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‘What are camera networks?

. A 3 g J
= Small and large networks of video ]
cameras are being installed in many TR =E
applications: security and surveillance,
environmental monitoring, disaster
response.

= Almost complete manual analysis
= Tedious
= Overwhelming

= We need automated processing to assist
the user — very challenging problem.
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Challenges in Camera Networks
=

= Traditional computer vision challenges in tracking and
recognition — robustness to pose, illumination,

occlusion, clutter... (in fact, these issues are more significant in
large network). However, we will ignore them today!

= Tracking over wide areas — hold targets as they
appear and disappear

= Centralized vs. Distributed Processing

= Static vs. Active camera networks — to control
or not?
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Two Examples
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!Distributed vs. Centralized

= In many applications, distributed video analysis is
desirable
= Bandwidth constraints
= Security issues
=« Difficulties in analyzing a huge amount of data centrally

= The cameras, acting as autonomous agents
= Analyze the raw data locally
= Exchange only distilled information
= Reach a shared, global analysis of the scene

Video
Computing & A
Group Engineering

Riverside




|
Integrated Sensing and Analysis
X

= Most existing camera networks: fixed cameras
covering a large area

= Targets are often not covered at the desired resolutions/
viewpoints
= Make the analysis of the video difficult

= Integrate the analysis and sensing tasks more closely

= Control the parameters of a pan-tilt-zoom (PTZ)
camera network to fulfill the analysis requirements
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| An Integrated Sensing and Analysis
‘Framework
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DISTRIBUTED TRACKING



| Distributed Tracking through

‘Consensus

(B 1. Each camera estimates states of
i targets based on local

- \ measurement
;i N

(&) — 2. Send message to neighboring
l o cameras
3. Receive message from neighbors
\ 4. Fuse information to compute

consensus state estimate
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‘Kalman-Consensus Filter

3:  Locally aggregate data and covariance matrices:
Information from

. — N.
Ji = N; U{i} / measurements

uj = H‘;-TRJ-_IZJ', \V,_] e .J;. Yi|= (2
Innovation from Je€Ji
measuremen Uj = H R;'H;, Vj € J;, |Si

_ N,
<?7J\ Confidence in the

. measurements
he Kalman-Consensus estimate:

Weight of that 4

innovation Innovation from
4~ neighbors tracks
5. Update the state of the Kalman-Consens
P, — AM;AT + BOBT Weight of that
_ . innovation
T; — Az
Video P Riversid
Computing BOURNS COLLEGE OF

Group Engineering



|
Ongoing Work
=

= Wide area camera networks have
sparse connectivity, which causes a lag
in the estimation.

= Can lead to completely incorrect tracks.

= Ongoing work: modifications to the KCF
framework for video networks (can
discuss offline).
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CAMERA NETWORK CONTROL



| Game Theoretic Framework for

!Camera Network Reconfiguration

= Design each camera to be a rational decision maker

= Formulate the problem as a multiplayer game, where
each camera is a player and interested in optimizing

its own utility

= By designing the camera utility functions to be
aligned with the global utility function, the game is a
potential game with the global utility function being
the potential function

= The agreeable settings of cameras (Nash equilibria),
should lead to high, ideally maximal, global utility.
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Example - Static vs. Active cameras
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Global Utility
=

U (a) = Tracking Utility Weigltbaging Utility
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|
Camera Utility
b

Camera Utility should be aligned with global utility

UCZ. (aiaa—i)_UCl. (biaa—i) >0= Ug(aiaa—i)_Ug(biaa—i) >0
——> The game is a ordinary potential game
——> Guarantee the existence of Nash equilibria

UCi (ai!'a—i) = Ug(al-,a_i) _Ug(a—i)
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Optimization Goal
=
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A choice of parameter settings a” = (a4, ,...a, ) such that no
sensor could improve its utility further by deviating from ¢,
i.e., by choosing a different set of parameters, the utility
functions of all cameras cannot be improved further.

If a_; denotes the collection of targets for all cameras
except camera C, then g is a pure Nash equilibrium if

Uec (a,,a.,)= meanUq (a,a.),YC,EC

Riverside

Engineering



The video can be downloaded from
http://www.ee.ucr.edu/~amitrc/CameraNetworks.php under Demos.
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!Future Work

= Design of optimization strategies that enable
= Robust opportunistic sensing
= Active control integrated with scene understanding criteria
= Optimization strategies that allow for semantic descriptions
(interface with Al)
= Mobile camera networks

= Joint optimization of camera parameters and trajectory
estimation of mobile platforms.
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