present convergence and
complexity results for the proposed algorithms, along with simulations illus-
trating our analysis. The third section presents various simulations of the
proposed motion coordination algorithms. We end the chapter with three
sections on, respectively, bibliographic notes, proofs of the results presented
in the chapter, and exercises. Throughout the exposition, we make extensive
use of proximity graphs, multicenter functions, and geometric optimization.
The convergence and complexity analyses are based on the LaSalle Invari-
ance Principle and on linear dynamical systems defined by Toeplitz matrices.

5.1 PROBLEM STATEMENT

Here, we introduce various notions of deployment. We assume that S =
({1, . . . , n},R, Ecmm) is a uniform robotic network, where the robots’ physi-
cal state space is a (simple convex) polytope Q ⊂ R

d that describes an envi-
ronment of interest. We define our notions of deployment relying upon the
geometric optimization problems discussed in Section 2.3. Loosely speak-
ing, we aim to deploy the robots in such a way as to optimize one of the
multicenter functions, such as the expected-value multicenter function Hexp,
the disk-covering multicenter function Hdc, or the sphere-packing multicen-
ter function Hsp. Indeed, these functions can be interpreted as quality-of-
service measures for different scenarios. In order to formally define the task
maps encoding the deployment objective, we take the following approach:
since the optimizers of these measures are critical points, and these critical
points are network configurations that make the gradients vanish, we define
the task map to take the true value at these configurations.

5.1.1 The distortion, area, and mixed distortion-area deployment tasks

In this section, we define various notions of deployment originating from the
expected-value multicenter function Hexp. Recall the concepts of density
and performance introduced in Section 2.3. Let φ : R

d → R>0 be a density
function on R

d with support Q. One can interpret φ as a function measur-
ing the probability that some event takes place over the environment. Let
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f : R≥0 → R be a performance, that is, a non-increasing and piecewise dif-
ferentiable function possibly with finite jump discontinuities. Performance
functions describe the utility of placing a robot at a certain distance from
a location in the environment. Here, we will restrict our attention to the
cases f(x) = −x2 (distortion problem), f(x) = 1[0,a](x), a ∈ R>0 (area

problem), and f(x) = −x2 1[0,a](x) − a2 · 1]a,+∞[(x), with a ∈ R>0 (mixed
distortion-area problem).

For ε ∈ R>0, we define the ε-distortion deployment task Tε-distor-dply :
Qn → {true, false} by

Tε-distor-dply(P ) =

{

true, if
∥

∥p[i] − CMφ(V [i](P ))
∥

∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where V [i](P ) denotes the Voronoi cell of robot i, and CMφ(V [i](P )) denotes
its centroid computed according to φ (see Section 2.1). In other words,
Tε-distor-dply is true for those network configurations where each robot is
sufficiently close to the centroid of its Voronoi cell. According to Theo-
rem 2.16, centroidal Voronoi configurations correspond to the critical points
of the multicenter function Hdist.

For r, ε ∈ R>0, we define the ε-r-area deployment task Tε-r-area-dply : Qn →
{true, false} as follows: we define Tε-r-area-dply(P ) = true whenever

∥

∥

∥

∫

V [i](P )∩ ∂B(p[i], r

2
)
nout(q)φ(q)dq

∥

∥

∥

2
≤ ε, i ∈ {1, . . . , n},

and we define Tε-r-area-dply(P ) = true otherwise. Here, the symbol nout

denotes the outward normal vector to B(p[i], r
2). In other words, Tε-r-area-dply

is true for those network configurations where each agent is sufficiently close

to a local maximum for the area of its r
2 -limited Voronoi cell V

[i]
r

2

(P ) =

V [i](P )∩B(p[i], r
2) at fixed V [i](P ). According to Theorem 2.16, the r

2 -
limited area-centered Voronoi configurations correspond to the critical points
of the multicenter function Harea, r

2
.

Finally, for r, ε ∈ R>0, we define the ε-r-distortion-area deployment task
Tε-r-distor-area-dply : Qn → {true, false} by

Tε-r-distor-area-dply(P )

=

{

true, if
∥

∥p[i] − CMφ(V
[i]
r

2

(P )))
∥

∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.

In other words, Tε-r-distor-area-dply is true for those network configurations
where each robot is sufficiently close to the centroid of its r

2 -limited Voronoi
cell. According to Theorem 2.16, r

2 -limited centroidal Voronoi configurations
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are the critical points of the multicenter function Hdist-area, r

2
.

5.1.2 The disk-covering and sphere-packing deployment tasks

Here, we provide two additional notions of deployment based on the multi-
center functions Hdc and Hsp, respectively.

For ε ∈ R>0, the ε-disk-covering deployment task Tε-dc-dply : Qn →
{true, false} is defined as

Tε-dc-dply(P ) =

{

true, if ‖p[i] − CC(V [i](P ))‖2 ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

where CC(V [i](P )) denotes the circumcenter of the Voronoi cell of robot i.
In other words, Tε-dc-dply is true for those network configurations where each
robot is sufficiently close to the circumcenter of its Voronoi cell. Accord-
ing to Section 2.3.2, circumcenter Voronoi configurations are, under certain
technical conditions, critical points of the multicenter function Hdc.

For ε ∈ R>0, the ε-sphere-packing deployment task Tε-sp-dply : Qn →
{true, false} is defined as

Tε-sp-dply(P ) =

{

true, if dist2(p
[i], IC(V [i](P ))) ≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where IC(V [i](P )) denotes the incenter set of the Voronoi cell of robot i. In
other words, Tε-sp-dply is true for those network configurations where each
robot is sufficiently close to the incenter set of its Voronoi cell. According
to Section 2.3.3, incenter Voronoi configurations are, under certain technical
conditions, critical points of the multicenter function Hsp.

5.2 DEPLOYMENT ALGORITHMS

In this section, we present algorithms that can be used by a robotic network
to achieve the various notions of deployment introduced in the previous
section. Throughout the discussion, we use the uniform networks SD and
SLD of locally connected first-order agents with the Delaunay and r-limited
Delaunay communication, respectively, introduced in Example 3.4, and the
uniform network Svehicles of planar vehicle robots with Delaunay commu-
nication introduced in Example 3.5. The networks SD and SLD evolve in
a polytope Q ⊂ R

d, while the network Svehicles evolves in a convex poly-
gon Q ⊂ R

2. For all the laws presented in this chapter, we assume that no
two agents are initially at the same position, i.e., we assume that the initial
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network configuration always belongs to Qn \ Scoinc, where n denotes the
number of robots.

All the laws presented in this chapter share a similar structure, which we
loosely describe as follows:

[Informal description] In each communication round, each agent
performs the following tasks: (i) it transmits its position and
receives its neighbors’ positions; (ii) it computes a notion of the
geometric center of its own cell, determined according to some
notion of partition of the environment. Between communication
rounds, each robot moves toward this center.

The notions of geometric center and of partition of the environment are
different for each algorithm, and specifically tailored to the deployment task
at hand. Let us examine them for each case.

5.2.1 Geometric-center laws

We present control and communication laws defined on the network SD.
All the laws share in common the use of the notion of Voronoi partition of
the environment Q. We first introduce the Vrn-cntrd law, which makes
use of the notion of the centroid of a Voronoi cell. We then propose two
sets of variations to this law. First, we present the Vrn-cntrd-dynmcs

law, which implements the same centroid strategy on a network of planar
vehicles. Second, we introduce the Vrn-crcmcntr and Vrn-ncntr laws,
which instead make use of the notions of the circumcenter and incenter of a
Voronoi cell, respectively.

5.2.1.1 Voronoi-centroid control and communication law

Here, we define the Vrn-cntrd control and communication law for the
network SD, which we denote by CCVrn-cntrd. This law was introduced
by Cortés et al. (2004). We formulate the algorithm using the description
model of Chapter 3. The law is uniform, static, and data-sampled, with
standard message-generation function. (Recall from Definition 3.9 and Re-
mark 3.11 that a control and coordination law (1) is uniform if processor
state set, message-generation, state-transition and control functions are the
same for each agent; (2) is static if the processor state set is a singleton, i.e.,
the law requires no memory; (3) is data-sampled if if the control functions
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are independent of the current position of the robot and depend only upon
the robots position at the last sample time.)

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-cntrd

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CMφ(V ) − p

Recall that Hp,x is the half-space of points q in R
d with the property that

‖q−p‖2 ≤ ‖q−x‖2. Since the centroid of a Voronoi cell belongs to the interior
of the cell itself, if the robots are at distinct locations at any one time, then
they are at distinct locations after one step. Therefore, the set Qn \ Scoinc

is positively invariant with respect to the control and communication law
CCVrn-cntrd. Moreover, note that the direction of motion specified by the
control function ctl coincides with the gradient of the distortion multicenter
function Hdist. Hence, this law prescribes a gradient ascent strategy for each
robot that, as we will show later, monotonically optimizes Hdist.

5.2.1.2 Voronoi-centroid law on planar vehicles

Next, we provide an interesting variation of the Vrn-cntrd law defined
on the network Svehicles. Accordingly, we adopt the continuous-time motion
model for the unicycle vehicle:

ṗ[i](t) = v[i](t) (cos(θ[i](t)), sin(θ[i](t))),

θ̇[i](t) = ω[i](t), i ∈ {1, . . . , n}, (5.2.1)

where we assume that forward and angular velocities are upper bounded.
We refer to this control and communication law as the Vrn-cntrd-dynmcs

law, and we denote it by CCVrn-cntrd-dynmcs. The law was introduced
by Cortés et al. (2004) and is uniform and static, but not data-sampled:

Robotic Network: Svehicles with motion model (5.2.1) in Q,
with absolute sensing of own position
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Distributed Algorithm: Vrn-cntrd-dynmcs

Alphabet: A = R
2 ∪{null}

function msg((p, θ), i)

1: return p

function ctl((p, θ), (psmpld, θsmpld), y)

1: V := Q ∩
(
⋂{Hpsmpld,prcvd

| for all non-null prcvd ∈ y}
)

2: v := kprop|(cos θ, sin θ) · (p − CMφ(V ))|
3: ω := 2kprop arctan

(− sin θ, cos θ) · (p − CMφ(V ))
(cos θ, sin θ) · (p − CMφ(V ))

4: return (v, ω)

This algorithm is illustrated in Figure 5.1.

Figure 5.1 An illustration of the execution of Vrn-cntrd-dynmcs. Each row of plots
represents an iteration of the law. In each round, each agent first computes its
Voronoi cell, then determines the centroid, and then moves towards it.

In the above description, we require the feedback gain kprop to belong
to the interval ]0, 1

max{π,diam(Q)} ]. This guarantees that the controls v, ω in

the definition of ctl belong to the closed interval [−1, 1], and are therefore,
implementable in the unicycle and the differential drive robot models.

The definition of the control function ctl is based on the stabilizing feed-
back law of Astolfi (1999). When following this control law, the robot posi-
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tion p is guaranteed to monotonically approach the target position CMφ(V ).
Unfortunately, it is a only conjecture that this controller (or an appropri-
ately modified controller) does not lead two agents to the same positions
(indeed, it is possible that an agent move outside its Voronoi cell). Under
this conjecture, the Vrn-cntrd-dynmcs law enjoys the same convergence
guarantees as the Vrn-cntrd law, that are described in Theorem 5.5.

Remark 5.1 (Vehicles with general dynamics). The general idea of
moving towards the centroid of a robot’s Voronoi region can be implemented
over a network of vehicles with arbitrary dynamics, as long as these vehicles
are capable of strictly decreasing the distance to any specified position in Q
in the time intervals between communication rounds while remaining inside
their Voronoi cells. •

5.2.1.3 Voronoi-circumcenter control and communication law

Here, we define the Vrn-crcmcntr control and communication law for the
network SD, which we denote by CCVrn-crcmcntr. This law was introduced
by Cortés and Bullo (2005). The law is uniform, static, and data-sampled,
with standard message-generation function:

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-crcmcntr

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CC(V ) − p

Note that the circumcenter of a Voronoi cell belongs to the cell itself
and therefore, robots evolving under the control and communication law
CCVrn-crcmcntr never leave the set Q. However, in general the set Qn \Scoinc

is not positively invariant, see Exercise E5.1. From a geometric perspective,
this law makes sense as a strategy to optimize the disk-covering multicenter
function Hdc. From Section 2.1.3, for fixed V , the circumcenter location
minimizes the cost given by the maximum distance to all points in V . From
Section 2.3.2, Hdc can be expressed (2.3.12) as the maximum over the net-
work of each robot’s individual cost.
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5.2.1.4 Voronoi-incenter control and communication law

Here, we define the Vrn-ncntr control and communication law for the
network SD, which we denote by CCVrn-ncntr. This law was introduced
by Cortés and Bullo (2005). The law is uniform, static, and data-sampled,
with standard message-generation function:

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-ncntr

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return x ∈ IC(V ) − p

Since the incenter set of a Voronoi cell belongs to the interior of the cell
itself, if the robots are at distinct locations at any one time, then they are
at distinct locations after one step. That is, the set Qn \ Scoinc is positively
invariant with respect to the control and communication law CCVrn-ncntr.
From a geometric perspective, this law makes sense as a strategy for op-
timizing the sphere-packing multicenter function Hsp. From Section 2.1.3,
for fixed V , the incenter locations maximize the cost given by the mini-
mum distance to the boundary of V . From Section 2.3.3, Hsp can be ex-
pressed (2.3.15) as the minimum over the network of each robot’s individual
cost.

Remark 5.2 (“Move-toward-furthest-vertex” and “away-from-clos-
est-neighbor” coordination algorithms). Consider the coordination al-
gorithm where, at each time step, each robot moves towards the furthest-
away vertex of its own Voronoi cell. Alternatively, consider the coordina-
tion algorithm where, at each time step, each robot moves away from its
closest neighbor. Both coordination algorithms define maps which depend
discontinuously on the robots’ positions. Cortés and Bullo (2005) study
the asymptotic behavior of these laws, and show that the “move-toward-
furthest-vertex” algorithm monotonically optimizes the multicenter function
Hdc, while the “away-from-closest-neighbor” algorithm monotonically opti-
mizes the multicenter function Hsp. •

13

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 5: Deployment

5.2.2 Geometric-center laws with range-limited interactions

In the following, we present two control and communication laws on the
network SLD. Both laws prescribe a geometric centering strategy for each
robot and accomplish specific forms of expected-value optimization. The
Lmtd-Vrn-nrml law optimizes the area multicenter function Harea, r

2
, while

the Lmtd-Vrn-cntrd law optimizes the mixed distortion-area multicenter
function Hdist-area, r

2
.

5.2.2.1 Limited-Voronoi-normal control and communication law

Here, we define the Lmtd-Vrn-nrml control and communication law for
the network SLD. This law was introduced by Cortés et al. (2005). The
Lmtd-Vrn-nrml law, which we denote by CCLmtd-Vrn-nrml, uses the notion
of r

2 -limited Voronoi partition inside Q. The law is uniform, static, and data-
sampled, with standard message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
with absolute sensing of own position, and
with communication range r, in Q

Distributed Algorithm: Lmtd-Vrn-nrml

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: v :=

∫

V ∩∂B(p, r

2
)
nout(q)φ(q)dq

3: λ∗ := max
{

λ
∣

∣ δ 7→
∫

V ∩B(p+δv, r

2
)
φ(q)dq is strictly increasing on [0, λ]

}

4: return λ∗v

In the above algorithm, nout denotes the outward normal vector to B(p, r
2).

Note that the direction of motion v specified by the control function ctl co-
incides with the gradient of the multicenter function Harea, r

2
. The parame-

ter λ∗ corresponds to performing a line search procedure along the direction
of the vector v.
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The control function has the property that the point p + ctl(p, y) is guar-
anteed to be in the interior of V . This can be justified by noting that for
fixed V , the gradient of the function p →

∫

V ∩B(p, r

2
) φ(q)dq at points in the

boundary of V is non-vanishing and points toward the interior of V (cf.
Exercise E2.5). As a consequence, the line search procedure terminates be-
fore reaching the boundary of V . This discussion guarantees that the set
Qn \ Scoinc is positively invariant with respect to the control and communi-
cation law CCLmtd-Vrn-nrml.

5.2.2.2 Limited-Voronoi-centroid control and communication law

Here, we define the Lmtd-Vrn-cntrd control and communication law for
the network SLD. This law was introduced by Cortés et al. (2005). The
Lmtd-Vrn-cntrd law, which we denote by CCLmtd-Vrn-cntrd, uses the no-
tion of r

2 -limited Voronoi partition inside Q and of centroid of the individual
r
2 -limited Voronoi cells. The law is uniform, static, and data-sampled, with
standard message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
with absolute sensing of own position, and
with communication range r, in Q

Distributed Algorithm: Lmtd-Vrn-cntrd

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩ B(p, r
2) ∩

(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CMφ(V ) − p

The centroid of a r
2 -limited Voronoi cell belongs to the interior of the cell

itself, and this fact guarantees that the set Qn \Scoinc is positively invariant
with respect to the control and communication law CCLmtd-Vrn-cntrd. More-
over, note that the direction of motion specified by the control function ctl
coincides with the gradient of the multicenter function Hdist-area, r

2
.

Remark 5.3 (Relative sensing version). It is possible to implement the
limited-Voronoi-normal and limited-Voronoi-centroid laws as static relative-
sensing control laws on the relative-sensing network Srs

disk. This is a conse-
quence of the fact that the r-limited Delaunay graph is spatially distributed
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over the r-disk graph (cf., Theorem 2.7(iii)). Let us present one of these
examples for completeness:

Relative Sensing Network: Srs
disk with motion model (4.1.2)

in Q, no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

environment measurement is yenv = (Qε)i ∩B(0d, r)

Distributed Algorithm: relative-sensing Lmtd-Vrn-cntrd

function ctl(y, yenv)

1: V := yenv ∩ B(0d,
r
2) ∩

(
⋂{H0d,psnsd

| for all non-null psnsd ∈ y}
)

2: return CMφ(V )

Note that only the positions of neighboring robots in the r-limited Delau-
nay graph have an effect on the computation of the set V . •

Remark 5.4 (Range-limited version of Vrn-cntrd). The Lmtd-Vrn-

nrml and Lmtd-Vrn-cntrd laws can be combined into a single control
and communication law to synthesize an algorithm that monotonically op-
timizes the function Hdist-area, r

2
,b, with b = −diam(Q)2. This law, which we

term Rng-Vrn-cntrd, is uniform, static, and data-sampled, with standard
message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position, and
with communication range r

Distributed Algorithm: Rng-Vrn-cntrd

Alphabet: A = R
d ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂

{Hp,prcvd
| for all non-null prcvd ∈ y}

)

2: v1 := 2 Aφ(V ∩ B(p, r
2))(CMφ(V ∩ B(p, r

2)) − p)

3: v2 := (diam(Q)2 − r2

4 )

∫

V ∩∂B(p, r

2
)
nout(q)φ(q)dq

4: λ∗ := max
{

λ| δ 7→ HV (p + δ(v1 + v2), B(p + δ(v1 + v2),
r

2
))

is strictly increasing on (0, λ)
}

5: return λ∗(v1 + v2)
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In the above algorithm, nout denotes the outward normal vector to B(p, r
2)

and, for a point p ∈ V and a closed ball B centered at a point in V with
radius r

2 , HV is defined as

HV (p, B) = −
∫

V ∩B

‖q − p‖2
2φ(q)dq − diam(Q)2

∫

V ∩(Q\B)
φ(q)dq.

The Rng-Vrn-cntrd law is relevant because of the following discus-
sion. Recall from Proposition 2.17 that the general mixed distortion-area
multicenter function can be used to provide constant-factor approximations
of the distortion function Hdist. As we discussed in Section 2.3.1, robots
with range-limited interactions cannot implement Vrn-cntrd because, for
a given r ∈ R>0, GD is not in general spatially distributed over Gdisk(r)
(cf., Remark 2.10). However, robotic agents with range-limited interactions
can implement the computations involved in Lmtd-Vrn-nrml and Lmtd-

Vrn-cntrd, and hence can optimize Hdist-area, r

2
,b, with b = −diamQ2.

Assuming r ≤ 2 diam(Q), it is fair to say that the above algorithm can be
understood as a range-limited version of the Vrn-cntrd law. •

5.2.3 Correctness and complexity of geometric-center laws

In this section, we characterize the convergence and complexity properties
of the geometric-center laws. The asynchronous execution of the Voronoi-
centroid control and communication law can be studied as an asynchronous
gradient dynamical system (see Cortés et al., 2004).

The following theorem summarizes the results known in the literature
about the asymptotic properties of these laws.

Theorem 5.5 (Correctness of the geometric-center algorithms).
For d ∈ N, r ∈ R>0, and ε ∈ R>0, the following statements hold for any
execution that starts from an configuration in Qn \ Scoinc:

(i) On the network SD, the law CCVrn-cntrd achieves the ε-distortion
deployment task Tε-distor-dply. Moreover, any execution of the law
CCVrn-cntrd monotonically optimizes the multicenter function Hdist.

(ii) On the network SD, any execution of the law CCVrn-crcmcntr mono-
tonically optimizes the multicenter function Hdc.

(iii) On the network SD, any execution of the law CCVrn-ncntr monoton-
ically optimizes the multicenter function Hsp.
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(iv) On the network SLD, the law CCLmtd-Vrn-nrml achieves the ε-r-area
deployment task Tε-r-area-dply. Moreover, any execution of the law
CCLmtd-Vrn-nrml monotonically optimizes the multicenter function
Harea, r

2
.

(v) On the network SLD, the law CCLmtd-Vrn-cntrd achieves the ε-r-
distortion-area deployment task Tε-r-distor-area-dply. Moreover, any
execution of CCLmtd-Vrn-cntrd monotonically optimizes the multi-
center function Hdist-area, r

2
.

The proof of this theorem is given in Section 5.5.1. The results on
CCVrn-cntrd appeared originally in Cortés et al. (2004). Note that an exe-
cution of CCVrn-cntrd can be viewed as an alternating sequence of config-
uration of points and partitions of the space, with the properties that (i)
each configuration of points corresponds to the set of centroid locations of
the immediately preceding partition in the sequence, and (ii) each partition
corresponds to the Voronoi partition determined by the immediately pre-
ceding configuration of points in the sequence. The monotonic behavior of
Hdist now follows from Propositions 2.13 and 2.14. Similar interpretations
can be given to all other laws. In particular, the monotonic behavior of Hdc

along executions of CCVrn-crcmcntr can be established via Proposition 2.19,
and the monotonic behavior of Hsp along executions of CCVrn-ncntr can be
established via Proposition 2.21. Continuous-time versions of these laws are
studied by Cortés and Bullo (2005) via nonsmooth stability analysis, where
the following convergence properties are established (recall the notion of
active and passive nodes introduced in Sections 2.3.2 and 2.3.3): all ac-
tive agents are guaranteed to asymptotically reach the circumcenter (resp.,
incenter) of their Voronoi region, whereas it is not known if the same con-
clusion holds for the passive agents. Depending on the polytope Q, there
exist circumcenter and incenter Voronoi configurations where not all agents
are active, and simulations show that in some cases the continuous-time
versions of CCVrn-crcmcntr and CCVrn-ncntr converge to them. It is an open
research question to show that CCVrn-crcmcntr and CCVrn-ncntr achieve the
ε-disk-covering deployment task Tε-dc-dply and the ε-sphere-packing deploy-
ment task Tε-sp-dply, respectively. Finally, the results on CCLmtd-Vrn-nrml

and CCLmtd-Vrn-cntrd appeared in Cortés et al. (2005).

Next, we analyze the time complexity of CCLmtd-Vrn-cntrd. We provide
complete results only for the case d = 1 and uniform density. We assume
that diam(Q) is independent of n, r, and ε.

Theorem 5.6 (Time complexity of Lmtd-Vrn-cntrd law). Assume
that the robots evolve in a closed interval Q ⊂ R, that is, d = 1, and assume
that the density is uniform, that is, φ ≡ 1. For r ∈ R>0 and ε ∈ R>0, on the
network SLD, TC(Tε-r-distor-area-dply, CCLmtd-Vrn-cntrd) ∈ O(n3 log(nε−1)).
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The proof of this result is given in Section 5.5.2 following the treatment
in Mart́ınez et al. (2007).

Remark 5.7 (Congestion effects). Interestingly, Theorem 5.6 also holds
if, motivated by wireless congestion considerations, we take the communi-
cation range r to be a monotone non-increasing function r : N → ]0, 2π[ of
the number of robotic agents n. •

5.3 SIMULATION RESULTS

In this section, we illustrate the execution of the various control and com-
munication laws introduced in this chapter.

Geometric-center algorithms for expected-value optimization

The Vrn-cntrd, Lmtd-Vrn-nrml, and Lmtd-Vrn-cntrd control and
communication laws are implemented in MathematicaR© as a library of rou-
tines and a main program running the simulation. The objective of a first
routine is to compute the r

2 -limited Voronoi partition and parameterize each
cell Vi, r

2
, i ∈ {1, . . . , n} in polar coordinates. The objective of a second rou-

tine is to compute the surface integrals on these sets and the line integrals
on their boundaries via the numerical integration routine NIntegrate. We
pay careful attention to numerical accuracy issues in the computation of the
Voronoi diagram and in the integration.

Measuring displacements in meters, we consider the polygon Q determined
by the vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6),

(2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.
The diameter of Q is diam(Q) ≈ 3.378. In all figures, the density function φ
is the sum of four Gaussian functions of the form 11 exp(6(−(x−xcenter)

2 −
(y − ycenter)

2)) and is represented by means of its contour plot. Darker-
colored areas correspond to higher values of the density function. The four
centers (xcenter, ycenter) of the Gaussian functions are the points (2.15, 0.75),
(1.0, 0.25), (0.725, 1.75) and (0.25, 0.7), respectively. The area of the polygon
is Aφ(Q) = 17.6352.

We show evolutions of (SD,Vrn-cntrd) and (SD,Vrn-cntrd-dynmcs)
in Figures 5.2 and 5.3, respectively. One can verify that the final network
configurations is a centroidal Voronoi configuration. In other words, the
task Tε-distor-dply is achieved, as guaranteed by Theorem 5.5(i) for the Vrn-

19

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 5: Deployment

cntrd algorithm. For each evolution we depict the initial positions, the
trajectories, and the final positions of all robots.

Figure 5.2 The evolution of (SD,Vrn-cntrd) with n = 20 robots. The left-hand (resp.,
right-hand) figure illustrates the initial (resp., final) locations and Voronoi par-
tition. The central figure illustrates the evolution of the robots. After 13 sec-
onds, the value of Hdist has monotonically increased to approximately −0.515.

Figure 5.3 The evolution of (SD,Vrn-cntrd-dynmcs) with n = 20 robots and with feed-
back gain kprop = 3.5. The left-hand (resp., right-hand) figure illustrates the
initial (resp., final) locations and Voronoi partition. The central figure illus-
trates the evolution of the robots. After 20 seconds, the value of Hdist has
monotonically increased to approximately −0.555.

We show an evolution of (SLD,Lmtd-Vrn-nrml) in Figure 5.4. One
can verify that the final network configuration is an r

2 -limited area-centered
Voronoi configuration. In other words, the task Tε-r-area-dply is achieved, as
guaranteed by Theorem 5.5(ii).

Figure 5.4 The evolution of (SLD,Lmtd-Vrn-nrml) with n = 20 robots and r = 0.4. The
left-hand (resp., right-hand) figure illustrates the initial (respectively, final)
locations and Voronoi partition. The central figure illustrates the evolution
of the robots. The r

2
-limited Voronoi cell of each robot is plotted in light

gray. After 36 seconds, the value of Harea, r
2

has monotonically increased to
approximately 14.141.
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We show an evolution of (SLD,Lmtd-Vrn-cntrd) in Figure 5.5. One can
verify that the final network configuration is a r

2 -limited centroidal Voronoi
configuration. In other words, the task Tε-r-distor-area-dply is achieved, as
guaranteed by Theorem 5.5(iii).

Figure 5.5 The evolution of (SLD,Lmtd-Vrn-cntrd) with n = 20 robots and r = 0.4.
The left-hand (resp., right-hand) figure illustrates the initial (resp., final) lo-
cations and Voronoi partition. The central figure illustrates the evolution of
the robots. The r

2
-limited Voronoi cell of each robot is plotted in light gray.

After 90 seconds, the value of Hdist-area, r
2

reaches approximately −0.386.

We show an evolution of (SLD,Rng-Vrn-cntrd) in Figure 5.6. One can
verify that the final network configuration corresponds to a critical point
of the mixed distortion-area multicenter function Hdist-area, r

2
,b, with b =

−diam(Q)2 (see Exercise E5.4).

Figure 5.6 The evolution of (SLD,Rng-Vrn-cntrd) with n = 20 robots and r = 0.47.
The left-hand (resp., right-hand) figure illustrates the initial (respectively, fi-
nal) locations and Voronoi partition. The central figure illustrates the evolu-
tion of the robots. The r

2
-limited Voronoi cell of each robot is plotted in light

gray. After 13 seconds, the value of Hdist-area, r
2

,b, with b = − diam(Q)2, is
approximately −4.794.

As discussed in Remark 5.4, Rng-Vrn-cntrd can be understood as a
range-limited implementation of Vrn-cntrd in a network of robots with
range-limited interactions. Let us briefly compare the evolutions depicted
in Figures 5.2 and 5.6. According to Proposition 2.17, we compute

β =
r
2

diamQ
≈ 0.06957.
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From the constant-factor approximation (2.3.7), the absolute error is guar-
anteed to be less than or equal to (β2 − 1)Hdist-area, r

2
,b(Pfinal) ≈ 4.77, where

Pfinal denotes the final configuration in Figure 5.6. The percentage error in
the value of the multicenter function Hdist between the final configuration
of the evolution in Figure 5.2 and the final configuration of the evolution in
Figure 5.6 is approximately equal to 3.277%. As expected, one can verify in
simulations that the percentage error of the performance of the range-limited
implementation improves with higher values of the ratio r

diam Q
.

Geometric-center algorithms for disk-covering and sphere-packing

The Vrn-crcmcntr and Vrn-ncntr control and communication laws are
implemented in MathematicaR© as a single centralized program running the
simulation. We compute the bounded Voronoi diagram of a collection of
points using the package ComputationalGeometry. We compute the cir-
cumcenter of a polygon via the algorithm in Skyum (1991) and the incenter
set via the LinearProgramming solver in MathematicaR©.

Measuring displacements in meters, we consider the polygon determined
by the vertices

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6),

(3.45, 1.7), (2.7, 2.1), (1.0, 2.4), (0.2, 1.2)}.

We show an evolution of (SD,Vrn-crcmcntr) in Figure 5.7. One can
verify that in the final configuration all robots are at the circumcenter of
their own Voronoi cell. In other words, the task Tε-dc-dply is achieved by this
evolution. As stated in Section 5.2.3, it is an open research question to show
that this fact holds in general for CCVrn-crcmcntr. Cortés and Bullo (2005)
prove a similar result for a continuous-time implementation of this law.

Figure 5.7 The evolution of (SD,Vrn-crcmcntr) with n = 16 robots. The left-hand
(resp., right-hand) figure illustrates the initial (resp., final) locations and
Voronoi partition. The central figure illustrates the evolution of the robots. Af-
ter 20 seconds, the value of Hdc has monotonically decreased to approximately
0.43273 meters.

22

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 5: Deployment

We show an evolution of (SD,Vrn-ncntr) in Figure 5.8. One can verify
that in the final configuration all robots are at the incenter of their own
Voronoi cell. In other words, the task Tε-sp-dply is achieved by this evolution.
As stated in Section 5.2.3, it is an open research question to show that this
fact holds in general for CCVrn-ncntr. Cortés and Bullo (2005) prove a similar
result for a continuous-time implementation of this law.

Figure 5.8 The evolution of (SD,Vrn-ncntr) with n = 16 robots. The left-hand (resp.,
right-hand) figure illustrates the initial (resp., final) locations and Voronoi
partition. The central figure illustrates the evolution of the robots. After 20
seconds, the value of Hsp has monotonically increased to approximately 0.2498
meters.

5.4 NOTES

The deployment problem studied in this chapter is related to the literature
on facility location (Drezner, 1995; Okabe et al., 2000; Du et al., 1999) and
geometric optimization (Agarwal and Sharir, 1998; Boltyanski et al., 1999)
(see also Section 2.4). These disciplines study spatial resource allocation
problems and play an important role in quantization theory, mesh and grid
optimization methods, clustering analysis, data compression, and statistical
pattern recognition. Indeed, our algorithms are closely related to some early
work by Lloyd (1982) on “centering and partitioning” algorithms for optimal
quantizer design.

Dispersion laws have been traditionally studied in behavior control (see,
e.g., (Arkin, 1998; Schultz and Parker, 2002; Balch and Parker, 2002)). De-
ployment algorithms that make use of potential field methods are proposed
by Payton et al. (2001) and Howard et al. (2002). Other works include
(Bulusu et al., 2001) on adaptive beacon placement for localization, Poduri
and Sukhatme (2004) on network deployments that satisfy a pre-specified
constraint in the number of neighbors of each robot, Arsie et al. (2009) on
sensor-based deployment strategies that minimize the expected service time
for newly appearing target points, and Hussein and Stipanovic̀ (2007) on
dynamically surveying a known environment.

Deployment algorithms for coverage control are a subject of active re-
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search. Among the most recent works, Mart́ınez (2009) and Schwager et al.
(2009) consider coverage problems where the density function is unknown,
Lekien and Leonard (2009) propose centralized laws for non-uniform cov-
erage using cartograms, de Silva and Ghrist (2007) study static coverage
problems with minimal assumptions on the capabilities of individual sensors
using algebraic topology, Kwok and Mart́ınez (2009) propose distributed de-
ployment strategies for energy-constrained networks, Laventall and Cortés
(2009) design distributed algorithms for networks of robots whose sensors
have range-limited wedge-shaped footprints, Gao et al. (2008) consider dis-
crete coverage problems, Schwager et al. (2008) consider joint exploration
and deployment problems, and Zhong and Cassandras (2008), Pimenta et al.
(2008), and Caicedo-Nùñez and Žefran (2008) deal with centroidal Voronoi
tessellations in nonconvex environments. Graham and Cortés (2009) study
the optimality of circumcenter and incenter Voronoi configurations for the
estimation of stochastic spatial fields. Susca et al. (2009) consider some
planar interpolation problems. Finally, Cortés (2008); Pavone et al. (2008)
consider equitable partitioning policies in which the workspace is divided
into subregions of equal area and their application to vehicle routing prob-
lems.

Deployment problems play a relevant role in other coordination tasks,
such as surveillance, search and rescue, and exploration and map building
of unknown environments. Choset (2001) considers sweep coverage problems,
where one or more robots equipped with limited footprint sensors have to
visit all points in the environment. In Simmons et al. (2000), deployment
locations for a network of heterogeneous robots are user-specified after an
initial map of the unknown environment has been built. Gupta et al. (2006)
consider a combined sensor coverage and selection problem.

Deployment of robotic agents with visibility sensors has been studied un-
der a variety of assumptions. When the environment is known a priori, the
problem can be cast as the classical Art Gallery Problem (Chvátal, 1975)
from computational geometry, where one is interested in achieving complete
visibility with the minimum number of agents possible. The Art Gallery
Problem is computationally hard (Lee and Lin, 1986; Eidenbenz et al., 2001)
and the best-known approximation algorithms yield solutions within a log-
arithmic factor of the optimum number of agents (Ghosh, 1987; Efrat and
Har-Peled, 2006). Pinciu (2003) and Hernández-Peñalver (1994) study the
problem of achieving full visibility while guaranteeing that the final network
configuration will have a connected visibility graph. Recent works on multi-
robot exploration of unknown environments include (Batalin and Sukhatme,
2004), Burgard et al. (2005), and Howard et al. (2006). Topological explo-
ration of graph-like environments by single and multiple robots is studied
in Rekleitis et al. (2001), Fraigniaud et al. (2004), and Dynia et al. (2006).
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A simple one-step strategy for visibility deployment, without the need for
synchronization, achieving the worst-case optimal bounds in terms of the
number of robots required, and under limited communication, is presented
in Ganguli et al. (2007).

5.5 PROOFS

This section gathers the proofs of the main results presented in the chapter.

5.5.1 Proof of Theorem 5.5

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ Qn \ Scoinc denote the initial con-
dition. The proof strategy for all five facts is similar and is based on the
application of the LaSalle Invariance Principle with Lyapunov function given
by an appropriate multicenter function. In other words, we need to estab-
lish the monotonic behavior of the certain multicenter functions along the
executions of the control and communication laws and we need to charac-
terize certain invariant sets using geometric properties of the multicenter
functions. Additionally, in order to apply the LaSalle Invariance Principle,
we need to work with the set Qn \ Scoinc which is not closed and, therefore,
we rely upon the extension of Theorem 1.19 given in Exercise E1.8(ii).

In what follows, we discuss in detail the proof of fact (i) regarding the
control and communication law CCVrn-cntrd for the network SD. We leave
it to the reader to fill out some of the proof details for the other laws.

Fact (i). First, note that, starting from a configuration in Qn \ Scoinc,
one step of the law CCVrn-cntrd leads the network to another configuration
in Qn \ Scoinc. Therefore, it is convenient to let fVrn-cntrd : Qn \ Scoinc →
Qn\Scoinc denote the map induced by the execution of one step of the control
and communication law CCVrn-cntrd.

To apply Theorem 1.19, we work with the set W = Qn \ Scoinc. Clearly,
this set is positively invariant for fVrn-cntrd and it is bounded. Therefore,
assumptions (i) and (iii) of Theorem 1.19 are satisfied, except for the closed-
ness of W . Next, we show that executions of the law CCVrn-cntrd monoton-
ically optimize the function Hdist. Using the extension of the multicenter
function defined over the set of points and partitions of Q, we deduce from
Proposition 2.13 that, for P ∈ Qn \ Scoinc,

Hdist(fVrn-cntrd(P )) = Hdist(fVrn-cntrd(P ),V(fVrn-cntrd(P )))

≥ Hdist(fVrn-cntrd(P ),V(P )).
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The application of Proposition 2.14 yields

Hdist(fVrn-cntrd(P ),V(P )) ≥ Hdist(P,V(P )),

and, therefore, Hdist(fVrn-cntrd(P )) ≥ Hdist(P ). Additionally, recall from
Proposition 2.14, that, for P ∈ Qn \ Scoinc, the inequality is strict unless
fVrn-cntrd(P ) = P . This discussion establishes assumption (ii) of Theo-
rem 1.19. The continuity of the map fVrn-cntrd : Qn \ Scoinc → Qn \ Scoinc,
is a consequence of the following two facts. First, one can verify that each
Voronoi cell is a convex set whose boundary is a piecewise continuously dif-
ferentiable function of the positions of the robots. Second, given a convex set
whose boundary depends upon a parameter in a piecewise continuously dif-
ferentiable fashion, Proposition 2.23 guarantees that the centroid of that set
is a continuously differentiable function of the parameter. This discussion
and the continuity of Hdist establishes assumption (iv) of Theorem 1.19.

In the following, we consider an evolution γ : Z≥0 → Qn \ Scoinc of
fVrn-cntrd and we prove that no point in Scoinc may be an accumulation
point of γ. By contradiction, we assume that P = (p1, . . . , pn) ∈ Scoinc

is an accumulation point for γ. Our first claim is that there exists a se-
quence of increasing times {ℓk | k ∈ N} and unit-length vectors uij ∈ R

d,
for i, j ∈ {1, . . . , n}, such that γ(ℓk) → P and simultaneously vers(γi(ℓk) −
γj(ℓk)) → uij as k → ∞. Here, the versor operator vers : R

d → R
d is

defined by vers(0d) = 0d and vers(v) = v/‖v‖2 for v 6= 0d. This first
claim is true because P is an accumulation point and because the sequences
ℓ 7→ vers(γi(ℓ)−γj(ℓ)) take value in a compact set. Our second claim is that,
as k → ∞, the sequence of partitions V(γ(ℓk)) has a limiting partition, say
{V ∞

1 , . . . , V ∞
n }. This second claim is true because, for each pair of robots i

and j converging to the same position pi = pj , the bisector of the segment
connecting them admits a limit that is equal to the line through the point
pi = pj and perpendicular to the unit-length vector uij . Therefore, each of
the edges of each of the polygons V(γ(ℓk)) has a limit for k → ∞. Finally,
note that each polygon V ∞

i has a positive measure.

We know that ℓ 7→ Hdist(γ(ℓ)) is monotonically non-increasing and lower-
bounded. Therefore, we must have that

lim
ℓ→∞

(

Hdist(γ(ℓ)) −Hdist(γ(ℓ + 1))
)

= 0. (5.5.1)
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Define the short-hand Wk,1 = V1(γ(ℓk)), and compute

lim
k→∞

(

Hdist(γ(ℓk)) −Hdist(γ(ℓk + 1))
)

≥ lim
k→∞

(

∫

Wk,1

‖q − γ1(ℓk)‖2
2φ(q)dq −

∫

Wk,1

‖q − CMφ(Wk,1)‖2
2φ(q)dq

)

(5.5.2)

=

∫

V ∞
1

‖q − p1‖2
2φ(q)dq −

∫

V ∞
1

‖q − CMφ(V ∞
1 )‖2

2φ(q)dq (5.5.3)

= Aφ(V ∞
1 )‖p1 − CMφ(V ∞

1 )‖2, (5.5.4)

where inequality (5.5.2) follows from Proposition 2.14, equality (5.5.3) fol-
lows from the definition of the limiting partition {V ∞

1 , . . . , V ∞
n }, and equa-

tion (5.5.4) follows from the Parallel Axis Theorem. Now, the quantity
Aφ(V ∞

1 ) is strictly positive, as mentioned above, and the quantity ‖p1 −
CMφ(V ∞

1 )‖2 is strictly positive because p1 ∈ ∂V ∞
1 and CMφ(V ∞

1 ) belongs
to the interior of V ∞

1 by Exercise (E2.2). The fact that the last limit is lower
bounded by a positive is a contradiction with equation (5.5.1). Therefore,
we now know that no point in Scoinc may be an accumulation point of γ.

Finally, we are now ready to apply the LaSalle Invariance Principle as
stated in Exercise E1.8(ii) and deduce that the execution of CCVrn-cntrd

starting from P0 ∈ Qn \ Scoinc tends to the largest positively invariant set S
contained in

{P ∈ Qn | Hdist(fVrn-cntrd(P )) = Hdist(P )}.
The set S is precisely the set of centroidal Voronoi configurations. This result
is a consequence of the fact that Hdist(fVrn-cntrd(P )) = Hdist(P ) implies
that fVrn-cntrd(P ) = P , that is, P is a centroidal Voronoi configuration.

Facts (ii) and (iii). The proofs of these facts run parallel to the proof of
fact (i). Propositions 2.19 and 2.21 are key in establishing the monotonic
evolution of Hdc and Hsp, respectively.

Fact (iv). Let fLmtd-Vrn-nrml : Qn \ Scoinc → Qn \ Scoinc denote the map
induced by the execution of one step of the law CCLmtd-Vrn-nrml. Let us
show that executions of CCLmtd-Vrn-nrml monotonically optimize the func-
tion Harea, r

2
. Using the extension of the multicenter function defined over

the set of points and partitions of Q, we deduce from Proposition 2.13 that,
for P ∈ Qn \ Scoinc,

Harea, r

2
(fLmtd-Vrn-nrml(P ))

= Harea, r

2
(fLmtd-Vrn-nrml(P ),V(fLmtd-Vrn-nrml(P )))

≥ Harea, r

2
(fLmtd-Vrn-nrml(P ),V(P )).
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The line search procedure for each robot embedded in the definition of the
control function of CCLmtd-Vrn-nrml ensures that

Harea, r

2
(fLmtd-Vrn-nrml(P ),V(P )) ≥ Harea, r

2
(P,V(P )),

and hence, Harea, r

2
(fLmtd-Vrn-nrml(P )) ≥ Harea, r

2
(P ). Note that the in-

equality is strict unless fLmtd-Vrn-nrml(P ) = P . We leave it to the in-
terested reader to prove, similarly to what we did for fact (i), that the map
fLmtd-Vrn-nrml is continuous and that no point in Scoinc may be an accumu-
lation point of any trajectory of fLmtd-Vrn-nrml. Finally, the application of
the LaSalle Invariance Principle as in the proof of fact (i) leads us to the
result stated in fact (iv).

Fact (v). The proof of this fact runs parallel to the proofs of facts (i)
and (iv). Propositions 2.13 and 2.15 are key in establishing the monotonic
evolution of the cost function Hdist-area, r

2
. �

5.5.2 Proof of Theorem 5.6

Proof. For d = 1, Q is a compact interval on R—say Q = [q−, q+]. We start
with a brief discussion about connectivity. In the r-limited Delaunay graph,
two agents that are at most at a distance r from each other are neighbors if
and only if there are no other agents between them. Additionally, we claim
that if agents i and j are neighbors, then |CMφ(V [i])−CMφ(V [j])| ≤ r, where

V [i] denotes the set defined by the control function ctl when evaluated by
agent i. To show this fact, let us assume without loss of generality that
p[i] ≤ p[j]. Let us consider the case where the agents have neighbors on

both sides (the other cases can be treated analogously). Let p
[i]
− (resp., p

[j]
+ )

denote the position of the neighbor of agent i to the left (resp., of agent j
to the right). Now,

CMφ(V [i]) =
1

4
(p

[i]
− + 2p[i] + p[j]),

CMφ(V [j]) =
1

4
(p[i] + 2p[j] + p

[j]
+ ),

where we have used the fact that φ ≡ 1. Therefore,

|CMφ(V [i]) − CMφ(V [j])| ≤ 1

4

(

|p[i]
− − p[i]| + 2|p[i] − p[j]| + |p[j] − p

[j]
+ |

)

≤ r.

This implies that agents i and j belong to the same connected component
of the r-limited Delaunay graph at the next time step.

Next, let us consider the case when GLD(r) is connected at the initial
network configuration P0 = (p[1](0), . . . , p[n](0)). Without loss of generality,
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assume that the agents are ordered from left to right according to their
unique identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). We distinguish three cases
depending on the proximity of the leftmost and rightmost agents 1 and n,
respectively, to the boundary of the environment: in case (a) both agents
are within a distance r

2 of ∂Q; in case (b), neither of the two is within a
distance r

2 of ∂Q; and in case (c) only one of the agents is within a distance r
2

of ∂Q. Here is an important observation: from one time instant to the next,
the network configuration can fall into any of the cases described above.
However, because of the discussion on connectivity, transitions can only
occur from case (b) to either case (a) or case (c); and from case (c) to case
(a). As we show below, for each of these cases, the network evolution under
CCVrn-cntrd can be described as a discrete-time linear dynamical system
which respects agents’ ordering.

Let us consider case (a). In this case, we have

p[1](ℓ + 1) =
1

4
(p[1](ℓ) + p[2](ℓ)) +

1

2
q−,

p[2](ℓ + 1) =
1

4
(p[1](ℓ) + 2p[2](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ + 1) =
1

4
(p[n−2](ℓ) + 2p[n−1](ℓ) + p[n](ℓ)),

p[n](ℓ + 1) =
1

4
(p[n−1](ℓ) + p[n](ℓ)) +

1

2
q+.

Equivalently, we can write P (ℓ + 1) = A(a) · P (ℓ) + b(a), where the matrix

A(a) ∈ R
n×n and the vector b(a) ∈ R

n are given by

A(a) =



















1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

1
4



















, b(a) =















1
2q−
0
...
0

1
2q+















.

Note that the only equilibrium network configuration P∗ respecting the or-
dering of the agents is given by

p
[i]
∗ = q− +

1

2n
(1 + 2(i − 1))(q+ − q−) , i ∈ {1, . . . , n},

and note that this is a r
2 -centroidal Voronoi configuration (under the as-

sumption of case (a)). We can therefore write (P (ℓ+1)−P∗) = A(a)(P (ℓ)−
P∗). Now, note that A(a) = ATrid−

n

(

1
4 , 1

2

)

. Theorem 1.80(ii) implies that

limℓ→+∞

(

P (ℓ)−P∗

)

= 0n, and that the maximum time required for ‖P (ℓ)−
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P∗

∥

∥

2
≤ ε‖P0 − P∗‖2 (over all initial conditions in R

n) is Θ
(

n2 log ε−1
)

. It is
not obvious, but it can be verified, that the initial condition providing the
lower bound in the time complexity estimate does indeed have the property
of respecting the agents’ ordering; this fact holds for all three possible cases
(a), (b), and (c).

Case (b) can be treated in the same way. The network evolution now
takes the form P (ℓ + 1) = A(b) · P (ℓ) + b(b), where the matrix A(b) ∈ R

n×n

and the vector b(b) ∈ R
n are given by

A(b) =



















3
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4



















, b(b) =















−1
4r
0
...
0
1
4r















.

In this case, a (non-unique) equilibrium network configuration respecting
the ordering of the agents is of the form

p
[i]
∗ = ir − 1 + n

2
r, i ∈ {1, . . . , n}.

Note that this is a r
2 -centroidal Voronoi configuration (under the assump-

tion of case (b)). We can therefore write (P (ℓ + 1) − P∗) = A(b)(P (ℓ) −
P∗). Now, observe that A(b) = ATrid+

n

(

1
4 , 1

2

)

. We compute that Pave =
1
n
1T

n (P0 − P∗) = 1
n
1T

nP0. With this calculation, Theorem 1.80(i) implies

that limℓ→+∞

(

P (ℓ) − P∗ − Pave1n

)

= 0n, and that the maximum time re-

quired for ‖P (ℓ) − P∗ − Pave1n

∥

∥

2
≤ ε‖P0 − P∗ − Pave1n‖2 (over all initial

conditions in R
n) is Θ

(

n2 log ε−1
)

.

Case (c) needs to be handled differently. Without loss of generality, as-
sume that agent 1 is within distance r

2 of ∂Q and agent n is not (the other
case is treated analogously). Then, the network evolution now takes the
form P (ℓ + 1) = A(c) · P (ℓ) + b(c), where the matrix A(c) ∈ R

n×n and the
vector b(c) ∈ R

n are given by

A(c) =



















1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4



















, b(c) =















1
2q−
0
...
0
1
4r















.

Note that the only equilibrium network configuration P∗ respecting the or-
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dering of the agents is given by

p
[i]
∗ = q− +

1

2
(2i − 1)r, i ∈ {1, . . . , n},

and note that this is a r
2 -centroidal Voronoi configuration (under the as-

sumption of case (c)). In order to analyze A(c), we recast the n-dimensional
discrete-time dynamical system as a 2n-dimensional one. To do this, we
define a 2n-dimensional vector y by

y[i] = p[i], i ∈ {1, . . . , n}, and y[n+i] = p[n−i+1], i ∈ {1, . . . , n}. (5.5.5)

Now, one can see that the network evolution can be alternatively described
in the variables (y[1], . . . , y[2n]) as a linear dynamical system determined by
the 2n × 2n matrix ATrid−

2n(1
4 , 1

2). Using Theorem 1.80(ii), and exploiting
the chain of equalities (5.5.5), it is possible to infer that, in case (c), the
maximum time required for ‖P (ℓ) − P∗

∥

∥

2
≤ ε‖P0 − P∗‖2 (over all initial

conditions in R
n) is Θ

(

n2 log ε−1
)

.

In summary, for all three cases (a), (b), and (c), our calculations show
that, in time O

(

n2 log ε−1
)

, the error 2-norm satisfies the contraction in-

equality ‖P (ℓ) − P∗

∥

∥

2
≤ ε‖P0 − P∗‖2. We convert this inequality on 2-

norms into an appropriate inequality on ∞-norms as follows. Note that

‖P0 − P∗‖∞ = maxi∈{1,...,n} |p[i](0) − p
[i]
∗ | ≤ (q+ − q−). For ℓ of order

n2 log η−1, we have that

‖P (ℓ) − P∗‖∞ ≤ ‖P (ℓ) − P∗‖2 ≤ η‖P0 − P∗‖2

≤ η
√

n‖P0 − P∗‖∞ ≤ η
√

n(q+ − q−).

This means that ε-r-deployment is achieved for η
√

n(q+ − q−) = ε, that is,
in time O(n2 log η−1) = O(n2 log(nε−1)).

Up to here, we have proved that if the graph GLD(r) is connected at
P0, then TC(Tε-r-dply, CCVrn-cntrd, P0) ∈ O(n2 log(nε−1)). If GLD(r) is not
connected at P0, note that along the network evolution there can only be
a finite number of time instants, at most n − 1 where a merging of two
connected components occurs. Therefore, the time complexity is at most
O(n3 log(nε−1)), as claimed. �

5.6 EXERCISES

E5.1 (The Vrn-crcmcntr law is not positively invariant on Qn\Scoinc). Consider
the network SD composed by 2 robots evolving in the convex polygon depicted in
Figure E5.1. Describe the evolution of the network starting from the configuration
depicted in Figure E5.1 and discuss its implication on the positive invariance of
the set Q2 \ Scoinc with respect to CCVrn-crcmcntr.
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Figure E5.1 Convex polygon for Exercise E5.1. The height of the polygon is strictly less
that its width.

E5.2 (Monotonic evolution of Hdc and Hsp). Prove the facts relative to statements
(ii) and (iii) in Theorem 5.5.
Hint: Make use of the optimality of the Voronoi partition and of center locations

stated in Propositions 2.19 and 2.21.

E5.3 (Correctness of Lmtd-Vrn-cntrd). Prove Theorem 5.5(v).
Hint: To establish the monotonic evolution of the multicenter function, make use

of the optimality of the Voronoi partition stated in Proposition 2.13 and of the

centroid locations stated in Proposition 2.15. To establish the convergence result,

make use of the LaSalle Invariance Principle stated in Theorem 1.19.

E5.4 (Correctness of Rng-Vrn-cntrd). Mimic the proof of Theorem 5.5(iv) to
show that the evolutions of Rng-Vrn-cntrd monotonically optimize the mixed
distortion-area multicenter function

Hdist-area, r
2

,b, with b = − diam(Q)2,

and asymptotically approach its set of critical points.

E5.5 (The “n-bugs problem” and cyclic interactions: cont’d). Consider n
robots at counterclockwise-ordered positions θ1, . . . , θn. First, consider the cyclic
balancing system described in Exercise E1.30 with parameter k = 1/4, and given
by

θi(ℓ + 1) =
1

4
θi+1(ℓ) +

1

2
θi(ℓ) +

1

4
θi−1(ℓ), ℓ ∈ Z≥0.

Second, consider the Voronoi-centroid law on the circle (with uniform density) in
which each robot computes its Voronoi partition of the circle (see Figure 2.5) and
then moves to the midpoint of its arc. Show that the two behaviors are identical.
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Hernández-Peñalver, G. [1994] Controlling guards, in Canadian Conference
on Computational Geometry, pages 387–392, Saskatoon, Canada.
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