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Chapter Three

Robotic network models and complexity notions

This chapter introduces the main subject of study of this book, namely a
model for groups of robots that sense their own position, exchange messages
according to a geometric communication topology, process information, and
control their motion. We refer to such systems as robotic networks. The
content of this chapter has evolved from Mart́ınez et al. (2007).

The chapter is organized as follows. The first section contains the for-
mal model. We begin by presenting the physical components of a network,
that is, the mobile robots and the communication service connecting them.
We then present the notion of control and communication law, and how a
law is executed by a robotic network. These notions subsume the notions
of synchronous network and distributed algorithm described in Section 1.5.
As an example of these notions, we introduce a simple law, called the agree
and pursue law, which combines ideas from leader election algorithms and
from cyclic pursuit (i.e., a game in which robots chase each other in a cir-
cular environment). In the second section, we propose a model of groups of
robots that interact through sensing, rather than communication. The third
section discusses time, space, and communication complexity notions for
robotic networks as extensions of the corresponding notions for distributed
algorithms. The complexity notions rely on the basic concept of coordina-
tion task and task achievement. The fourth and last section establishes the
time, space, and communication required by the agree and pursue law to
steer a group of robots to a uniformly spaced rotating configuration. We
end the chapter with three sections on, respectively, bibliographical notes,
proofs of the results presented in the chapter, and exercises.

3.1 A MODEL FOR SYNCHRONOUS ROBOTIC NETWORKS

Here, we introduce a model for a synchronous robotic network. This model
is an extension of the synchronous network model presented in Section 1.5.1.
We start by detailing the physical components of the network, which include
the robots themselves as well as the communication service among them.
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3.1.1 Physical components

We start by providing a basic definition of a robot and a model for how each
robot moves in space.

A mobile robot is a continuous-time continuous-space dynamical system
as defined in Section 1.3, that is, a tuple (X, U, X0, f), where

(i) X is d-dimensional space chosen among R
d, S

d, and the Cartesian
products R

d1 × S
d2 , for some d1 + d2 = d, called the state space;

(ii) U is a compact subset of R
m containing 0m, called the input space;

(iii) X0 is a subset of X, called the set of allowable initial states; and

(iv) f : X × U → R
d is a continuously differentiable control vector field

on X, that is, f determines the robot motion x : R≥0 → X via the
differential equation, or control system,

ẋ(t) = f(x(t), u(t)), (3.1.1)

subject to the control u : R≥0 → U .

We will use the terms “robot” and “agent” interchangeably. We refer to
x ∈ X and u ∈ U as a physical state and an input of the mobile robot,
respectively. Most often, the physical state will have the interpretation
of a location, or a location and velocity. We will often consider control-
affine vector fields. In such a case, we represent f as the ordered family
of continuously differentiable vector fields (f0, f1, . . . , fm) on X. In general,
the control signal u will not depend only on time but also on x and possible
other variables in the system. Note that there is no additional difficulty in
modeling mobile robots using dynamical systems defined on manifolds (Bullo
and Lewis, 2004), but we avoid it here in the interest of simplicity.

Example 3.1 (Planar vehicle models). The following models of control
systems are commonly used in robotics, beginning with the early works
of Dubins (1957), and Reeds and Shepp (1990). Figures 3.1(a) and (b)
show a two-wheeled vehicle and a four-wheeled vehicle, respectively. The
two-wheeled planar vehicle is described by the dynamical system

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (3.1.2)

with state variables x ∈ R, y ∈ R, and θ ∈ S
1, describing the planar position

and orientation of the vehicle, and with controls v and ω, describing the
forward linear velocity and the angular velocity of the vehicle. Depending
on which set the controls are restricted to, we define the following models:
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(x, y)
θ

(a)

(x, y)
θ

φ

ℓ

(b)

Figure 3.1 A two-wheeled vehicle (a) and four-wheeled vehicle (b). In each case, the
orientation of the vehicle is indicated by the small triangle.

The unicycle. The controls v and ω take value in [−1, 1] and [−1, 1], re-
spectively.

The differential drive robot. Set v = (ωright +ωleft)/2 and ω = (ωright −
ωleft)/2 and assume that both ωright and ωleft take value in [−1, 1].

The Reeds–Shepp car. The control v takes values in {−1, 0, 1} and the
control ω takes values in [−1, 1].

The Dubins vehicle. The control v is set equal to 1 and the control ω
takes value in [−1, 1].

Finally, the four-wheeled planar vehicle, composed of a front and a rear axle
separated by a distance ℓ, is described by the same dynamical system (3.1.2)
with the following distinctions: (x, y) ∈ R

2 is the position of the midpoint
of the rear axle, θ ∈ S

1 is the orientation of the rear axle, the control v is
the forward linear velocity of the rear axle, and the angular velocity satisfies

ω =
v

ℓ
tan φ, where the control φ is the steering angle of the vehicle. •

Next, we generalize the notion of synchronous network introduced in Def-
inition 1.38 and introduce a corresponding notion of robotic network.

Definition 3.2 (Robotic network). The physical components of a robotic
network S consist of a tuple (I,R, Ecmm), where

(i) I = {1, . . . , n}, I is called the set of unique identifiers (UIDs);

(ii) R = {R[i]}i∈I = {(X [i], U [i], X
[i]
0 , f [i])}i∈I is a set of mobile robots;

(iii) Ecmm is a map from
∏

i∈I X [i] to the subsets of I × I—this map is
called the communication edge map.
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Additionally, if all mobile robots are identical, that is, if R[i] = (X, U, X0, f)
for all i ∈ {1, . . . , n}, then the robotic network is uniform. •

Remarks 3.3 (Notational conventions and meaning of the commu-
nication edge map).

(i) Following the convention established in Section 1.5, we let the su-
perscript [i] denote the variables and spaces which correspond to the

robot with unique identifier i; for instance, x[i] ∈ X [i] and x
[i]
0 ∈ X

[i]
0

denote the physical state and the initial physical state of robot R[i],
respectively. We refer to x = (x[1], . . . , x[n]) ∈ ∏

i∈I X [i] as a state
of the network.

(ii) The map x 7→ (I, Ecmm(x)) models the topology of the communica-
tion service among the robots: at a physical state x = (x[1], . . . , x[n]),
two robots at locations x[i] and x[j] can communicate if and only if
the pair (i, j) is an edge in Ecmm(x) = Ecmm(x[1], . . . , x[n]). Accord-
ingly, we refer to (I, Ecmm(x)) as the communication graph at x.
When and which robots communicate is discussed in Section 3.1.2.
As communication graphs, we will often adopt one of the proximity
graphs discussed in Section 2.2, and in particular the (undirected)
disk graph. •

To make things concrete, let us present some examples of robotic networks
that will be commonly used later.

Example 3.4 (First-order robots with range-limited communica-
tion). Consider a group of robots moving in R

d, d ≥ 1. As in Chapter 2,
we let p denote a point in R

d and we let {p[1], . . . , p[n]} denote the robot
locations. Assume that the robots move according to

ṗ[i](t) = u[i](t), (3.1.3)

with u[i] ∈ [−umax, umax]
d; for an illustration, see Figure 3.2. According to

our mobile robot notation, these are identical robots of the form

(Rd, [−umax, umax]
d, Rd, (0d, e1, . . . ,ed)).

We assume that each robot can sense its own position and can communicate
with any other robot within distance r, that is, we adopt the r-disk graph
Gdisk(r) defined in Section 2.2 as communication graph. These data define
the uniform robotic network Sdisk.

It will also be interesting to consider first-order robots with communi-
cation graphs other than the disk graph; important examples include the
Delaunay graph GD, the limited Delaunay graph GLD(r), and the ∞-disk
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(x, y)

Figure 3.2 An omnidirectional vehicle. In addition to controlling the rotation speed of
the wheels, the vehicle can also actuate the direction in which they point.
This allows the vehicle to move in any direction according to the first-order
dynamics (3.1.3).

graph G∞-disk(r), discussed in Section 2.2. These three graphs, adopted as
communication models, give rise to three robotic networks denoted SD, and
SLD, S∞-disk, respectively. •

Example 3.5 (Planar vehicle robots with Delaunay communica-
tion). We consider a group of vehicle robots moving in an allowable envi-
ronment Q ⊂ R

2 according to the planar vehicle dynamics introduced in
Example 3.1. We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical
states, where p[i] = (x[i], y[i]) ∈ Q corresponds to the position and θ[i] ∈ S

1

corresponds to the orientation of the robot i ∈ I. As the communication
graph, we adopt the Delaunay graph GD on Q introduced in Section 2.2.
These data define the uniform robotic network Svehicles. •

Example 3.6 (Robots with line-of-sight communication). We con-
sider a group of robots moving in an allowable environment Q ⊂ R

2. As in
Example 3.4, we let {p[1], . . . , p[n]} denote the robot locations and we assume
that the robots move according to the motion model (3.1.3). Each robot can
sense its own position and the boundary of ∂Q, and can communicate with
any other robot within distance r and within line of sight, that is, we adopt
the range-limited visibility graph Gvis-disk,Q in Q defined in Section 2.2 as
the communication graph. These data define the uniform robotic network
Svis-disk. •

Example 3.7 (First-order robots in S
1). Consider a group of n robots

{θ[1], . . . , θ[n]} in S
1, moving along on the unit circle with an angular ve-

locity equal to the control input. Each identical robot is described by the
tuple (S1, [−umax, umax], S

1, (0, e)), where e is the vector field on S
1 describ-

ing unit-speed counterclockwise rotation. As in the previous examples, we
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assume that each robot can sense its own position and can communicate
with any other robot within distance r along the circle, that is, we adopt
the r-disk graph Gdisk(r) on S

1 defined in Section 2.2 as the communication
graph. These data define the uniform robotic network Scircle. •

We conclude this section with a remark.

Remark 3.8 (Congestion models in robotic networks). The behav-
ior of a robotic network might be affected by communication and physical
congestion problems.

Communication congestion: Omnidirectional wireless transmissions in-
terfere. Clear reception of a signal requires that no other signals are
present at the same point in time and space. In an ad hoc network,
node i receives a message transmitted by node j only if all other neigh-
bors of i are silent. In other words, the transmission medium is shared
among the agents. As the density of agents increases, so does wireless
communication congestion. The following asymptotic and optimiza-
tion results are known.

First, for ad hoc networks with n uniformly randomly placed nodes,
it is known (Gupta and Kumar, 2000) that the maximum-throughput
communication range r(n) of each node decreases as the density of
nodes increases; in d dimensions, the appropriate scaling law is r(n) ∈
Θ

(

(log(n)/n)1/d
)

. This is referred to as the connectivity regime in
percolation theory and statistical mechanics. Using the k-nearest-
neighbor graph over uniformly placed nodes, the analysis in Xue and
Kumar (2004) suggests that the minimal number of neighbors in a
connected network grows with log(n).

Second, a growing body of literature (Santi, 2005; Lloyd et al., 2005)
is available on topology control, that is, on how to compute trans-
mission power values in an ad hoc network so as to minimize energy
consumption and interference (due to multiple sources), while achiev-
ing various graph topological properties, such as connectivity or low
network diameter.

Physical congestion. Robots can collide: it is clearly important to avoid
“simultaneous access to the same physical area” by multiple robots.
It is reasonable to assume that, as the number of robots increases, so
should the area available for their motion. A convenient alternative
approach is the one taken by Sharma et al. (2007), where robots’ safety
zones decrease with decreasing robot speed. This suggests that, in a
fixed environment, individual nodes of a large ensemble have to move
at a speed decreasing with n, and in particular, at a speed proportional
to n−1/d. Roughly speaking, if the overall volume V in which the
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groups of agents move is constant, and there are n robots, then the
speed v at which they can move goes approximately as vd ≈ V

n .

In summary, one way to incorporate congestion effects into the robotic
network model is to assume that the parameters of the network physical
components depend upon the number of robots n. In the limit as n → +∞,
we will sometimes assume that r and umax, the communication range and
the velocity upper bound in Examples 3.4 and 3.7, are of order n−1/d. •

3.1.2 Control and communication laws

Here, we present a discrete-time communication, continuous-time motion
model for the evolution of a robotic network subject to a communication
and control law. In our model, each robot evolves in the physical domain
in continuous time, senses its position in continuous time, and, in discrete
time, exchanges information with other robots and executes a state machine,
which we shall refer to as a processor. The following definition is a general-
ization of the concept of distributed algorithm introduced in Definition 1.39
and of the classical notion of dynamical feedback controller.

Definition 3.9 (Control and communication law). A control and com-
munication law CC for a robotic network S consists of the sets:

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial values;

and of the following maps:

(i) msg[i] : X [i] × W [i] × I → A, i ∈ I, called message-generation func-
tions;

(ii) stf[i] : X [i] × W [i] × A
n → W [i], i ∈ I, called (processor) state-

transition functions; and

(iii) ctl[i] : X [i] × X [i] × W [i] × A
n → U [i], i ∈ I, called (motion) control

functions.

If S is uniform and if W [i] = W , msg[i] = msg, stf[i] = stf, and ctl[i] = ctl,
for all i ∈ I, then CC is said to be uniform and is described by a tuple

(A, W, {W [i]
0 }i∈I , msg, stf, ctl). •
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We will sometimes refer to a control and communication law as a dis-
tributed motion coordination algorithm. Roughly speaking, the rationale
behind Definition 3.9 is as follows (see Figure 3.3). The state of robot i in-

Transmit

and

receive

Update

processor

state

Update physical state

Figure 3.3 The execution of a control and communication law by a robotic network.

cludes both the physical state x[i] ∈ X [i] and the processor state w[i] ∈ W [i]

of the state machine that robot i implements. These states are initialized

with values in their corresponding allowable initial sets X
[i]
0 and W

[i]
0 . We

assume that the robot can sense it own physical position x[i]. At each time
instant ℓ ∈ Z≥0, robot i sends to each of its out-neighbors j in the com-
munication digraph (I, Ecmm(x)) a message (possibly the null message)
computed by applying the message-generation function msg[i] to the current
values of its physical state x[i] and processor state w[i], and to the identity
j. Subsequently, but still at the time instant ℓ ∈ Z≥0, robot i updates the

value of its processor state w[i] by applying the state-transition function stf[i]

to the current value of its physical state x[i], processor state w[i] and to the
messages it receives from its in-neighbors. Between communication instants,
that is, for t ∈ [ℓ, ℓ + 1) for some ℓ ∈ Z≥0, the motion of the ith robot is
determined by applying the control function to the current value of x[i], the
value of x[i] at time ℓ, the current value of w[i], and the messages received at
time ℓ. This evolution model is very similar to the one that we introduced
for synchronous networks in Definition 1.40: in each communication round,
the first step is transmission and the second one is computation and, except
for the dependence on the physical state x, the communication and state
transition processes are identical.

These ideas are formalized in the following definition.

Definition 3.10 (Evolution of a robotic network). Let CC be a control
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and communication law for the robotic network S. The evolution of (S, CC)

from initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of

curves x[i] : R≥0 → X [i] and w[i] : Z≥0 → W [i], i ∈ I, defined by

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

x[i](t), x[i](⌊t⌋), w[i](⌊t⌋), y[i](⌊t⌋)
)

)

,

where ⌊t⌋ = max{ℓ ∈ Z≥0 | ℓ < t}, and

w[i](ℓ) = stf[i](x[i](ℓ), w[i](ℓ − 1), y[i](ℓ)),

with x[i](0) = x
[i]
0 and w[i](−1) = w

[i]
0 , i ∈ I. In the previous equations, y[i] :

Z≥0 → A
n (describing the messages received by processor i) has components

y
[i]
j (ℓ), for j ∈ I, defined by

y
[i]
j (ℓ) =

{

msg[j](x[j](ℓ), w[j](ℓ − 1), i), if (j, i) ∈ Ecmm

(

x[1](ℓ), . . . , x[n](ℓ)
)

,

null, otherwise.
•

For convenience, we define w(t) = w(⌊t⌋) for all t ∈ R≥0, and let R≥0 ∋
t 7→ (x(t), w(t)) denote the curves x[i] and w[i], for i ∈ {1, . . . , n}.

Remarks 3.11 (Simplifications of control and communication laws).

(i) A control and communication law CC is static if the processor state
set W [i] is a singleton for all i ∈ I. This means that there is no
meaningful evolution of the processor state. In this case, CC can be
described by a tuple (A, {msg[i]}i∈I , {ctl[i]}i∈I), with msg[i] : X [i] ×
I → A, and ctl[i] : X [i] × X [i] × A

n → U [i], for i ∈ I.

(ii) A control and communication law CC is data-sampled if the con-
trol functions are independent of the current position of the robot
and depend only upon the robot’s position at the last sample time.
Specifically, the control functions have the following property: given
a processor state w[i] ∈ W [i], an array of messages y[i] ∈ A

n, a cur-

rent state x[i], and a state at last sample time x
[i]
smpld, the control

input ctl[i](x[i], x
[i]
smpld, w

[i], y[i]) is independent of x[i], for all i ∈ I.
In this case, the control functions can be described by maps of the
form ctl[i] : X [i] × W [i] × A

n → U [i], for i ∈ I.

(iii) In many control and communication laws, the robots exchange full
information about their states, including both their processor and
their physical states. For such laws, we identify the communication
alphabet with A = (X × W )∪{null} and we refer to the corre-
sponding message-generation function msgstd(x, w, j) = (x, w) as
the standard message-generation function.
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Note that we allow the processor state set and the communication alphabet
to contain an infinite number of symbols. In other words, we assume that a
robot can store and transmit a (finite number of) integer and real numbers,
among other things. This is equivalent to assuming that we neglect any
inaccuracies due to quantization, as we did in Section 1.6. •

Remark 3.12 (Extensions of control and communication laws).
Here, we briefly discuss alternative models and extensions of the proposed
models.

Asynchronous sensor-based interactions. In the early network model
proposed by Suzuki and Yamashita (1999), robots are referred to as
“anonymous” and “oblivious” in precisely the same way in which we
defined control and communication laws to be uniform and static, re-
spectively. As compared with our notion of robotic network, the model
in Suzuki and Yamashita (1999) is more general in that the robots’ ac-
tivation schedules do not necessarily coincide (i.e., this model is asyn-
chronous), and at the same time it is less general in that (1) robots
cannot communicate any information other than their respective po-
sitions, and (2) each robot observes every other robot’s position (i.e.,
the complete communication graph is adopted). In the Section 3.2
below, we present a model in which robots rely on sensing rather than
communication for their interaction.

Discrete-time motion models. For some algorithms in later chapters, it
will be convenient to consider discrete-time motion models; for exam-
ple, we present discrete-time motion models for first-order agents in
Section 4.1. In some other cases, it will be convenient to consider dy-
namical interactions between agents taking place in continuous time.

Stochastic link models. Although we do not present any results on this
topic in this notes, it is possible to develop robotic networks models
over random graphs and random geometric graphs, as studied by Bol-
lobás (2001) and Penrose (2003). Furthermore, it is of interest to
consider communication links with time-varying rates. •

3.1.3 The agree and pursue control and communication law

We conclude this section with an example of a dynamic control and com-
munication law. The problem is described as follows: a collection of robots
with range-limited communication are placed on the unit circle; the robots
move and communicate with the objectives of (1) agreeing on a direction of
motion (clockwise or counterclockwise) and (2) achieving an equidistant con-
figuration where all robots are equally angularly spaced. To achieve these
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two objectives, we combine ideas from leader election algorithms for syn-
chronous networks (see Section 1.5.4) and from cyclic pursuit problems (see
Exercise E1.30): the robots move a distance proportional to an appropriate
inter-robot separation, and they repeatedly compare their identifiers to dis-
cover the direction of motion of the robot with the largest identifier. In other
words, the robots run a leader election task in their processor states and a
uniform robotic deployment task in their physical state—these are among
the most basic tasks in distributed algorithms and cooperative control. We
present the algorithm here and characterize its correctness and performance
later in the chapter.

From Example 3.7, we consider the uniform network Scircle of locally con-
nected first-order robots on S

1. For r, umax, kprop ∈ ]0, 1
2 [ with kpropr ≤ umax,

we define the agree & pursue law, denoted by CCagree & pursue, as the
uniform data-sampled law loosely described as follows:

[Informal description] The processor state consists of dir (the
robot’s direction of motion) taking values in {c, cc} (meaning
clockwise and counterclockwise) and max-id (the largest UID
received by the robot, initially set to the robot’s UID) taking
values in I. In each communication round, each robot transmits
its position and its processor state. Among the messages received
from agents moving toward its position, each agent picks the
message with the largest value of max-id. If this value is larger
than its own value, the agent resets its processor state with the
selected message. Between communication rounds, each robot
moves in the clockwise or counterclockwise direction depending
on whether its processor state dir is c or cc. Each robot moves
kprop times the distance to the immediately next neighbor in the
chosen direction, or, if no neighbors are detected, kprop times the
communication range r.

Note that the processor state with the largest UID will propagate through-
out the network as in the floodmax algorithm for leader election. Also,
note that the assumption kpropr ≤ umax guarantees that the desired control
is always within the allowable range [−umax, umax]. Next, we define the law
formally:

Robotic Network: Scircle, first-order agents in S
1

with absolute sensing of own position, and
with communication range r

Distributed Algorithm: agree & pursue

Alphabet: A = S
1 × {c, cc} × I ∪{null}
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Processor State: w = (dir, max-id), where

dir ∈ {c, cc}, initially: dir[i] unspecified

max-id ∈ I, initially: max-id[i] = i for all i

% Standard message-generation function
function msg(θ, w, i)

1: return (θ, w)

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) AND (distcc(θ, θrcvd) ≤ r AND dirrcvd =

c) OR (distc(θ, θrcvd) ≤ r AND dirrcvd = cc) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

function ctl(θsmpld, w, y)

1: dtmp := r
2: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
3: if (dir = cc) AND (distcc(θsmpld, θrcvd) < dtmp) then
4: dtmp := distcc(θsmpld, θrcvd)
5: utmp := kpropdtmp

6: if (dir = c) AND (distc(θsmpld, θrcvd) < dtmp) then
7: dtmp := distc(θsmpld, θrcvd)
8: utmp := −kpropdtmp

9: return utmp

An implementation of this control and communication law is shown in
Figure 3.4. As parameters, we select n = 45, r = 2π/40, umax = 1/4 and
kprop = 7/16. Along the evolution, all robots agree upon a common direction
of motion and, after a suitable time, they reach a uniform distribution.

Figure 3.4 The agree & pursue law. Red-colored disks and blue-colored circles cor-
respond to robots moving counterclockwise and clockwise, respectively. The
initial positions and the initial directions of motion are randomly generated.
The five diagrams depict the state of the network at times 0, 9, 20, 100, and
800.
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3.2 ROBOTIC NETWORKS WITH RELATIVE SENSING

The model presented above assumes the ability of each robot to know its own
absolute position. Here, we treat the alternative setting in which the robots
do not communicate amongst themselves, but instead detect and measure
each other’s relative position through appropriate sensors. Additionally,
we assume that the robots will perform measurements of the environment
without having any a priori knowledge of it. We assume that robots do not
have the ability to perform measurements expressed in a common reference
frame. An early reference in which relative information is adopted is Lin
et al. (2005).

3.2.1 Kinematics notions

Because the robots do not have a common reference frame, all the measure-
ments generated by their on-board sensors are expressed in a local reference
frame. To formalize this fact, it is useful to review some basic kinematics
conventions. We let Σfixed = (pfixed, {xfixed, yfixed, zfixed}) be a fixed refer-
ence frame in R

3. A point q, a vector v, and a set of points S expressed
with respect to the frame Σfixed are denoted by qfixed, vfixed and Sfixed, re-
spectively. Next, let Σb = (pb, {xb, yb, zb}) be a reference frame fixed to

pfixed

z
fixed

y
fixed

xfixed

pb
fixed

q

qfixed

pb

x
b

y
b

z
b

qb

Figure 3.5 Inertially fixed and body-fixed frames in R
3.

a moving body. The origin of Σb is the point pb, denoted by pb
fixed when

expressed with respect to Σfixed. The orientation of Σb is characterized by
the d-dimensional rotation matrix Rb

fixed, whose columns are the frame vec-
tors {xb, yb, zb} of Σb expressed with respect to Σfixed. We recall here the
definition of the group of rotation matrices in d-dimensions:

SO(d) = {R ∈ R
d×d | RRT = Id, det(R) = +1}.
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With these notations, changes of reference frames are described by

qfixed = Rb
fixedqb + pb

fixed,

vfixed = Rb
fixedvb,

Sfixed = Rb
fixedSb + pb

fixed. (3.2.1)

Note that these change-of-frames formulas also hold in the planar case with
the corresponding definition of the rotation matrix in SO(2).

Remark 3.13 (Comparison with literature). In our notation, the sub-
script denotes the frame with respect to which the quantity is expressed.
Other references in the literature sometimes adopt the opposite convention,
in which the superscript denotes the frame with respect to which the quan-
tity is expressed. •

3.2.2 Physical components

In what follows, we describe our notion of mobile robots equipped with rel-
ative sensors. We consider a group of n robots moving in an allowable
environment Q ⊂ R

d, for d ∈ {2, 3}, and we assume that a reference frame
Σ[i], for i ∈ {1, . . . , n}, is attached to each robot (see Figure 3.6). Expressed
with respect to the fixed frame Σfixed, the ith frame Σ[i] is described by a

position p
[i]
fixed ∈ R

d and an orientation R
[i]
fixed ∈ SO(d). The continuous-time

motion and discrete-time sensing models are described as follows.

Σfixed

Σ[1]

Σ[2]

Σ[3]

Σ[4]

Figure 3.6 A robotic network with relative sensing. A group of four robots moves in R
2.

Each robot i ∈ {1, . . . , 4} has its own reference frame Σ[i].

Motion model: We select a simple motion model: for all t ∈ R≥0, the
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orientation R
[i]
fixed is constant in time and robot i translates according to

ṗ
[i]
fixed(t) = R

[i]
fixedu

[i]
i , (3.2.2)

that is, the ith control input u
[i]
i is known and applied in the robot frame.

Each control input u
[i]
i , i ∈ {1, . . . , n}, takes values in a compact input

space U . Clearly, it would be possible to consider a motion model with
time-varying orientation and we refer the reader to Exercise E3.1, where we
do so.

Sensing model: At each discrete time instant, robot i activates a sensor
that detects the presence and returns a measurement about the relative po-
sition of any object (robots or environment boundary) inside a given “sensor
footprint.” We describe the model in two steps. First, each robot measures

Σ
fixed

Σ
[i]

S
[i]

(a)

Σ
fixed

Σ
[i]

S [i]

(b)

Figure 3.7 Examples of sensor footprints. (a) The cone-shaped sensor footprint of a vehicle
equipped with a camera. (b) The 270-degree wedge-shaped sensor footprint of
a vehicle equipped with a laser scanner.

other robots’ positions and the environment as follows.

Sensing other robots’ positions. There exists a set Arbt containing the
null element, called the sensing alphabet, and a map rbt-sns : R

d →
Arbt, called the sensing function, with the interpretation that robot i

acquires the symbol rbt-sns(p
[j]
i ) ∈ Arbt for each robot j ∈ {1, . . . , n}\

{i}.

Sensing the environment. There exists a set Aenv containing the null

element, called the environment sensing alphabet, and a map env-sns :
P(Rd) → Aenv, called the environment sensing function, with the in-
terpretation that robot i acquires the symbol env-sns(Qi) ∈ Aenv.
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Second, we let S[i] ⊂ R
d be the sensor footprint of robot i and we let

S
[i]
i be its expression in the frame Σ[i] (see Figure 3.7). For simplicity, we

assume that all robot sensors are equal, so that we can write S
[i]
i = S. We

require both sensing functions to provide no information about robots and
boundaries that are outside S in the following two meanings: (i) if p is any
point outside S, then rbt-sns(p) = null; and (ii) if W is any subset of R

d,
env-sns(W ) = env-sns(W ∩S).

We summarize this discussion with the following definition.

Definition 3.14 (Network with relative sensing). The physical com-
ponents of a network with relative sensing consist of n mobile robots with
identifiers {1, . . . , n}, with configurations in Q×SO(d), for an allowable en-
vironment Q ⊂ R

d, with dynamics described by equation (3.2.2), and with
relative sensors described by the sensor footprint S, sensing alphabets Arbt

and Aenv, and sensing functions rbt-sns and env-sns. •

To make things concrete, let us present two examples of robotic networks
with relative sensing that are analogs of the “communication-based” robotic
networks Sdisk and Svis-disk in Examples 3.4 and 3.6.

Example 3.15 (Disk sensor and corresponding relative-sensing net-
work). Given a sensing range r ∈ R>0, the disk sensor has sensor footprint
B(0d, r), that is, a disk sensor measures any object (robot and environment
boundary) within distance r. Regarding sensing of other robots, we assume
that the alphabet is Arbt = R

d ∪{null} and that the sensing function is

rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n} \ {i}, inside the sensor foot-

print B(0d, r), and rbt-sns(p
[j]
i ) = null, otherwise. Regarding sensing of

the environment, we assume that the alphabet is Aenv = P(Rd) and that the
sensing function is env-sns(Qi) = Qi ∩B(0d, r). A group of robots with disk
sensors defines the robotic network with relative sensing Srs

disk. •

Example 3.16 (Range-limited visibility sensor and corresponding
relative-sensing network). Given a sensing range r ∈ R>0, the range-
limited visibility sensor has sensor footprint B(0d, r) and performs measure-
ments only of objects within unobstructed line of sight. Regarding sensing
of other robots, we assume that the alphabet is Arbt = R

d ∪{null} and that

the sensing function is rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n} \ {i},

inside the range-limited visibility set Vidisk(02; Qi), and rbt-sns(p
[j]
i ) = null,

otherwise. Regarding sensing of the environment, we assume1 that the al-
phabet is Aenv = P(Rd) and that the environment sensor measures the range-

1It would be equivalent to assume that the robot can sense every portion of ∂Q that is within
distance r and that is visible from the robot’s position.
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limited visibility set Vidisk(p
[i]
fixed; Q) expressed with respect to the frame Σ[i];

for the definition of range-limited visibility set, see Section 2.1.2. In other
words, the environment sensing function is env-sns(Qi) = Vidisk(02; Qi).
This is illustrated in Figure 3.8. A group of robots with range-limited visi-

p
[i]
fixed

Σ[i]

02

Σ[i]

Figure 3.8 The left-hand plot depicts the range-limited visibility set Vidisk(p
[i]
fixed; Q) ex-

pressed with respect to an inertially fixed frame. The right-hand plot de-
picts the range-limited visibility set expressed with respect to the body-fixed
frame Σ[i], that is, Vidisk(02; Qi).

bility sensors defines the robotic network with relative sensing Srs
vis-disk. •

Remark 3.17 (Sensing model consequences). The proposed sensing
model has the following two consequences:

(i) Robots have no information about the absolute position and orienta-
tion of themselves, the other robots or any part of the environment.

(ii) The relative sensing capacity of the robots gives rise to a proximity
graph, called the sensing graph, whose edges are the collection of
robot pairs that are within sensing range. For example, in the net-
work Srs

disk, the sensing graph is the disk graph Gdisk(r). In general,
sensing graphs are directed. •

3.2.3 Relative-sensing control laws

As we did for robotic networks with interactions based on communication,
we define here control laws based on relative sensing and we describe the
closed-loop evolution of robotic networks with relative sensing.

First, we consider a robotic network with relative sensing Srs characterized
by: identifiers {1, . . . , n}, configurations in Q × SO(d), for an allowable
environment Q ⊂ R

d, dynamics described by equation (3.2.2), and relative
sensors described by the sensor footprint S, sensing alphabets Arbt and
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Aenv, and sensing functions rbt-sns and env-sns. A relative-sensing control
law RSC for the robotic network with relative sensing Srs consists of the
following tuple:

(i) W , called the processor state set, with a corresponding set of allow-
able initial values W0 ⊆ W ;

(ii) stf : W × A
n
rbt × Aenv → W , called the (processor) state-transition

function; and

(iii) ctl : W × A
n
rbt × Aenv → U , called the (motion) control function.

As for robotic networks, we say that RSC is static if W is a singleton for
all i ∈ {1, . . . , n}; in this case, RSC can be described by a motion control
function ctl : A

n
rbt × Aenv → U . Additionally, if the environment Q = R

d,
then RSC can be described by a motion control function ctl : W×A

n
rbt → U .

Second, the evolution of (Srs,RSC) from initial conditions (p
[i]
0 , R

[i]
fixed) ∈

R
d × SO(d) and w

[i]
0 ∈ W0, i ∈ {1, . . . , n} is the collection of curves p

[i]
fixed :

R≥0 → R
d and w[i] : Z≥0 → W , i ∈ {1, . . . , n}, defined by

ṗ
[i]
fixed(t) = R

[i]
fixed ctl

(

w[i](⌊t⌋), y[i](⌊t⌋), y[i]
env(⌊t⌋)

)

,

w[i](ℓ) = stf(w[i](ℓ − 1), y[i](ℓ), y[i]
env(ℓ)),

with p
[i]
fixed(0) = p

[i]
0 and w[i](−1) = w

[i]
0 , i ∈ {1, . . . , n}. In the previous

equations, y[i] : Z≥0 → A
n
rbt (describing the robot measurements taken by

sensor i) with components y
[i]
j (ℓ), for j ∈ {1, . . . , n}, and y

[i]
env : Z≥0 → Aenv

(describing the environment measurements taken by sensor i) are defined by

y
[i]
j (ℓ) = rbt-sns(p

[j]
i (ℓ)), y[i]

env(ℓ) = env-sns(Qi(ℓ)).

In the last equation, p
[j]
i and Qi(ℓ) denote the position of the j-th robot and

the environment Q as expressed with respect to the moving frame Σ[i].

3.2.4 Equivalence between control and communication laws and relative-

sensing control laws

Consider a “communication-based” robotic network S1 with a control and
communication law CC1 with the following properties:

(i) Regarding S1: the network is uniform, the state space is X = R
d

with states denoted by x[i] = p[i], the communication graph is the
r-disk graph, and the robot dynamics are ṗ[i] = u[i].

(ii) Regarding CC1: the control and communication law is uniform and
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data-sampled, the communication alphabet is A = R
d ∪{null}, and

the message-generation function is msg(p, w, j) = p.

Given a network and a law (S1, CC1) satisfying (i) and (ii), the control
and communication law CC1 is invariant if its state transition and control
maps satisfy, for all p ∈ R

d, w ∈ W , y ∈ A
n, and R ∈ SO(d),

stf(p, w, y) = stf
(

0d, w, R(y − p)
)

,

ctl(p, w, y) = RT ctl
(

0d, w, R(y − p)
)

,

where the ith component of R(y − p) ∈ A
n is R(yi − p) if yi ∈ R

d, or null

if yi = null.

Next, consider a relative-sensing network S2 with disk sensors as in Exam-
ple 3.15, that is, assume that the sensing footprint is B(0d, r), the sensing
alphabet is Arbt = R

d ∪{null}, and the sensing function equals the identity
function in B(0d, r). We assume no environment sensing as we set Q = R

d.
The communication and control law CC1 and the relative-sensing control law
RSC2 for network S2 are equivalent if their processor state sets identical, for
example, denoting both by W , and their state transition and control maps
satisfy, for all w ∈ W and y ∈ R

d ∪{null} = A
n = A

n
rbt,

stf1(0d, w, y) = stf2(w, y), and ctl1(0d, w, y) = ctl2(w, y).

Proposition 3.18 (Evolution equivalence). If CC1 is invariant and if
CC1 and RSC2 are equivalent, then the evolutions of the control and com-
munication laws (S1, CC1) and (S2,RSC2) from identical initial conditions
are identical.

Proof. Assume that the messages and measurements array y[i](t) received
by the i-th robot at time t in the communication-based network and in the
relative-sensing networks are equal to, respectively:

p
[j1]
fixed, . . . , p

[jk]
fixed, and p

[j1]
i , . . . , p

[jk]
i .

Under this assumption, the evolutions of the communication-based network
and of the relative-sensing networks are written, respectively, as,

ṗ
[i]
fixed = ctl1(p

[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed),

ṗ
[i]
fixed = R

[i]
fixedctl2(w

[i], p
[j1]
i , . . . , p

[jk]
i ).

From equation (3.2.1), we know that, for all j ∈ {j1, . . . , jk},

p
[j]
fixed = R

[i]
fixedp

[j]
i + p

[i]
fixed =⇒ p

[j]
i = (R

[i]
fixed)

T (p
[j]
fixed − p

[i]
fixed).
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From this equality and from the fact that CC1 is invariant, we observe that

ctl1(p
[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed) = R

[i]
fixedctl1(0d, w

[i], p
[j1]
i , . . . , p

[jk]
i ).

Since CC1 and RSC2 are equivalent, the two evolution equations coincide.
A similar reasoning also shows that the evolutions of the processor states
are identical. �

Remark 3.19 (Communication-based laws on relative-sensing net-
works). Proposition 3.18 implies the following fact. An invariant control
and communication law for a robotic network satisfying appropriate prop-
erties can be implemented on an appropriate relative-sensing network as a
relative-sensing control law. •

3.3 COORDINATION TASKS AND COMPLEXITY NOTIONS

In this section, we introduce concepts and tools that are useful analyzing
a communication and control law in a robotic network; our treatment is
directly generalized to relative-sensing networks. We address the following
questions: What is a coordination task for a robotic network? When does a
control and communication law achieve a task? And with what time, space,
and communication complexity?

3.3.1 Coordination tasks

Our first analysis step is to characterize the correctness properties of a com-
munication and control law. We do so by defining the notions of task and
of task achievement by a robotic network.

Definition 3.20 (Coordination task). Let S be a robotic network and
let W be a set.

(i) A coordination task is a map T :
∏

i∈I X [i] ×Wn → {true, false}.
(ii) If W is a singleton, then the coordination task is said to be static

and can be described by a map T :
∏

i∈I X [i] → {true, false}.

Additionally, let CC be a control and communication law for S:

(i) The law CC is compatible with the task T :
∏

i∈I X [i] × Wn →
{true, false} if its processor state takes values in W, that is, if
W [i] = W, for all i ∈ I.

(ii) The law CC achieves the task T if it is compatible with it and if, for

all initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, there exists
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T ∈ R>0 such that the network evolution t 7→ (x(t), w(t)) has the
property that T(x(t), w(t)) = true for all t ≥ T . •

Remark 3.21 (Temporal logic). Loosely speaking, the phrase “a law
achieves a task” means that the network evolutions reach (and remain at)
a specified pattern in the robot physical or processor state. In other words,
the task is achieved if at some time and for all subsequent times, the pred-
icate evaluates to true along system trajectories. It is possible to consider
more general tasks based on more expressive predicates on trajectories. Such
predicates can be defined through various forms of temporal and proposi-
tional logic, (see, e.g., Emerson, 1994). In particular, (linear) temporal logic
contains certain constructs that allow reasoning in terms of time and is hence
appropriate for robotic applications—as argued, for example, by Fainekos
et al. (2005). Network tasks such as periodically visiting a desired set of
configurations can be encoded with temporal logic statements. •

Example 3.22 (Direction agreement and equidistance tasks). From
Example 3.7, consider the uniform network Scircle of locally connected first-
order agents in S

1. From Section 3.1.3, recall the agree & pursue control
and communication law CCagree & pursue with processor state taking values
in W = {cc, c} × I. There are two tasks of interest. First, we define the
direction agreement task Tdir : (S1)n × Wn → {true, false} by

Tdir(θ, w) =

{

true, if dir[1] = · · · = dir[n],

false, otherwise,

where θ = (θ[1], . . . , θ[n]), w = (w[1], . . . , w[n]), and w[i] = (dir[i], max-id[i]),
for i ∈ I. Furthermore, for ε > 0, we define the static (agent) equidistance
task Tε-eqdstnc : (S1)n → {true, false} to be true if and only if

∣

∣ min
j 6=i

distc(θ
[i], θ[j]) − min

j 6=i
distcc(θ

[i], θ[j])
∣

∣ < ε, for all i ∈ I.

In other words, Tε-eqdstnc is true when, for every agent, the distances to the
closest clockwise neighbor and to the closest counterclockwise neighbor are
approximately equal. •

3.3.2 Complexity notions

We are now ready to define the notions of time, space and communication
complexity. These notions describe the cost that a certain control and com-
munication law incurs while completing a certain coordination task. Addi-
tionally, the complexity of a task is the infimum of the costs incurred by all
laws that achieve that task. We begin by highlighting a difference between
what follows and the complexity treatment for synchronous networks.
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Remark 3.23 (Termination via task completion). As discussed in Re-
mark 1.44 in Section 1.5, it is possible to consider various algorithm termi-
nation notions. Here, we will establish the completion of an algorithm as
the instant when a given task is achieved. •

First, we define the time complexity of an achievable task as the minimum
number of communication rounds needed by the agents to achieve the task T.

Definition 3.24 (Time complexity). Let S be a robotic network and let
T be a coordination task for S. Let CC be a control and communication law
for S compatible with T:

(i) the (worst-case) time complexity to achieve T with CC from initial

conditions (x0, w0) ∈
∏

i∈I X
[i]
0 × ∏

i∈I W
[i]
0 is

TC(T, CC , x0, w0) = inf {ℓ | T(x(k), w(k)) = true , for all k ≥ ℓ},

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial
condition (x0, w0);

(ii) the (worst-case) time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈
∏

i∈I

X
[i]
0 ×

∏

i∈I

W
[i]
0

}

;

(iii) the (worst-case) time complexity of T is

TC(T) = inf{TC(T, CC) | CC compatible with T}. •

Next, we quantify memory and communication requirements of commu-
nication and control laws. We assume that elements of the processor state
set W or of the alphabet set A might amount to multiple “basic memory
units” or “basic messages.” We let |W |basic and |A|basic denote the number
of basic memory units and basic messages required to represent elements
of W and A, respectively. The null message has zero cost. To clarify this
assumption, we adopt two conventions. First, as in Section 1.5.2, we assume
that a “basic memory unit” or a “basic message” contains log(n) bits. This
implies that the log(n) bits required to store or transmit a robot identifier
i ∈ {1, . . . , n} are equivalent to one “basic memory unit.” Second, as men-
tioned in Remark 3.11, we assume that a processor can store and transmit
a (finite number of) integer and real numbers, and we adopt the convention
that any such number is quantized and represented by a constant number
of basic memory units or basic messages.

We now quantify memory requirements of algorithms and tasks by count-
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ing the required number of basic memory units. Let the network S, the task
T, and the control and communication law CC be as in Definition 3.24.

Definition 3.25 (Space complexity).

(i) The (worst-case) space complexity to achieve T with CC , denoted
by SC(T, CC), is the maximum number of basic memory units re-
quired by a robot processor executing the CC on S among all robots
and among all allowable initial physical and processor states until
termination; and

(ii) the space complexity of T is the infimum among the space complex-
ities of all control and communication laws that achieve T. •

The set of all non-null messages generated during one communication
round from network state (x, w) is denoted by

M(x, w) = {(i, j) ∈ Ecmm(x) | msg[i](x[i], w[i], j) 6= null}.
We now quantify the mean and total communication requirements of algo-
rithms and tasks by counting the number of transmitted basic messages.

Definition 3.26 (Mean and Total Communication complexity).

(i) The (worst-case) mean communication complexity and the (worst-
case) total communication complexity to achieve T with CC from

(x0, w0) ∈
∏

i∈I X
[i]
0 ×

∏

i∈I W
[i]
0 are, respectively,

MCC(T, CC , x0, w0) =
|A|basic

τ

τ−1
∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

TCC(T, CC , x0, w0) = |A|basic

τ−1
∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial
condition (x0, w0) and where τ = TC(CC , T, x0, w0). Here, MCC is
defined only for initial conditions (x0, w0) with the property that
T(x0, w0) = false;

(ii) the (worst-case) mean communication complexity (resp. the (worst-
case) total communication complexity) to achieve T with CC is the
supremum of MCC(T, CC , x0, w0) (resp. TCC(T, CC , x0, w0)) over all
allowable initial states (x0, w0); and

(iii) the (worst-case) mean communication complexity (resp. the worst-
case total communication complexity) of T is the infimum among
the mean communication complexity (resp. the total communication
complexity) of all control and communication laws achieving T. •
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By construction, one can verify that it always happens that

TCC(T, CC) ≤ MCC(T, CC) · TC(T, CC). (3.3.1)

We conclude this section with possible variations and extensions of the com-
plexity definitions.

Remark 3.27 (Infinite-horizon mean communication complexity).
The mean communication complexity MCC measures the average cost of the
communication rounds required to achieve a task over a finite time horizon;
a similar statement holds for the total communication complexity TCC. One
might be interested in a notion of mean communication complexity required
to maintain the task true for all times. Accordingly, the infinite-horizon
mean communication complexity of CC from initial conditions (x0, w0) is

IH-MCC(CC , x0, w0) = lim
τ→+∞

|A|basic

τ

τ
∑

ℓ=0

|M(x(ℓ), w(ℓ))|. •

Remark 3.28 (Communication complexity in omnidirectional net-
works). In omnidirectional wireless networks, the standard operation mode
is for all neighbors of a node to receive the signal that it transmits. In other
words, the transmission is omnidirectional rather than unidirectional. It
is straightforward to require the message-generation function to have the
property that the output it generates be independent of the intended re-
ceiver. Under such assumptions, it make sense to count as communication
complexity not the number of messages transmitted in the network, but the
number of transmissions, that is, a unit cost per node rather than a unit
cost per edge of the network. •

Remark 3.29 (Energy complexity). Given a model for the energy con-
sumed by the robot to move and to transmit a message, one can easily
define a notion of energy complexity for a control and communication law.
In modern wireless transmitters, the energy consumption in transmitting a
signal at a distance r varies with a power of r. Analogously, energy con-
sumption is an increasing function of distance traveled. We consider this to
be a promising avenue for further research. •

3.3.3 Invariance under rescheduling

Here we discuss the invariance properties of time and communication com-
plexity under the rescheduling of a control and communication law. The
idea behind rescheduling is to “spread” the execution of the law over time
without affecting the trajectories described by the robots.
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For simplicity we consider the setting of static laws; similar results can
be obtained for the general setting. Also, for ease of presentation, we al-
low our communication and control laws to be time dependent, that is, we
consider message-generation functions and motion control functions of the
form msg[i] : Z≥0 × X [i] × I → A and ctl[i] : R≥0 × X [i] × X [i] × A

n → U [i],
respectively. Definition 3.10 for network evolution can be readily extended
to this more general time-dependent setup.

Let S = (I,R, Ecmm) be a robotic network in which each robot is a drift-

less control system (see Section 1.3). Let CC = (A, {msg[i]}i∈I , {ctl[i]}i∈I)
be a static control and communication law. In what follows, we define a
new control and communication law by modifying CC ; to do so, we intro-
duce some notation. Let s ∈ N, with s ≤ n, and let PI = {I0, . . . , Is−1} be
an s-partition of I, that is, I0, . . . , Is−1 ⊂ I are disjoint and nonempty
and I = ∪s−1

k=0 Ik. For i ∈ I, define the message-generation functions

msg
[i]
PI

: Z≥0 × X [i] × I → A by

msg
[i]
PI

(ℓ, x, j) = msg[i](⌊ℓ/s⌋ , x, j), (3.3.2)

if i ∈ Ik and k = ℓ mod s, and msg
[i]
PI

(ℓ, x, j) = null otherwise. According
to this message-generation function, only the agents with a unique identifier
in Ik will send messages at time ℓ, where ℓ ∈ {k + as}a∈Z≥0

. Equivalently,
this can be stated as follows: according to (3.3.2), the messages originally
sent at the time instant ℓ are now rescheduled to be sent at the time instants
F (ℓ)−s+1, . . . , F (ℓ), where F : Z≥0 → Z≥0 is defined by F (ℓ) = s(ℓ+1)−1.
Figure 3.9 illustrates this idea. For i ∈ I, define the control functions

ℓ ℓ + 1

F (ℓ) − s + 1 F (ℓ) F (ℓ) + 1

Figure 3.9 Under the rescheduling, the messages that are sent at the time instant ℓ under
the control and communication law CC are rescheduled to be sent over the
time instants F (ℓ)− s + 1, . . . , F (ℓ) under the control and communication law
CC (s,PI ).

ctl[i] : R≥0 × X [i] × X [i] × A
n → U [i] by

ctl
[i]
PI

(t, x, xsmpld, y) = ctl[i]
(

t − ℓ + F−1(ℓ), x, xsmpld, y
)

, (3.3.3)

if t ∈ [ℓ, ℓ + 1] and ℓ = −1 mod s, and ctl
[i]
PI

(t, x, xsmpld, y) = 0 otherwise.
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Here, F−1 : Z≥0 → Z≥0 is the inverse of F , defined by F−1(ℓ) = ℓ+1
s − 1.

Roughly speaking, the control law ctl
[i]
PI

makes the agent i wait for the time
intervals [ℓ, ℓ+1], with ℓ ∈ {as−1}a∈N, to execute any motion. Accordingly,
the evolution of the robotic network under the original law CC during the
time interval [ℓ, ℓ + 1] now takes place when all the corresponding messages
have been transmitted, that is, along the time interval [F (ℓ), F (ℓ)+ 1]. The
following definition summarizes this construction.

Definition 3.30 (Rescheduling of control and communication laws).
Let S = (I,R, Ecmm) be a robotic network with driftless physical agents,

and let CC = (Z≥0, A, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and commu-
nication law. Let s ∈ N, with s ≤ n, and let PI be an s-partition of I. The

control and communication law CC (s,PI) = (Z≥0, A, {msg
[i]
PI
}i∈I , {ctl[i]PI

}i∈I)
defined by equations (3.3.2) and (3.3.3) is called a PI-rescheduling of CC . •

The following result, whose proof is presented in Section 3.6.1, shows that
the total communication complexity is invariant under rescheduling.

Proposition 3.31 (Complexity of rescheduled laws). With the as-
sumptions of Definition 3.30, let T :

∏

i∈I X [i] → {true, false} be a coordi-

nation task for S. Then, for all x0 ∈ ∏

i∈I X
[i]
0 ,

TC(T, CC (s,PI), x0) = s · TC(T, CC , x0) .

Moreover, if Crnd is additive, then, for all x0 ∈ ∏

i∈I X
[i]
0 ,

MCC(T, CC (s,PI), x0) =
1

s
· MCC(T, CC , x0) ,

and therefore, TCC(T, CC (s,PI), x0) = TCC(T, CC , x0), that is, the total com-
munication complexity of CC is invariant under rescheduling.

Remark 3.32 (Appropriate complexity notions for driftless agents).
Given the results in the previous theorem, one should be careful in choosing
which notion of communication complexity to use in order to evaluate control
and communication laws. For driftless physical agents, rather than the
mean communication complexity MCC, one should really consider the total
communication complexity TCC, since the latter is invariant with respect to
rescheduling. Note that the notion of infinite-horizon mean communication
complexity IH-MCC defined in Remark 3.27 satisfies the same relationship
as MCC, that is, IH-MCC(CC (s,PI), x0) = 1

s IH-MCC(CC , x0). •
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3.4 COMPLEXITY OF DIRECTION AGREEMENT AND

EQUIDISTANCE

From Example 3.7, Section 3.1.3, and Example 3.22, recall the definition of
a uniform network Scircle of locally connected first-order agents in S

1, the
agree & pursue control and communication law CCagree & pursue, and the
two coordination tasks Tdir and Tε-eqdstnc. In this section, we characterize
the complexity to achieve these coordination tasks with CCagree & pursue.
Because the number of bits required to represent the variable max-id ∈
{1, . . . , n} is log(n), note that the space complexity of CCagree & pursue is
log(n) bits, that is, one basic memory unit in our convention discussed in
Section 3.3.2.

Motivated by Remark 3.8, we model wireless communication congestion
by assuming that the communication range is a monotone non-increasing
function r : N → ]0, π[ of the number of agents n. Likewise, we assume that
the maximum control amplitude umax is a non-increasing function umax :
N → ]0, 1[; recall that umax is the maximum robot speed. Finally, it is
convenient to define the function n 7→ δ(n) = nr(n)−2π ∈ R that compares
the sum of the communication ranges of all the robots with the length of
the unit circle.

We are now ready to state the main result of this section; proofs are
postponed to Section 3.6.2.

Theorem 3.33 (Time complexity of agree-and-pursue law). Given
kprop ∈ ]0, 1

2 [, in the limit as n → +∞ and ε → 0+, the network Scircle

with umax(n) ≥ kpropr(n), the law CCagree & pursue, and the tasks Tdir and
Tε-eqdstnc together satisfy the following properties:

(i) TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1).

(ii) If δ(n) is lower bounded by a positive constant as n → +∞, then

TC(Tε-eqdstnc, CCagree & pursue) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagree & pursue) ∈ O(n2 log(nε−1)).

If δ(n) is upper bounded by a negative constant, then in general the
law CCagree & pursue does not achieve Tε-eqdstnc.

Next, we study the total communication complexity of the agree-and-
pursue control and communication law. First, we note that any message in
A = S

1 ×{cc, c}×{1, . . . , n}∪{null} requires only a finite number of basic
messages to encode, that is, |A|basic ∈ O(1).

Theorem 3.34 (Total communication complexity of agree-and-pur-
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sue law). For kprop ∈ ]0, 1
2 [, in the limit as n → +∞ and ε → 0+, the

network Scircle with umax(n) ≥ kpropr(n), the law CCagree & pursue, and the
tasks Tdir and Tε-eqdstnc together satisfy the following properties:

(i) If δ(n) ≥ π(1/kprop − 2) as n → +∞, then

TCC(Tdir, CCagree & pursue) ∈ Θ(n2r(n)−1);

otherwise, if δ(n) ≤ π(1/kprop − 2) as n → +∞, then

TCC(Tdir, CCagree & pursue) ∈ Ω(n3 + nr(n)−1),

TCC(Tdir, CCagree & pursue) ∈ O(n2r(n)−1).

(ii) If δ(n) is lower bounded by a positive constant as n → +∞, then

TCC(Tε-eqdstnc, CCagree & pursue)∈ Ω(n3δ(n) log(nε)−1),

TCC(Tε-eqdstnc, CCagree & pursue)∈ O(n4 log(nε−1)).

Remark 3.35 (Comparison with leader election). Let us compare
the agree-and-pursue control and communication law with the classical Le
Lann-Chang-Roberts (LCR) algorithm for leader election discussed
in Section 1.5.4. The leader election task consists of electing a unique agent
among all agents in the network; therefore, it is different from, but closely
related to, the coordination task Tdir. The LCR algorithm operates on
a static network with the ring communication topology, and achieves leader
election with time and total communication complexity Θ(n) and Θ(n2),
respectively. The agree-and-pursue law operates on a robotic network with
the r(n)-disk communication topology, and achieves Tdir with time and to-
tal communication complexity, respectively, Θ(r(n)−1) and O(n2r(n)−1). If
wireless communication congestion is modeled by r(n) of order 1/n as in Re-
mark 3.8, then the two algorithms have identical time complexity and the
LCR algorithm has better communication complexity. Note that com-
putations on a possibly disconnected, dynamic network are more complex
than on a static ring topology. •

3.5 NOTES

The study of multi-robot systems has a long and rich history. Some recent
examples include the surveys (Asama, 1992; Cao et al., 1997; Dias et al.,
2006), the text by Arkin (1998) on behavior-based robotics, and the special
issues (Arai et al., 2002; Abdallah and Tanner, 2007; Bullo et al., 2009).
Together with this literature, the starting points for developing the material
in this chapter are the standard notions of synchronous and asynchronous
networks in distributed (Lynch, 1997; Peleg, 2000; Tel, 2001) and paral-
lel (Bertsekas and Tsitsiklis, 1997; Parhami, 1999) computation. The estab-
lished body of knowledge on synchronous networks is, however, not directly
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applicable to the robotic network setting because of the agents’ mobility and
the ensuing dynamic communication topology.

An influential contribution toward a network model of mobile interacting
robots is the work by Suzuki and Yamashita (1999). This model consists of
a group of identical “distributed anonymous mobile robots” characterized as
follows: no explicit communication takes place between them, and at each
time instant of an “activation schedule,” each robot senses the relative posi-
tion of all other robots and moves according to a pre-specified algorithm. An
artificial intelligence approach to multi-agent behavior in a shared environ-
ment is taken in Moses and Tennenholtz (1995). Santoro (2001) provides,
with an emphasis on computer science aspects, a brief survey of models, algo-
rithms, and the need for appropriate complexity notions. Recently, a notion
of communication complexity for control and communication algorithms in
multi-robot systems has been analyzed by Klavins (2003); see also Klavins
and Murray (2004). Notions of failures and robustness in robotic networks
are discussed by Gupta et al. (2006). From a broad hybrid networked sys-
tems viewpoint, our robotic network model can be regarded as special cases
of the general modeling paradigms discussed in Lygeros et al. (2003), Lynch
et al. (2003), and Sanfelice et al. (2007).

A key feature of the synchronous robotic network model proposed in this
chapter is the adoption of proximity graphs from computational geometry
as a basis for our communication model. This design choice is justified by
the vast wireless networking literature, where this assumption is made. The
simplest communication model, in which two robots communicate only if
they are within a fixed communication range, is a common model adopted,
for example, in the studies by Gupta and Kumar (2000), Li (2003), Lloyd
et al. (2005), and Santi (2005). These works study the proximity graph
solutions to various communication optimization problems; this discipline
is referred to as topology control (cf., Remark 3.8). Although we focus our
presentation on the topological aspect of the communication service, more
realistic communication models would include randomness, packet losses,
coding, quantization, and delays (see, e.g., Toh, 2001; Tse and Viswanath,
2005).

Next, we review some literature on emergent and self-organized swarm-
ing behaviors in biological groups. Interesting dynamical systems arise in
biological networks at multiple levels of resolution, all the way from interac-
tions among molecules and cells (Miller and Bassler, 2001) to the behavioral
ecology of animal groups (Okubo, 1986). Flocks of birds and schools of
fish can travel in formation and act as one (see Parrish et al., 2002), al-
lowing these animals to defend themselves against predators and protect
their territories. Wildebeest and other animals exhibit complex collective
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behaviors when migrating, such as obstacle avoidance, leader election, and
formation-keeping (see Sinclair, 1977; Gueron and Levin, 1993). Certain for-
aging behaviors include individual animals partitioning their environment
into non-overlapping zones (see Barlow, 1974). Honey bees (Seeley and
Buhrman, 1999), gorillas (Stewart and Harcourt, 1994), and whitefaced ca-
puchins (Boinski and Campbell, 1995) exhibit synchronized group activities
such as initiation of motion and change of travel direction. These remark-
able dynamic capabilities are achieved apparently without following a group
leader; see Barlow (1974), Okubo (1986), Gueron and Levin (1993), Stewart
and Harcourt (1994), Seeley and Buhrman (1999), Boinski and Campbell
(1995), and Parrish et al. (2002) for specific examples of animal species,
and Conradt and Roper (2003), and Couzin et al. (2005) for general stud-
ies. A comprehensive exposition of bio-inspired optimization and control
methods is presented in Passino (2004).

Regarding distributed motion coordination algorithms, much progress has
been made on collective pattern formation (Suzuki and Yamashita, 1999;
Belta and Kumar, 2004; Justh and Krishnaprasad, 2004; Sepulchre et al.,
2007; Paley et al., 2007; Yang et al., 2008), flocking (Olfati-Saber, 2006; Lee
and Spong, 2007; Tanner et al., 2007; Moshtagh and Jadbabaie, 2007), mo-
tion feasibility of formations (Tabuada et al., 2005), formation control using
rigidity and persistence theory (Olfati-Saber and Murray, 2002; Baillieul
and Suri, 2003; Hendrickx et al., 2007; Krick, 2007; Yu et al., 2009), forma-
tion stability (Tanner et al., 2004; Lafferriere et al., 2005; Kang et al., 2006;
Dunbar and Murray, 2006; Smith and Hadaegh, 2007; Zheng et al., 2008),
motion camouflage (Justh and Krishnaprasad, 2006), self-assembly (Klavins
et al., 2006), swarm aggregation (Gazi and Passino, 2003), gradient climb-
ing (Ögren et al., 2004; Cortés, 2007), cyclic-pursuit (Bruckstein et al., 1991;
Marshall et al., 2004; Mart́ınez and Bullo, 2006; Smith et al., 2005; Pavone
and Frazzoli, 2007), vehicle routing (Sharma et al., 2007), motion plan-
ning with collision avoidance (Lumelsky and Harinarayan, 1997; Hu et al.,
2007; Pallottino et al., 2007), and cooperative boundary estimation (Bertozzi
et al., 2004; Zhang and Leonard, 2005; Clark and Fierro, 2007; Casbeer et al.,
2006; Susca et al., 2008). It is also worth mentioning works on network lo-
calization, estimation, and tracking (see, e.g., Aspnes et al., 2006; Barooah
and Hespanha, 2007; Oh et al., 2007; and the references therein).

Much research has been devoted to distributed task allocation problems.
The work in (Gerkey and Mataric, 2004) proposes a taxonomy of task alloca-
tion problems. In papers such as (Godwin et al., 2006; Alighanbari and How,
2006; Schumacher et al., 2003; Moore and Passino, 2007; Tang and Özgüner,
2005), advanced heuristic methods are developed, and their effectiveness is
demonstrated through analysis, simulation or real world implementation.
Distributed auction algorithms are discussed in (Castañón and Wu, 2003;
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Moore and Passino, 2007) building on the classic works in (Bertsekas and
Castañón, 1991, 1993). A distributed mixed-integer-linear-programming
solver is proposed in (Alighanbari and How, 2006). A spatially distributed
receding-horizon scheme is proposed in (Frazzoli and Bullo, 2004; Pavone
et al., 2007). There has also been prior work on target assignment prob-
lems (Beard et al., 2002; Arslan et al., 2007; Zavlanos and Pappas, 2007;
Smith and Bullo, 2009). Target allocation for vehicles with nonholonomic
constraints is studied in (Rathinam et al., 2007; Savla et al., 2008, 2009).

3.6 PROOFS

This section gathers the proofs of the main results presented in the chapter.

3.6.1 Proof of Proposition 3.31

Proof. Let t 7→ x(t) and t 7→ x̃(t) denote the network evolutions starting

from x0 ∈ ∏

i∈I X
[i]
0 under CC and CC (s,PI), respectively. From the definition

of rescheduling, one can verify that, for all k ∈ Z≥0,

x̃[i](t) =

{

x̃[i](F (k − 1) + 1), for t ∈ ⋃F (k)−1
ℓ=F (k−1)+1[ℓ, ℓ + 1],

x[i](t − F (k) + k), for t ∈ [F (k), F (k) + 1].
(3.6.1)

By the definition of time complexity TC(T, CC , x0), we have T(x(k)) = true,
for all k ≥ TC(T, CC , x0), and T(x(TC(T, CC , x0)− 1)) = false. We rewrite
these equalities in terms of the trajectories of CC (s,PI). From (3.6.1), we

write x[i](k) = x̃[i](F (k)), for all i ∈ I and k ∈ Z≥0. Therefore, we have

T(x̃(F (k))) = T(x(k)) = true , for all F (k) ≥ F (TC(T, CC , x0)),

T(x̃(F (TC(T, CC , x0) − 1))) = T(x(TC(T, CC , x0) − 1)) = false,

where we have used the rescheduled message-generation function in (3.3.2).
Now, note that by equation (3.6.1), x̃[i](ℓ) = x̃[i](F (⌊ℓ/s⌋ − 1) + 1), for
all ℓ ∈ Z≥0 and all i ∈ I. Therefore, T(x̃(F (TC(T, CC , x0) − 1) + 1)) =
T(x̃(F (TC(T, CC , x0)))) and we can rewrite the previous identities as

T(x̃(k)) = true, for all k ≥ F (TC(T, CC , x0) − 1) + 1,

T(x̃(F (TC(T, CC , x0) − 1))) = false,

which implies TC(T, CC (s,PI), x0) = F (TC(T, CC , x0)−1)+1 = sTC(T, CC , x0).
As for the mean communication complexity, additivity of Crnd implies

Crnd ◦M(ℓ, x(ℓ))

= Crnd ◦M(F (ℓ)− s+1, x̃(F (ℓ)− s+1))+ · · ·+Crnd ◦M(F (ℓ), x̃(F (ℓ))),
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where we have used F (ℓ − 1) + 1 = F (ℓ) − s + 1. We conclude the proof by
computing

TC(T,CC (s,PI ),x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ)) =

F (TC(T,CC ,x0)−1)
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ))

=

TC(T,CC ,x0)−1
∑

ℓ=0

F (ℓ)
∑

k=F (ℓ)−s+1

Crnd ◦M(k, x̃(k))

=

TC(T,CC ,x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x(ℓ)).

�

3.6.2 Proof of Theorem 3.33

Proof. In the following four STEPS, we prove the two upper bounds and
the two lower bounds.

STEP 1: We start by proving the upper bound in statement (i). We claim
that TC(Tdir, CCagree & pursue) ≤ 2π/(kpropr(n)), and we reason by contra-
diction, that is, we assume that there exists an initial condition which gives
rise to an execution with time complexity strictly larger than 2π/(kpropr(n)).

Without loss of generality, assume dir[n](0) = c. For ℓ ≤ 2π/(kpropr(n)),
define

k(ℓ) = argmin{distcc(θ
[n](0), θ[i](ℓ)) | dir[i](ℓ) = cc, i ∈ {1, . . . , n}}.

In other words, agent k(ℓ) is the agent moving counterclockwise that has
smallest counterclockwise distance from the initial position of agent n. Note
that k(ℓ) is well-defined since, by hypothesis of contradiction, Tdir is false
for ℓ ≤ 2π/(kpropr(n)). According to the state-transition function of the
law CCagree & pursue (cf., Section 3.1.3), messages with dir = cc can only
travel counterclockwise, while messages with dir = c can only travel clock-
wise. Therefore, the position of agent k(ℓ) at time ℓ can only belong to the
counterclockwise interval from the position of agent k(0) at time 0 to the
position of agent n at time 0.

Let us examine how fast the message from agent n travels clockwise. To
this end, for ℓ ≤ 2π/(kpropr(n)), define

j(ℓ) = argmax{distc(θ
[n](0), θ[i](ℓ)) | max-id[i](ℓ) = n, i ∈ {1, . . . , n}}.

In other words, agent j(ℓ) has max-id equal to n, is moving clockwise, and
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is the agent furthest from the initial position of agent n in the clockwise
direction with these two properties. Initially, j(0) = n. Additionally, for
ℓ ≤ 2π/(kpropr(n)), we claim that

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ + 1)) ≥ kpropr(n).

This happens because either (1) there is no agent clockwise-ahead of θ[j(ℓ)](ℓ)
within clockwise distance r(n), and therefore, the claim is obvious, or (2)
there are such agents. In case (2), let m denote the agent whose clockwise
distance to agent j(ℓ) is maximal within the set of agents with clockwise
distance r(n) from θ[j(ℓ)](ℓ). Then,

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ + 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ + 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + distc(θ

[m](ℓ), θ[m](ℓ + 1))

≥ distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + kprop

(

r(n) − distc(θ
[j(ℓ)](ℓ), θ[m](ℓ))

)

= kpropr(n) + (1 − kprop) distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) ≥ kpropr(n),

where the first inequality follows from the fact that at time ℓ there can
be no agent whose clockwise distance to agent m is less than (r(n) −
distc(θ

[j(ℓ)](ℓ), θ[m](ℓ))). Therefore, after a number of communication rounds
larger than 2π/(kpropr(n)), the message with max-id = n has traveled the
whole circle in the clockwise direction, and must therefore have reached
agent k(ℓ). This is a contradiction.

STEP 2: We prove the lower bound in statement (i). If r(n) > π for all
n, then 1/r(n) < 1/π, and the upper bound is TC(Tdir, CCagree & pursue) ∈
O(1). Obviously, the time complexity of any evolution with an initial con-
figuration where dir[i](0) = cc for i ∈ {1, . . . , n − 1}, dir[n](0) = c, and
EGdisk(r)(θ

[1](0), . . . , θ[n](0)) is the complete graph, is lower bounded by 1.
Therefore, TC(Tdir, CCagree & pursue) ∈ Ω(1). If r(n) > π for all n, then
we conclude TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1). Assume now that
r(n) ≤ π for sufficiently large n. Consider an initial configuration where
dir[i](0) = cc for i ∈ {1, . . . , n − 1}, dir[n](0) = c, and the agents are
placed as depicted in Figure 3.10. Note that, after each communication
round, agent 1 has moved kpropr(n) in the counterclockwise direction, while
agent n has moved kpropr(n) in the clockwise direction. These two agents
keep moving at full speed toward each other until they become neighbors at
a time lower bounded by

2π − r(n)

2kpropr(n)
>

π

kpropr(n)
− 1.

We conclude that TC(Tdir, CCagree & pursue) ∈ Ω(r(n)−1).
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N

N − 1

1

Figure 3.10 Initial condition for the lower bound of TC(Tdir, CCagree & pursue), with 0 <

distc(θ
[n−1](0), θ[n](0)) − r(n) < ε and distc(θ

[1](0), θ[n−1](0)) ≤ r(n) − ε, for
some fixed ε > 0.

STEP 3: We now prove the upper bound in (ii). We begin by noting
that the lower bound on δ implies r(n)−1 ∈ O(n). Therefore, we know that
TC(Tdir, CCagree & pursue) belongs to O(n) and is negligible as compared
with the claimed upper bound estimates for TC(Tε-eqdstnc, CCagree & pursue).
In what follows, we therefore assume that Tdir has been achieved and that,
without loss of generality, all agents are moving clockwise. We now prove a
fact regarding connectivity. At time ℓ ∈ Z≥0, let H(ℓ) be the union of all
the empty “circular segments” of length at least r(n), that is, let

H(ℓ) = {x ∈ S
1 | min

i∈{1,...,n}
distc(x, θ[i](ℓ)) + min

j∈{1,...,n}
distcc(x, θ[j](ℓ)) > r(n)}.

In other words, H(ℓ) does not contain any point between two agents sepa-
rated by a distance less than r(n), and each connected component of H(ℓ)
has length at least r(n). Let nH(ℓ) be the number of connected components
of H(ℓ); if H(ℓ) is empty, then we take the convention that nH(ℓ) = 0.
Clearly, nH(ℓ) ≤ n. We claim that if nH(ℓ) > 0, then τ 7→ nH(ℓ+ τ) is non-
increasing. Let d(ℓ) < r(n) be the distance between any two consecutive
agents at time ℓ. Because both agents move in the same direction, a simple
calculation shows that

d(ℓ + 1) ≤ d(ℓ) + kprop(r − d(ℓ)) = (1 − kprop)d(ℓ) + kpropr(n)

< (1 − kprop)r + kpropr(n) = r(n).

This means that the two agents remain within distance r(n) and, therefore,
connected at the following time instant. Because the number of connected
components of EGdisk(r)(θ

[1], . . . , θ[n]) does not increase, it follows that the
number of connected components of H cannot increase. Next, we claim
that if nH(ℓ) > 0, then there exists τ > ℓ such that nH(τ) < nH(ℓ). By
contradiction, assume that nH(ℓ) = nH(τ) for all τ ≥ ℓ. Without loss
of generality, let {1, . . . , m} be a set of agents with the properties that
distcc

(

θ[i](ℓ), θ[i+1](ℓ)
)

≤ r(n), for i ∈ {1, . . . , m}, that θ[1](ℓ) and θ[m](ℓ)
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belong to the boundary of H(ℓ), and that there is no other set with the
same properties and more agents. (Note that this implies that the agents
1, . . . , m are in counterclockwise order.) One can show that, for τ ≥ ℓ,

θ[1](τ + 1) = θ[1](τ) − kpropr(n),

θ[i](τ + 1) = θ[i](τ) − kprop distc(θ
[i](τ), θ[i−1](τ)),

for i ∈ {2, . . . , m}. If we consider the inter-agent distances

d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . ,distcc(θ

[m−1](τ), θ[m](τ))
)

∈ R
m−1
>0 ,

then the previous equations can be rewritten as

d(τ + 1) = Tridm−1(kprop, 1 − kprop, 0) d(τ) + r(n)kprope1,

where the linear map (a, b, c) 7→ Tridm−1(a, b, c) ∈ R
(m−1)×(m−1) is defined

in Section 1.6.4. This is a discrete-time affine time-invariant dynamical
system with unique equilibrium point r(n)1m−1. By construction, the initial
condition of this system satisfies ‖d(0) − r(n)1m−1‖2 ≤ r(n)

√
m − 1. By

Theorem 1.79(ii) in Section 1.6.4, for η1 ∈ ]0, 1[, the solution τ 7→ d(τ) to this
system reaches a ball of radius η1 centered at the equilibrium point in time
O(m log m+ log η−1

1 ). (Here we have used the fact that the initial condition
of this system is bounded.) In turn, this implies that τ 7→ ∑m

i=1 di(τ) is
larger than (m − 1)(r(n) − η1) in time O(m log m + log η−1

1 ). We are now
ready to find the contradiction, and show that nH(τ) cannot remain equal to
nH(ℓ) for all time τ . After time O(m log m+log η−1

1 ) = O(n log n+log η−1
1 ),

we have

2π ≥ nH(ℓ)r(n) +

nH(ℓ)
∑

j=1

(r(n) − η1)(mj − 1)

= nH(ℓ)r(n) + (n − nH(ℓ))(r(n) − η1) = nH(ℓ)η1 + n(r(n) − η1).

Here, m1, . . . , mnH(ℓ) are the numbers of agents in each isolated group, and
each connected component of H(ℓ) has length at least r(n). Now, take
η1 = (nr(n) − 2π)n−1 = δ(n)n−1, and the contradiction follows from

2π ≥ nH(ℓ)η1 + nr(n) − nη1

= nH(ℓ)η1 + nr(n) + 2π − nr(n) = nH(ℓ)η1 + 2π.

In summary, this shows that the number of connected components of H(ℓ)
decreases by one in time O(n log n + log η−1

1 ) = O(n log n + log(nδ(n)−1)).
Note that δ being lower bounded implies that nδ(n)−1 = O(n) and, there-
fore, O(n log n + log(nδ(n)−1)) = O(n log n). Iterating this argument n
times, in time O(n2 log n) the set H will become empty. At that time, the
resulting network will obey the discrete-time linear time-invariant dynamical
system

d(τ + 1) = Circn(kprop, 1 − kprop, 0) d(τ), (3.6.2)
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where the linear map (a, b, c) 7→ Circn(a, b, c) ∈ R
n×n is defined in Sec-

tion 1.6.4 and where d : Z≥0 → R
n
>0 is defined by

d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . ,distcc(θ

[n](τ), θ[n+1](τ))
)

,

with the convention θ[n+1] = θ[1]. By Theorem 1.79(iii) in Section 1.6.4,
in time O

(

n2 log ε−1
)

, the error 2-norm satisfies the contraction inequality

‖d(τ) − d∗
∥

∥

2
≤ ε‖d(0) − d∗‖2, for d∗ = 2π

n 1n. We convert this inequality on
2-norms into an appropriate inequality on ∞-norms as follows. Note that

‖d(0) − d∗‖∞ = maxi∈{1,...,n} |d[i](0) − d
[i]
∗ | ≤ 2π. For η2 ∈ ]0, 1[ and for τ of

order n2 log η−1
2 ,

‖d(τ) − d∗‖∞ ≤ ‖d(τ) − d∗‖2 ≤ η2‖d(0) − d∗‖2

≤ η2

√
n‖d(0) − d∗‖∞ ≤ η22π

√
n.

This means that the desired configuration is achieved for η22π
√

n = ε, that
is, in time O(n2 log η−1

2 ) = O(n2 log(nε−1)). In summary, the equidistance
task is achieved in time O(n2 log(nε−1)).

STEP 4: Finally, we prove the lower bound in (ii). As we reasoned
before, TC(Tdir, CCagree & pursue) is negligible as compared with the claimed
lower bound estimate for TC(Tε-eqdstnc, CCagree & pursue) and, therefore, we
assume that Tdir has been achieved. We consider an initial configuration
with the properties that: (i) agents are counterclockwise-ordered according
to their unique identifier; (ii) the set H(0) is empty; and (iii) the inter-agent
distances d(0) =

(

distcc(θ
[1](0), θ[2](0)), . . . ,distcc(θ

[n](0), θ[1](0))
)

are

d(0) =
2π

n
1n +

π − ε′

n
(vn + vn),

where ε′ ∈ ]π, 0[ and where vn is the eigenvector of Circn(kprop, 1− kprop, 0)
corresponding to the eigenvalue 1−kprop+kprop cos

(

2π
n

)

−kprop

√
−1 sin

(

2π
n

)

(see Section 1.6.4). Straightforward calculations show the equality vn+vn =
2(1, cos(2π/n), . . . , cos((n − 1)2π/n)) and that ‖vn + vn‖2 =

√
2n. In turn,

this implies that d(0) ∈ R
n
>0 and that ‖d(0) − 2π

n 1n‖2 ∈ O(1/
√

n). Take
η3 ∈ ]0, 1[. The argument described in the proof of Theorem 1.79(iii) leads
to the following statement: the 2-norm of the difference between ℓ 7→ d(ℓ)
and the desired configuration 2π

n 1n decreases by a factor η3 in time of order

n2 log η−1
3 . Given an initial error of order O(1/

√
n) and a final desired error

of order ε, we set η3 = ε
√

n and obtain the desired result that it takes time
of order n2 log(nε)−1 to reduce the 2-norm error and, therefore, the ∞-norm
error to size ε. This concludes the proof. �
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3.6.3 Proof of Theorem 3.34

Proof. Note that the number of edges in Scircle is at most O(n2), as it is
possible that all robots are within distance r(n) of each other. The upper
bounds in (i) and (ii) then follow from inequality (3.3.1) and Theorem 3.33.
To prove the lower bounds, we follow the steps and notation in the proof
of Theorem 3.33. Regarding the lower bounds in (i), we examine the evolu-
tion of the initial configuration depicted in Figure 3.10. From STEP 2: in
the proof of Theorem 3.33, recall that the time it takes agent 1 to receive
the message with max-id = n is lower bounded by π/(kpropr(n)) − 1. Our
proof strategy is to lower bound the number of edges in the graph until this
event happens. Note that, at initial time, there are (n − 1)2 edges in the
communication graph of the network and, therefore, (n − 1)2 messages get
transmitted. At the next communication round, agent 1 has moved kpropr(n)
counterclockwise and, therefore, the number of edges is lower bounded by
(n − 2)2. Iterating this reasoning, we see that after i < π/(kpropr(n)) com-
munication rounds, the number of edges is lower bounded by (n− i)2. Now,
if δ(n) > π(1/kprop − 2), then n > π/kpropr(n)), and therefore, the total
communication complexity is lower bounded by

π

kpropr(n)
∑

i=1

(n − i)2 ∈ Ω(n2r(n)−1).

On the other hand, if δ(n) < π(1/kprop−2), then n < π/kpropr(n)), and after
n time steps, we lower bound the number of edges in the communication
graph by the number of edges in a chain of length n, that is, n−1. Therefore,
the total communication complexity is lower bounded by

n
∑

i=1

(n − i)2 + (n − 1)
( π

kpropr(n)
− n

)

∈ Ω(n3 + nr(n)−1).

The two lower bounds match when δ(n) = π(1/kprop − 2).

Regarding the lower bound in (ii), we consider first the case when nH(0) =
0. In this case, the network obeys the discrete-time linear time-invariant dy-
namical system (3.6.2). Consider the initial condition d(0) that we adopted
for STEP 4:. We know it takes time of order n2 log(nε)−1 for the appro-
priate contraction property to hold. At d(0), the maximal inter-agent dis-
tance is (4π − ε′)/n and it decreases during the evolution. Because each
robot can communicate with any other robot within a distance r(n), the
number of agents within communication range of a given agent is of order
r(n)n/(4π − ε′), that is, of order δ(n). From here, we deduce that the total
communication complexity belongs to Ω(n3δ(n) log(nε)−1). �
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3.7 EXERCISES

E3.1 (Orientation dynamics). We review some basic kinematic concepts about ori-
entation dynamics, (see, e.g., Bullo and Lewis, 2004; Spong et al., 2006. Define
the set of skew-symmetric matrices in R

d×d as

so(d) = {S ∈ R
d×d | S = −S

T }.

Let × denote the cross-product on R
3 and define the linear map b· : R

3 → so(3) by
bxy = x × y for all y ∈ R

3.

(i) Show that, if x = (x1, x2, x3), then:

bx =

2
4

0 −x3 x2

x3 0 −x1

−x2 x1 0

3
5 .

(ii) Given a differentiable curve R : [0, T ] → SO(3), show that there exists a
curve ω : [0, T ] → R

3 such that

Ṙ(t) = R(t)bω(t).

These two results lead to a motion model of a relative sensing network with
time-varying orientation. Generalizing the constant-orientation model in equa-
tion (3.2.2), the complete position and orientation dynamics may be written as

ṗ
[i]
fixed(t) = R

[i]
fixed(t) u

[i]
i ,

Ṙ
[i]
fixed(t) = R

[i]
fixed(t) bω[i]

i ,

where, for i ∈ {1, . . . , n}, u
[i]
i and ω

[i]
i are the linear and the body angular velocities

of robot i, respectively.

E3.2 (Variation of the agree & pursue control and communication law). Con-
sider the agree & pursue control and communication law defined in Section 3.1.3,
with the state transition function replaced by the following:

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

The only difference between this law and the agree & pursue law in Sec-
tion 3.1.3 is that, in each communication round, each agent picks the message
with the largest value of max-id among all messages received (instead of among
the messages received only from agents moving towards its position). We refer to
this law as mod-agree & pursue.

Consider the direction agreement task Tdir : (S1)n × W n → {true, false}
defined in Example 3.22. Assume that dir

[n](0) = c, and let k ∈ {1, . . . , n − 1}
be the largest identity such that dir

[k](0) = cc. Do the following tasks:

(i) Show that if the message from agent k gets delivered to agents clockwise-
placed with respect to agent k along two consecutive communication
rounds, then the message from agent k has traveled at least (1−kprop)r(n)
along the circle in the clockwise direction.
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(ii) Show that, if distcc(θ
[n](0), θ[k](0)) < 2 r(n), then

TC(Tdir, CC mod-agree & pursue, x0, w0) = Θ(r(n)−1).

(iii) Implement the algorithm in your favorite simulation software (for ex-
ample, Mathematica c© Matlab c© or Maple c©), and compute the time
complexity of multiple executions of the algorithm starting from different
initial conditions. Does your simulation analysis support the conjecture
that

TC(Tdir, CC mod-agree & pursue) = Θ(r(n)−1)?

For the simulation analysis to be relevant, you should use a large number
of randomly generated initial physical positions and processor states.

E3.3 (Leader-following flocking). Consider a group of robots moving in R
2 accord-

ing to the following discrete-time version of the planar vehicle dynamics introduced
in Example 3.1:

x(ℓ + 1) = x(ℓ) + v cos(θ(ℓ)),

y(ℓ + 1) = y(ℓ) + v sin(θ(ℓ)),

θ(ℓ + 1) = θ(ℓ) + ω.

We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical states, where p[i] =
(x[i], y[i]) ∈ R

2 corresponds to the position and θ[i] ∈ [0, 2π) corresponds to the
orientation of the robot i ∈ I. As communication graph, we adopt the r-disk
graph Gdisk(r) introduced in Section 2.2.

Assume that all agents move at unit speed, v = 1, and update their heading
according to the leader-following version of Vicsek’s model (see equation (1.6.5)):

θ
[1](ℓ + 1) = θ

[1](ℓ), (E3.1)

θ
[i](ℓ + 1) = avrg

“
{θ[i](ℓ)}∪{θ[j](ℓ) | j s.t. ‖p[j](ℓ) − p

[i](ℓ)‖2 ≤ r}
”
,

for i ∈ {2, . . . , n}. Do the following tasks:

(i) Write the algorithm formally as a control and communication law as
defined in Section 3.1.2.

(ii) Given initial conditions for the position and orientation of the robots,
express (E3.1) as the time-dependent linear iteration associated to a se-
quence of matrices {F (ℓ) | ℓ ∈ Z≥0}. Are these matrices stochastic? Are
they symmetric? Is the sequence non-degenerate?

(iii) We loosely define the flocking task as achieving agreement on the heading
of the agents. Using Theorem 1.63, identify connectivity conditions on
the sequence of graphs determined by the evolution of the network that
guarantee that agents achieve flocking. What is the final orientation in
which the network flocks?
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Ögren, P., Fiorelli, E., and Leonard, N. E. [2004] Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed envi-
ronment, IEEE Transactions on Automatic Control, 49(8), 1292–1302.

Oh, S., Schenato, L., Chen, P., and Sastry, S. S. [2007] Tracking and coor-
dination of multiple agents using sensor networks: system design, algo-
rithms and experiments, Proceedings of the IEEE, 95(1), 163–187.

Okubo, A. [1986] Dynamical aspects of animal grouping: swarms, schools,
flocks and herds, Advances in Biophysics, 22, 1–94.

Olfati-Saber, R. [2006] Flocking for multi-agent dynamic systems: Algo-
rithms and theory, IEEE Transactions on Automatic Control, 51(3), 401–
420.

Olfati-Saber, R. and Murray, R. M. [2002] Graph rigidity and distributed for-
mation stabilization of multi-vehicle systems, in IEEE Conf. on Decision
and Control, pages 2965–2971, Las Vegas, NV.

Paley, D. A., Leonard, N. E., Sepulchre, R., Grunbaum, D., and Parrish,
J. K. [2007] Oscillator models and collective motion, IEEE Control Sys-
tems Magazine, 27(4), 89–105.

Pallottino, L., Scordio, V. G., Frazzoli, E., and Bicchi, A. [2007] Decen-
tralized cooperative policy for conflict resolution in multi-vehicle systems,
IEEE Transactions on Robotics, 23(6), 1170–1183.

Parhami, B. [1999] Introduction to Parallel Processing: Algorithms and
Architectures, Plenum Series in Computer Science, Springer, ISBN
0306459701.

Parrish, J. K., Viscido, S. V., and Grunbaum, D. [2002] Self-organized fish
schools: an examination of emergent properties, Biological Bulletin, 202,
296–305.

Passino, K. M. [2004] Biomimicry for Optimization, Control, and Automa-
tion, Springer, ISBN 1852338040.

Pavone, M. and Frazzoli, E. [2007] Decentralized policies for geometric pat-
tern formation and path coverage, ASME Journal on Dynamic Systems,
Measurement, and Control, 129(5), 633–643.

Pavone, M., Frazzoli, E., and Bullo, F. [2007] Decentralized algorithms for
stochastic and dynamic vehicle routing with general target distribution, in
IEEE Conf. on Decision and Control, pages 4869–4874, New Orleans, LA.

Peleg, D. [2000] Distributed Computing. A Locality-Sensitive Approach,
Monographs on Discrete Mathematics and Applications, SIAM, ISBN
0898714648.

50

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 3: Robotic network models and complexity notions

Penrose, M. [2003] Random Geometric Graphs, Oxford Studies in Probabil-
ity, Oxford University Press, ISBN 0198506260.

Rathinam, S., Sengupta, R., and Darbha, S. [2007] A resource allocation
algorithm for multi-vehicle systems with non holonomic constraints, IEEE
Transactions on Automation Sciences and Engineering, 4(1), 98–104.

Reeds, J. A. and Shepp, L. A. [1990] Optimal paths for a car that goes both
forwards and backwards, Pacific Journal of Mathematics, 145(2), 367–393.

Sanfelice, R. G., Goebel, R., and Teel, A. R. [2007] Invariance principles for
hybrid systems with connections to detectability and asymptotic stability,
IEEE Transactions on Automatic Control, 52(12), 2282–2297.

Santi, P. [2005] Topology Control in Wireless Ad Hoc and Sensor Networks,
John Wiley, ISBN 0470094532.

Santoro, N. [2001] Distributed computations by autonomous mobile robots,
in SOFSEM 2001: Conference on Current Trends in Theory and Practice
of Informatics (Piestany, Slovak Republic), L. Pacholski and P. Ruzicka,
editors, volume 2234 of Lecture Notes in Computer Science, pages 110–
115, Springer, ISBN 3-540-42912-3.

Savla, K., Bullo, F., and Frazzoli, E. [2009] Traveling Salesperson Prob-
lems for a double integrator, IEEE Transactions on Automatic Control,
(Submitted Nov. 2006) to appear.

Savla, K., Frazzoli, E., and Bullo, F. [2008] Traveling Salesperson Problems
for the Dubins vehicle, IEEE Transactions on Automatic Control, 53(6),
1378–1391.

Schumacher, C., Chandler, P. R., Rasmussen, S. J., and Walker, D. [2003]
Task allocation for wide area search munitions with variable path length,
in American Control Conference, pages 3472–3477, Denver, CO.

Seeley, T. D. and Buhrman, S. C. [1999] Group decision-making in swarms
of honey bees, Behavioral Ecology and Sociobiology, 45, 19–31.

Sepulchre, R., Paley, D. A., and Leonard, N. E. [2007] Stabilization of pla-
nar collective motion: All-to-all communication, IEEE Transactions on
Automatic Control, 52(5), 811–824.

Sharma, V., Savchenko, M., Frazzoli, E., and Voulgaris, P. [2007] Transfer
time complexity of conflict-free vehicle routing with no communications,
International Journal of Robotics Research, 26(3), 255–272.

Sinclair, A. R. [1977] The African Buffalo, A Study of Resource Limitation
of Population, The University of Chicago Press.

51

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009



DCRN Chapter 3: Robotic network models and complexity notions

Smith, R. S. and Hadaegh, F. Y. [2007] Closed-loop dynamics of coopera-
tive vehicle formations with parallel estimators and communication, IEEE
Transactions on Automatic Control, 52(8), 1404–1414.

Smith, S. L., Broucke, M. E., and Francis, B. A. [2005] A hierarchical cyclic
pursuit scheme for vehicle networks, Automatica, 41(6), 1045–1053.

Smith, S. L. and Bullo, F. [2009] Monotonic target assignment for robotic
networks, IEEE Transactions on Automatic Control, 54(10), (Submitted
June 2007) to appear.

Spong, M. W., Hutchinson, S., and Vidyasagar, M. [2006] Robot Modeling
and Control, third edition, John Wiley, ISBN 0-471-64990-2.

Stewart, K. J. and Harcourt, A. H. [1994] Gorillas vocalizations during rest
periods – signals of impending departure, Behaviour, 130, 29–40.

Susca, S., Mart́ınez, S., and Bullo, F. [2008] Monitoring environmental
boundaries with a robotic sensor network, IEEE Transactions on Control
Systems Technology, 16(2), 288–296.

Suzuki, I. and Yamashita, M. [1999] Distributed anonymous mobile robots:
Formation of geometric patterns, SIAM Journal on Computing, 28(4),
1347–1363.

Tabuada, P., Pappas, G. J., and Lima, P. [2005] Motion feasibility of multi-
agent formations, IEEE Transactions on Robotics, 21(3), 387–392.
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