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But we have to be

m‘hww= multi-robot rendezvous; i.e. arrive at the same location of space

Blindly “getting closer” to neighboring agents might lead to
disconnection

r-disk connectivity visibility connectivity




Network definition and rendezvous ta

The objective is applicable for general robotic networks
Saisk; SLp and Soo-disk
and the relative-sensing networks S5, and S, g
We adopt the discrete-time motion model
P+ 1) = pl(0) +ull(e), ie{1,....,n}
Also for the relative-sensing networks

P+ 1) =pl (o) + R o), ie{1,... 0}

We usually assume no bound on the control or tyax
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The rendezvous task

Let 8 = ({1,...,n},R, Ecm) be a uniform robotic network
The (exact) rendezvous task Tmdss : X — {true, false} for S is

7—xndzvs(ﬂ:[]]' ey 1_[u])

_ Jtrue, if 2l =2l for all (i) € Eonm(2, ... al"),
"~ |false, otherwise

Suppose that P = {pl, ... pl"l} is the set of agents location in X € R,
P be an array of n points in R?, and let avrg denote

1
avig({ar, - oan}) = pla+ o+ an)
For € € Rog, the =-rendezvous task Tomams : (RY)" — {true, false} is

Terndzvs(P) = true
= [~ avig ({(pH1 ] (.7) € Ecnm(P)}) |2 < &, i€ {10 n}

Enforcing range-limited links — pairwise connectivity

Pairwise connectivity maintenance problem:
Given two neighbors in the proximity graph Guwi(r), find a rich set of
control inputs for both agents with the property that, after moving,
both agents are again within distance r

int 2t)
Consider two agents i and j at positions pll € R? and plil € R? such
that [[pl] — plil||, < r. The connectivity constraint set of agent i with
respect to agent j is

Pl 1 plil 2
2 2

Kaisk (11, p) = E(




Enforcing range-limited links — pairwise connectivity

Note that both robots i and j can independently compute their
respective connectivity constraint sets

If |pt(€) — plil(£)|| < r, and remain in the connectivity sets,

,
then [|pll(¢+1) — pbl(¢ + 1) <

Enforcing a less conservative conne

Recall definitions of other proximity graphs
Relative neighborhood graph Gru, the Gabriel graph Gg, and
the r-limited Delaunay graph Grp(r)

The graphs Grx N Gaisk (7). Gc N Gaisk(r) and Grp(r) satisfy:
They have the same connected components as Gaigi (), and

B they are spatially distributed over Gaig(r)

Consequences are
B Sparser graphs imply fewer connectivity constraints, and

B agents can determine its neighbors in these graphs

Enforcing range-limited links — multi-agent connectivity

on (Connecti:

Consider a group of agents at positions P = {pl!} "} ¢ RY. The
connectivity constraint set of agent i with respect to P is

Kook (1, P) = n {Xaiac@™,9) | g € P\ {p} st g —ptT2 < 7}

Consider a compact nonconvex environment @  R? and contract this
into Qs = {q € Q | dist(q,dQ) > 6} for a small positive §.

Suppose robots are deployed in Q5 and constitute a
visibility-based network Syis.disk. That is, j is a neighbor of i iff

PO € Via(p(0); @s) = Vi (0): Q5) N B (). 7)




Enforcing range-limited line-of-sight links

The following algorithm computes a sufficient constraint sct

function ITERATED TRUNCATION(pU, pll; Q5)
Y%Executed by robot i at position plfl assuming that robot j is at
position plil within range-limited line of sight of pl!
1 Xiemp = Viawc @ Qs) N BRG +p1). 5)
2: while 9X;ey; contains a concavity do
3 v = astrictly concave point of dX;emp closest to [plf, pll]
4:
5:

Xeemp = Xemp N Ho, (v)
return Xiemp,

ght links

Consider the d-contraction of a compact allowable environment Qs with
K strict concavities, and let (plf, plil) € J. The following holds:
B The ITERATED TRUNCATION ALGORITHM, invoked with arguments
(p1, pU1; Q5), terminates in at most r steps; denote its output by
Kuisaisk (P, pU1; Q5);
B Xicaisk (P, pU); Qs) s nonempty, compact and convex;
B KXo ais (P17, V] Q5) = Xeic-ais (0P, 1 Q5); and
the set-valued map (p,q) — Xyis-aisk(p, @ Qs) is closed at all
(p.a) € J.

Proof: (Item 3) all relevant concavities in the computation of
Xeis-aisk (P, pV; Q5) are visible from both agents pl and pl!

ght conne

Consider a nonconvex allowable environment Q5 and two agents i and j
within range-limited line of sight. We call:

n Xyisaisk(pl), pU); Q5) the pairwise line-of-sight connectivity
constraint set of agent ¢ with respect to agent j

u the line-of-sight connectivity constraint sets of agent i with
respect to P is

Keisaisk (P, P; Q5) = () { Xis-aion (P, 4: Q5) | g € P\ {p1}}



ging control and communication law Averaging control and communi

Averaging behavior: move towards a position computed as the
average of the received messages Robotic Network: Sgisk with “discrete-time” motion in RY,
Relation to Vicsek’s model for fish flocking and employed to model with absolute sensing of own position, and
e ! and em] with communication range r

“opinion dynamics under bounded confidence
Distributed Algorithm: AVERAGING
Informal description Alphabet: A = R?U{null}
At each communication round each agent performs
the following tasks: (i) it transmits its position and receives its
neighbors’ positions; (ii) it computes the average of the point set
comprised of its neighbors and of itself. Between communication

function msg(p, i)
1: return p

function ctl(p, y)

rounds, each robot moves toward the average point it computed.
1: return avrg({p} U{prcvd | Preva is a non-null message in y}) — p

The law is uniform, static, and data-sampled, with standard
message-generation function

Averaging CC law — an implementation in d = 1

Note that, along the evolution,
u several robots rendezvous

 some robots are connected at the simulation’s beginning and
not connected at the simulation’s end For d = 1, the network Sgisk, the law CCoypmacina achieves the task
Tindzvs With time complexity

TC(Tendavss Coavinaana) € O(n°),
TC(Trndzvs; Claveracia) € Q).




Circumcenter control and communication laws

Recall the circumcenter definition:

For X =R X =8%or X = RH x §%, d =
di+ds, circumcenter CC(W) of a bounded set
W C X is center of closed ball of minimum ra-
dius that contains W. Circumradius CR(W)
is radius of this ball

Let S € F(RY). Then, the following holds:
B CC(S) € co(S) \ Ve(co(S))
B ifp € co(S) \ {CC(S)} and r € Reg are such that S C B(p, ), then
Ip, CC(S)[ has a nonempty intersection with B(252,%) for all
q € co(S)

Circumcenter control and communication law

Hlustration of the algorithm execution

ircumcenter control and communi

Basic Idea

= cach agent minimizes “local version” of objective function
max{|[p; — p;|| | p; is neighbor of p;}

i.e., each agent goes toward circumcenter of neighbors and itself
(which is the closest point to all these locations)

 each agent maintains connectivity by moving inside constraint set

Informal description
At cach communication round each agent performs the following
tasks: (i) it transmits its position and receives its neighbors’ positions;
(ii) it computes the circumecenter of the point set comprised of its
neighbors and of itself. Between communication rounds, each robot

point while connectivity

with its neighbors using appropriate connectivity constraint sets.

Circumcenter control and communication law

Formal algorithm description

Robotic Network: Sgsx with a discrete-time motion model,
with absolute sensing of own position, and
with communication range 7, in R?
Distributed Algorithm: CIRCUMCENTER
Alphabet: A = R?U{null}
function msg(p,i)
1: return p

function ctl(p, y)
1 Pgoat 1= CC({p} U{preva | for all non-null preva € y})
2 X = Xgisk(p: {Preva | for all non-null preva € y})
3: return fti(p, pgoar, X) — p




Circumcenter control and communication law Simulations

Relaxations:
= Can also be run over any other proximity graph which is spatially
distributed over Gaisk(r) or over Gyic ik,

= Bounds can be applied to the control magnitude

m Other alternatives are available where the constraint set is not
necessary
= Use a “parallel cir r control and ication law”
= Use a “1/2 circumcenter algorithm”

Correctne: Correctness

Furthermore, the evolutions of (Saisk, CComcvmornter): 0f
(8D CCememnicextan). and of (Sxc-disk, CCrii-caosentn) have the following
FordeN, r € Rug and € € Rxo, the following statements hold: properties:
B on Sqisk, the law CComcunernren (With control magnitude bounds and if any two agents belong to the same connected component at
relaxed G-connectivity constraints) achieves Trndzys; £ € Z>o, then they continue to belong to the same connected
B on Sup, the law CComcuncenter achieves Temdavs g s el
B for cach evolution, there exists P* = (p,...,ps) € (RY)" such that:
Sumla%’kl:c?'ull for the parallfl (‘u’cumcvcntcr algorithm and for visibility e e
networks in non-convex environments B for cachi,j € {1 o, Gt = g o7 17 =l > ([ e
networks Saisx and Sup) or ||} — pjllee > 7 (for the network
Soc-disk)-




— Time complexity

1 (Time comple: of circumc
Forr € Rug and & € 10,1[, the following statements hold:

B on the network Sqisk, evolving on. the real line R (i.e., with d = 1),
TC(Tindavss CComevncenten) € O(n);

B on the network Sip, evolving on the real line R (i.c., with d = 1),
TC(Tre)y-mdove: CCotmevncrnann) € O(n log(ne™)); and

B on the network Se.disk, evolving on Euclidean space (i.e., with
d € N), TC(Trndzvs; Clrui-cnoments) € O(n).

Results hold for constant comm range, but allow for the diameter of the

initial network configuration (the maximum inter-agent distance) to
grow unbounded with the number of robots

Extension to visibility network is possible

Alternative idea

Fixed undirected graph G, define fixed-topology circumcenter
algorithm

fo: (RY)" = ®)", foilpr, . pa) = (P pgout, X) —p

Now, there are no topological changes in fg, hence fg is continuous

Define set-valued map Tcc : (R4)" — P((R)")

Tee(pr.- - pn) = {fe(pr.

Some bad news...

Circumeenter algorithms are nonlinear discrete-time dynamical systems
o1 = f(we)

To analyze convergence, we need at least f continuous — to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology

Non-deterministic dynamical systems

Civen T : X — P(X), a trajectory of T is
sequence {@, }mez., C X such that

Tmy1 € T(wm), mE Lo

T is closed at @ if @,,, — @, Y — y with y,, € T(x,) imply y € T(z)
Every continuous map 7' : R? — R? is closed on R
A set C'is
m weakly positively invariant if, for any po € C, there exists
p € T(po) such that p € C'
strongly positively invariant if, for any po € C, all p € T(po)
verifies p € C'
A point po is a fized point of T if po € T(po)




: X — R is non-increasing along T on § C X if

V(a') < V(@) for all 2/ € T(z) and all 2 € S

For § compact and strongly invariant with V' continuous and non-

increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant
contained in {x € S | 32’ € T(x) with V('

Correctness — diameter as non-increasing function

Vigiam = diamoco : (R?)" — R, by

Vaiam(P) = diam(co(P)) = max{[|p; = pyl| | i,j € {1,....,n}}

Lot diag(RY)") = {(p.....p) € (BY)" | p € B}

The function Vgiam = diamoco : (RY)" — R, verifies:
Vaiam 15 i and invariant under pe
B Vaiam(P) = 0 if and only if P € diag((R?)");
B Viiam is non-increasing along Tcc

Correctne

Correctness — Tcc is closed

Recall set-valued map Tecc : (RY)" — P((R?)")

Tec(prs---+pn) = {fc(p1s---.pn) | G connected}

Tcc is closed: finite combination of individual continuous maps

In addition,
co(P') C co(P)

for all P’ € Tg(P) and P € (RY)"

lle Invariance Principle

To recap
Tcc is closed
B V = diam is non-increasing along Tcc

B Evolution starting from Py is contained in co(Fp) (compact and
strongly invariant)

Application of LaSalle Invariance Principle: trajectories starting at
Py converge to M, largest weakly positively invariant set contained in

{P € co(Py) | 3P’ € Tec(P) such that diam(P') = diam(P)}

Have to identify M! Ideally, M = diag((R%)") N co(Po)
Clearly diag((R%)") N co(Py) € M — other inclusion by contradiction




LaSalle Invariance Principle — identifying M

Assume P € M \ (diag((R?)") N co(Fp)), and thus diam(P) > 0
Let G be a connected directed graph and consider T¢(P)
| All non vertices of co(P) remain in co(P) \ vertices(co(P))

B Argument has to be extended to the case where there is more than

one agent at a vertex

After a finite number of iterations, all agents in configuration
Ta, (T, (. .- Tay »(P))) are contained in co(P) \ V(co(P))
Therefore, diam(Tg,, (T, (. .- T +(P)))) < diam(P), which
contradicts M weakly invariant

Convergence to a point can be concluded with a little bit of extra work

Corollary: Circumcenter algorithm achieves rendezvous

Rendezvous

(Circumce

For {Pm}mgzzo synchronous execution with link failures such that union
of any £ € N consecutive graphs in execution has globally reachable node

Then, there exists (p*, ..., p*) € diag((R%)") such that

P — (p*s---,p") as m— +oo

Proof uses

Teco(P) = {fc, 0o fa(P) |

Ui_; Gihas globally reachable node}

Robustn of circumcenter algorithms

Push whole idea further!, e.g., for robustness against link failures

</ | ()

topology Gy topology G topology G

Look at evolution under link failures as outcome of
nondeterministic evolution under multiple interaction topologies

P — {evolution under Gy, evolution under G, evolution under Gs}

Rendezvous: example complexity analy

B first-order agents with disk graph, for d = 1,
TC(Tendavs CComevncrnren) € O(1)

B first-order agents with limited Delaunay graph, for d = 1,

TC(Tre)-rndavs: Clomernerston) € ©(n? log(ne ™))

Complexity analysis via tridiagonal Toeplitz and circulant matrices
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