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Coverage optimization Expected-value multicenter function

DESIGN of performance metrics Objective: Given sensors/nodes/robots/sites (pi,. . ., p,) moving in
B bow to cover a region with n minimum-radius overlapping disks? environment O achieve optimal coverage
B how to design a minimum-distortion (fixed-rate) vector quantizer?
(Lloyd '57)
B where to place mailboxes in a city / cache servers on the internet? ¢ R? — R density

ANALYSIS of cooperative distributed behaviors f i Rxo — R non-increasing and piece-
T - = wise continuously differentiable, possi-
bly with finite jump discontinuities

how do animals share territory?
what if every fish in a swarm goes
toward center of own dominance
region?

Barlow, Hexagonal torritorics, Animal
Behavior, 1974

maximize  Hexp(p1,....pn) = Ey | max }f(Hq —pill)
H what if each vehicle goes to center of mass of own Voronoi cell?

ie{l,

@ what if each vehicle moves away from closest vehicle?




optimality of the Voronoi partition

Alternative expression in terms of Voronoi partition,

=3 [,y Fla = plotaia

Hexp(P1
pn) distinct

Let P = {p1,-...pn} € B(S). For any performance function f and for
any partition {Wh,...,W,} C P(S) of S,

Hexp(Prs- 2P Vi(P), - Val(P) 2 Hexp(Prs - s Whs o, W),

and the inequality is strict if any set in {W;
corresponding set in {Vi(P),...

W} differs from the
Va(P)} by a set of positive measure

Humaline )= 3 [ Voo = nledota)da
= vir
[ s
i=1 Y Vi(P)N B(pi.a)
= 3 AVi(P) N Bl ) = Au(ULs Blpi. ),
i=1
Area, measured according to ¢,

the union of the n balls
B(pr.a)..... B(pn.a)

ion problem

Haistor(P1, -

== [ = nilBotadia = - Y JViP).i)
im1 JVi(P) i=1
(J4(W, p) is moment of inertia). Note

Haistor (P1,

Proposition

Let {Wh,..., Wy} C P(S) be a partition of S. Then,

Haistor (CM(Wh), ..., CM(Wy), Wa, ..., Wy,)
> Haistor(P1 Doy W1, ..., Wa),

and the inequality is strict if there exists i € {1,...,n} for which W;
has non-vanishing area and p; # CMy(W;)

Mixed distortion-area problem

F@) = —a? 1 )(2) + b~ Ly joo[(@), With @ € Rxg and b < —a?

Haistor-areaas(P1s -+ 9n) = = 3 Jo(Via(P), pi) + bA(Q \ Uiy B(pis ),

i=1
If b= —a?, performance f is continuous, and we write Haistor-area,a-
Extension to sets of points and partitions reads

Hatsrormena (15 Was 2. W)

== (30 Bpia). ) + @ AW 0 (S \ Bl 0))))-
i=1

Hastorarenss ( CMo(WanB(p1. a)). . .., CMy (W B(pr, ). Wy
= Haistor(P1; - - -

W)
Py Wi, W),

and the inequality is strict if there evists i € {1,...,n} for which Wi
has non-vanishing area and p; # CMy(W; N B(p;, a)).



of Hexp

Dscn(f) (finite) discontinuities of f
£ and f,, limiting values from the left and from the right

Eapected-value multicenter function ey, : S — R is
globally Lipschitz on S"; and

B continuously differentiable on S™ \ Scoine, where
Mexp / ,
——(P)= g — pill2)¢(a)dq

Br (P) - )0p f(H [l2)6(q)

+ - 1) [ o B (@)0(0)da
uEDZsc;(f) Vi(P) N 9B(p: u)“ o
= integral over V,

+ integral along arcs in V,

Therefore, the gradient of Hexp is spatially distributed over Gp

Some proof ideas

Moy _ .
W(P) = /‘( o =—f (la = pill) é(a)dg =2 A4 (Vi(P))(CMy(Vi(P)) — pi)

2

dq
L ) s o
Jovi(p)
: . dq
[ ra=ni o). Shota)ia
Javi(p)

Some proof id

Consider the case of smooth performance f,

OHex :
o e= [ gt o pdotarin

[ a2 st 5
>

un ,”(,,),1',

Distortion problem: continuous performance,
OMHagis . ;
e (P = 2A(V(PDEM(Vi(P)) ~ i)

Area problem: performance has single discontinuity,

< @0
Vi(P) N 9B(pi,a )

2A4(

Mixed distortion-area: continuous performance (b = —a2),

MHaistor-arena ; v, -
#(m =2A4(Via(P))(CMy(Via(P)) — pi)



Tuning the optimization problem

Gradients of Harea,a; Hdistor-arca,a,b are distributed over Gy (2a)
Robotic agents with range-limited interactions can compute gradients
[ a0 And Histor-area,a,b a8 long as r > 2a

tion (Consi actor approximation of Haistor

Let S € R be bounded and measurable. Consider the mized

distortion-area problem with a € ]0,diam S] and b= — diam(S)?. Then,

Jor all P € 5™,
Haistor-area.as(P) < Haistor(P) < 5° Haistor-area,an(P) <0,

where 3 = =ty €[0,1]

Similarly, constant-factor approximations of e,

VRN-CNTRD ALGORITHM

Optimizes distortion Haistor

Robotic Network: Spin @, with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD
Alphabet: A = R?U{null}
function msg(p,i)
1: return p
function ctl(p, y)
1V = QN (N{Hpprewa | for all non-null prea € y})
2: return CMy(V) —p

center laws

Uniform networks Sp and Spp of locally-connected first-order agents in
a polytope @ € R? with the Delaunay and r-limited Delaunay graphs
as communication graphs

All laws share similar structure
At each communication round each agent performs the
following tasks:

m it transmits its position and receives its neighbors’
positions;

w it computes a notion of geometric center of its own cell
determined according to some notion of partition of the
environment

Between communication rounds, each robot moves toward this

Simulation

initial configuration gradient descent final configuration

For ¢ € Rsg, the e-distortion deployment task

true, if [[plT — CMy(VIN(P))||, < e, i € {L,...,n},
false, otherwise,

Te-distor-dply(P) = {




Voronoi-centroid law on planar vehicles

Robotic Network: Syenicies in Q with absolute sensing of own position
Distributed Algorithm: VRN-CNTRD-DYNMCS
Alphabet: A = R?U{null}
function msg((p, 0), 1)
1: return p

function ctl((p, ), (Psmptd, Osmpla). ¥)
V= Q0 (M Hprpsis v | for all non-null preva € y})
v = —kprop(cos b, sinf) - (p — CM4(V))
(=sinf, cosb) - (p — CM4(V))
cos 8)-(p— CM,(V

W = 2kprop arctan

return (v, w)

LMTD-VRN-NRML algorithm

Optimizes area M,

Simulation

Robotic Network: Spp in Q with absolute sensing of own position
and with communication range
Distributed Algorithm: LMTD-VRN-NRML
Alphabet: A = R?U{null}
function msg(p, i)

1: return p
function ctl(p, y)

Q0 (N{Hypprev | for all non-null preva € y})

initial configuration gradient descent final configuration 0B, 3) Nout, Bl ) (DP(0)dd
3 A = max{\ |6 —
Jy B 30,2 ©(a)da s strictly increasing on [0, X]}
5
: return A\.v




simulation LMTD-VRN-CNTRD algorithm

Optimizes Hojsior-are

Robotic Network: Spp in Q with absolute sensing of own position,
and with communication range r
Distributed Algorithm: LMTD-VRN-CNTRD
Alphabet: A = R?U{null}

function msg(p, i
initial configuration gradient descent final configuration (v )

1: return p

For r,e € Rso,

function ctl(p, y)

1 V:=QNnB(p, 5) N (N{Hppeva | for all non-null preva € y})
Te.r-area-dply (P) 2: return CMy(V) —p

- {tr“e~ || 1) a0, 5) Mout Bt 5)(D9(@)dall, < &, i € {1, n}

false, otherwise.

Simulation Optimizing Haistor Via constant-factor approximation

Limited range

run #1: 16 agents,

variant, 1st order dy-
namics

initial configuration  gradient descent of Ny final configuration
H

initial configuration gradient descent final configuration

For r,e € Rao, Unlimited range
run #2: 16 agents,
T.r-distor-arcn-dply (P) density ¢ is sum of
el — il p <e . 4 Gaussians, time in-

_ { it [ = Mo (VD) < 2 i€ 1,0 m), ariant, 19t order dy-

false, otherwise.




center algorithms

Ford €N, r € Rog and € € Rxg, the following statements hold.
B on the network Sp, the law CCypx-cxmp and on the network
SWy,,( les: the law CCygy-cxtro-pysmes both achieve the e-distortion
task T..q y- M of
@y 000 e manutammlly optimizes the
multicenter function Haistor;
on the network Sup, the law CCLyrp-vrx-~mu achieves the e-r-area
deployment task To—r-area. -dply- Marmwr any execution of
the multi function

CCoLrrp-Vix-yiuit

Harea, ; and
B on the network Sup, the law CCrLymp-vrn-cxtro achieves the

e-r-distorti d task Te_r-dist iply- M

any evecution of CCrymp-Viy-oxrrp Mmonotonically optimizes the

maulticenter function Haistor.area,s -

Deployment: basic behaviors

“move away from closest” “move towards furthest”

Equilibria? Asymptotic behavior?
Optimizing network-wide function?

Time compl

e
ty of CCryrp-vrN-oxTRD

Assume diam(Q) is independent, of n, r and &

Assume the robots evolve in a closed interval Q C R, that is, d =1,
and assume that the density is uniform, that is, = 1. Forr € R>o
and € € Rxo, on the network Spp

TC(Tz-r-distor-area-dplys CCLyrp-Va-cxtro) € O(n® log(ne™?))

Deployment: 1-center optimization problems

smo(p) = min{|lp — ¢l ¢ € dQ}  Lipschitz
lgo(p) = max{|lp —qll[¢ € dQ}  Lipschitz

0€dlgy(p) & p = CC(

Locally Lipschitz function V are differentiable a.c.
Gener ed gradient of V is

OV (x) = convex closure{ lim VV(z,) | 2 — o, o ¢ Qv U S}

0 € dsmg(p) & pelC(C

2)
Q)



Deployment: 1-center optimization problems

+ gradient flow of smg s

+Ln[@smg](p)
~ gradient flow of lgg,

pi = —Ln[01gg](p)

move away from closest”

“move toward furthest”

For X essentially locally bounded, Filippov solution of & = X (z)
is absolutely continuous function t € [to, t1] — =(t) verifying

@ € K[X](z) = cof lim X(z:) | & —x, x; & S}
For V locally Lipschitz, gradient flow is & = Ln[9V/

Ln = least norm operator

Deployment: multi-center optimization

sphere packing and disk covering

move away from closest”:  p;

+Ln(dsmy,(p))(pi)
“move towards furthest”:  p; =

at fixed V;(P)
Ln(0 gy, (p))(p:)

— at fixed V;(P)

Aggregate objective functions!
Hap(P) = min sy, () (11) = min

i#j
Hae(P) = max gy, (py(pi) = ma

X
9€Q

[3llpi = pjll, dist(pi, 0Q)]

[minlg —pil]

Nonsmooth LaSalle Invariance Principle

Evolution of V along Filippov solution ¢ — V (x(t)) is
differentiable a.e.

%v(:x(m) € LxV(a(t) = {a € R| I e K[X](2) s.t. C-v=a, ¥ € DV (x)}

set-valued Lie derivative

LaSalle Invariance Principle

For § compact and strongly invariant with max £xV (z) < 0
Any Filippov solution starting in S converges to largest
weakly invariant set contained in {z € § [0 € LxV(z)}

. nonsmooth gradient flow & = — Ln[0V](x) converges to

Deployment: multi-center optimization

Critical points of s, and Hac (locally Lipschitz)

u If 0 € int(dH,p(P)), then P is strict local maximum, all agents
have same cost, and P is incenter Voronoi configuration

m If 0 € int(9Hac(P)), then P is strict local minimum, all agents
have same cost, and P is circumcenter Voronoi configuration

Aggregate functions monotonically optimized along evolution

min EU\(HSMVO)Hap(P) >0 ‘

‘ max £_. Ln(@1gy) Hae(P) <0

Asymptotic convergence to center Voronoi configurations via
nonsmooth LaSalle




onoi-circumcenter algorithm

Robotic Network: Sp in Q with absolute sensing of own position
Distributed Algorithm: VRN-CRCMCNTR
Alphabet: A = R?U{null}
function msg(p,i)
1: return p

function ctl(p, y)

1V i= QN (({Hpp, | for all non-null preva € y})
2: return CC(V) —

Correctness of the geometric-center algorithms
For & € R, the —covering deployment task

Tecac-apty(P) = {

false, otherwise,
For & € Rog, the e-sphere-packing deployment task

true, if disty(pll, IC(VEI(P))) <&, i € {1,
false, otherwise,

Teosp-aply(P) = {

n
Ford €N, r € Rog and € € Rxg, the following statements hold.

B on the network Sp, any execution of the low CCyncrcxovmn
the function Hae;

B on the m’iuu’)rk SD any execution of the law CCvay xextn
the lti Sunction Hgp.

true, if [pl - CC(VI(P))a <e.ie{l.....n

Voronoi-incenter alg

Robotic Network: Sp in @, with absolute sensing of own position
Distributed Algorithm: VRN-NCNTR
Alphabet: A = R?U{null}
function msg(p,i)
1: return p
function ctl(p, y)
1V = QN (N{Hyppyews | for all nonnull prea € y})
2: return z € IC(V) —p

Summary and conclusions

Aggregate objective functions
variety of scenarios: expected-value, disk-covering, sphere-packing
B smoothness properties and gradient information

B geometric-center control and communication laws

Technical tools
B Geometric optimization
B Geometric models, proximity graphs, spatially-distributed maps

B Systems theory, nonsmooth stability analy
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Assume: agent with sensing/communication radius R;

Objective: smallest R; which provides sufficient information for

For all i, agent i performs:
ze R; and compute Vi = Ny, <z, HP(pis D))
pi =gl do

1: init
2: while R; < 2max
3 R :=2R; N
4: detect vehicles p; within radius R;, recompute V;

9eVi

Let (p1,-.,pn) € Q" denote the positions of n points

The Voronoi partition V(P) = {Vi,...,V,} generated by (p1, .., pn)

Vi={q€Q| llg—pill < llg—psll. Vi #1i}
=Qn; HP(pi,p;)  where HP(p;,p;) is half plane (p;, p;)

/;Q\ : /

3 generators 5 generators 50 generators




