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Introduction

Background: Economics
Can you spot the lunacy?

A New Era For Control

We should remove derivative control from our engineering curriculum!

Fundamental Theorem of Calculus: If the airplane is flying at level height,
then the ultimate contribution of the derivative is zero:

0 = y(T )−y(0) =
∫ T

0
ẏ(t)dt



Introduction

Background: Economics
Can you spot the lunacy?

A New Era For Control

We should remove derivative control from our engineering curriculum!

Fundamental Theorem of Calculus: If the airplane is flying at level height,
then the ultimate contribution of the derivative is zero:

0 = y(T )−y(0) =
∫ T

0
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Introduction

Background: Economics
Can you spot the lunacy?

A New Era For Government

We should remove government spending from our economics curriculum!

Barro-Ricardo Equivalence Proposition: Government budget imbalances
are irrelevant to resource allocation. Every dollar of taxes postponed today
must be paid with interest tomorrow by the exact same group of taxpayers
alive today.



Introduction

Background: Economics
Saner voices

Ericson and Pakes [3]

This paper provides a model of firm and industry dynamics that allows for entry, exit and

firm-specific uncertainty generating variability in the fortunes of firms. It focuses on the impact

of uncertainty arising from investment in research and exploration-type processes. ...

Coupled Markov models to address transients.
—Transients are everything in both business and economics

Computation of Nash equilibria for coupled MDP models?

[3] Markov-perfect industry dynamics: A framework for empirical work, Rev. of Econ. Studies 1995
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Introduction

Background: Economics
Greater sanity

Weintraub, Benkard, and Van Roy [17]

... oblivious equilibrium (OE) is an approximation in which each player makes decisions based on

his own state and the “average” state of the other players. ...

Some aspects of dynamics and uncertainty are preserved.

Computation of Nash equilibria is possible.

[17] Markov perfect industry dynamics with many firms, Econometrica 2008; [6] Huang et al., TAC, 2007
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Introduction

Question (Fundamental question in Neuroscience)

Why is synchrony (neural rhythms) useful?
Does it have a functional role?

1 Synchronization

Phase transition in controlled system (motivated by coupled oscillators)
H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, “Synchronization of Coupled Oscillators is a Game,” TAC

4 Learning

Synaptic plasticity via long term potentiation (Hebbian learning)
“Neurons that fire together wire together”
H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, “ Learning in Mean-Field Oscillator Games,” CDC 2010

3 Neuronal computations

Bayesian inference
Neural circuits as particle filters (Lee & Mumford)
T. Yang, P. G. Mehta and S. P. Meyn, “ A Control-oriented Approach for Particle Filtering,” ACC&CDC 2011

Destexhe & Marder, Nature, 2004; Kopell et al., Neuroscience, 2009; Lee & Mumford, J. Opt. Soc, 2003
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Introduction

Background: Kuramoto model

dθi (t) =

(
ωi +

κ

N

N

∑
j=1

sin(θj(t)−θi (t))

)
dt + σ dξi (t), i = 1, . . . ,N

ωi : taken from distribution g(ω) over [1− γ,1 + γ]

γ: measures the heterogeneity of the population

κ: measures the strength of coupling

[9] Y. Kuramoto, 1975; [13] Strogatz et al., J. Stat. Phy., 1991
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Oscillator Games

Oscillator Game

N oscillators with natural frequency ωi ,
chosen from distribution g( ·)

g(ω

ω

)

1
2γ

1− γ 1 + γ

Dynamics of i th oscillator, dθi = (ωi +ui (t))dt + σ dξi

Oscillator seeks control ui ( ·) to minimize,

ηi (ui ;u−i ) = lim
T→∞

1

T

∫ T

0
E[ c(θi ;θ−i )︸ ︷︷ ︸

cost of anarchy

+ 1
2Ru

2
i︸ ︷︷ ︸

cost of control

]ds

Cost of anarchy,

c(θi ;θ−i ) =
1

N ∑
j 6=i

c•(θi −θj)
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Oscillator Games

Mean-field model

dθi = (ωi +ui (t))dt + σ dξi

ηi (ui ;u−i ) = lim
T→∞

1

T

∫ T

0
E[c(θi ;θ−i ) + 1

2Ru
2
i ]ds

c(θi ;θ−i ) =
1

N ∑
j 6=i

c•(θi ,θj (t))
N→∞−−−→ c̄(θi ,t)

Letting N → ∞ and assume c(θi ,θ−i )→ c̄(θi , t)

HJB: ∂th+ ω∂θh =
1

2R
(∂θh)2− c̄(θ , t) + η

∗− σ2

2
∂

2
θθh ⇒ h(θ , t,ω)

FPK: ∂tp+ ω∂θp =
1

R
∂θ [p( ∂θh )] +

σ2

2
∂

2
θθp ⇒ p(θ , t,ω)

c̄(ϑ , t) =
∫

Ω

∫ 2π

0
c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;
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Oscillator Games

Solution of PDEs gives ε-Nash equilibrium

ε-Nash equilibrium

Solution to PDE =⇒ Oblivious control for ith oscillator,

uoi =− 1

R
∂θh(θ(t), t,ω)

∣∣
ω=ωi

Theorem: ε-Nash equilibrium property,

ηi (u
o
i ;uo−i )≤ ηi (ui ;u

o
−i ) +O(

1√
N

), i = 1, . . . ,N,

for any adapted control ui .

Solution to PDE?
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Oscillator Games

Incoherent Solution

h(θ , t,ω)≡ 0 , p(θ , t,ω)≡ 1

2π

h(θ , t,ω) = 0 ⇒ ∂th+ ω∂θh =
1

2R
(∂θh)2− c̄(θ , t) + η

∗− σ2

2
∂

2
θθh

p(θ , t,ω) =
1

2π
⇒ ∂tp+ ω∂θp =

1

R
∂θ [p(∂θh)] +

σ2

2
∂

2
θθp

p(θ , t,ω) =
1

2π
⇒ c̄(θ , t) =

∫
Ω

∫ 2π

0
c•(θ ,ϑ)p(ϑ , t,ω)g(ω)dϑ dω

=
∫

Ω

∫ 2π

0

1
2 sin2

(
θ −ϑ

2

)
1

2π
g(ω)dϑ dω

=
1

4
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Oscillator Games

Examples of Solutions: Incoherence and Synchrony
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Oscillator Games

Bifurcation

Synchrony

Incoherence
0 0.1
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0.2
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R −1/2
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dθi = (ωi +ui )dt + σ dξi

ηi (ui ;u−i ) = lim
T→∞

1

T

∫ T

0
E[c(θi ;θ−i ) + 1

2Ru
2
i ]ds

g(ω

ω
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1
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Yin et al., ACC 2010

Strogatz et al., J. Stat. Phy., 1991
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Oscillator Games

Comparison of controls

Control law

ui = ϕ(θ , t,ωi ) :=− 1

R
∂θh(θ , t,ω)

∣∣∣∣
ω=ωi

Mass

In�uence

−0.2

0

0.2

0.4

0.6

Kuramoto

Population
Density

Control laws

Cost

0 π 2π

ω

ω

= 1



Oscillator Games

Comparison of controls

Control law

ui = ϕ(θ , t,ωi ) :=− 1

R
∂θh(θ , t,ω)

∣∣∣∣
ω=ωi

Mass

In�uence

−0.2

0

0.2

0.4

0.6

Kuramoto

Population
Density

Control laws

Cost

0 π 2π

ω

ω

= 1



Learning

Synchrony Incoherence

Mean-field Filter

Learning to Control



Learning

Approximate Dynamic Programming

Optimality equation min
ui
{c(θ ;θ−i (t)) + 1

2Ru
2
i +Dui hi (θ , t)︸ ︷︷ ︸

=: Hi (θ ,ui ;θ−i (t))

}= η
∗
i

Optimal control law

u∗i =− 1

R
∂θhi (θ , t)

Parameterization for approximation:

H
(Ai ,φi )
i (θ ,ui ;θ−i (t)) = c(θ ;θ−i (t)) + 1

2Ru
2
i + (ωi −1 +ui )AiS

(φi ) +
σ 2

2
AiC

(φi )

where

S (φ)(θ ,θ−i ) =
1

N ∑
j 6=i

sin(θ −θj −φ), C (φ)(θ ,θ−i ) =
1

N ∑
j 6=i

cos(θ −θj −φ)

Approx. optimal control:

u
(Ai ,φi )
i = arg min

ui

{H(Ai ,φi )
i (θ ,ui ;θ−i (t))}=− Ai

RN ∑
j 6=i

sin(θ −θj(t)−φi )

Watkins & Dayan, Q-learning, 1992; Bertsekas & Tsitsiklis, NDP, 1996; Mehta & Meyn, CDC 2009
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Learning

Learning algorithm

Bellman error:

Pointwise: L (Ai ,φi )(θ , t) = min
ui
{H(Ai ,φi )

i }−η
(A∗i ,φ

∗
i )

i

Stochastic approximation based on ODE,

ẽ(Ai ,φi ) =
2

∑
k=1

|〈L (Ai ,φi ), ϕ̃k(θ)〉|2

dAi

dt
=−ε

dẽ(Ai ,φi )

dAi
,

dφi

dt
=−ε

dẽ(Ai ,φi )

dφi
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Learning

Comparison of average cost

dθi = (ωi +ui )dt + σ dξi ui =− A∗i
RN ∑

j 6=i

sin(θi −θj(t)−φ
∗
i )

ηi (ui ;u−i ) = lim
T→∞

1

T

∫ T

0
E[c(θi ;θ−i ) + 1

2Ru
2
i ]ds

Learning

MFG Approximation

Average Cost  η
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Particle Filter Games

Filtering problem

Signal, observation processes:

dθt = ω dt + σB dBt mod 2π

dZt = h(θt)dt + σW dWt −π 0 π

h(θ) =
1 + cos(θ

θ

)

2

Nonlinear Filtering

Objective: estimate the posterior distribution p∗ of θt given Z t .

Solution approaches:

Linear system: Kalman filter (R. E. Kalman, 1960)

Nonlinear system: Wonham filter (W. M. Wonham, 1965)

Numerical Methods: Particle filter (N. J. Gordon et al., 1993)
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Particle Filter Games

Feedback Particle Filter

Signal, observation processes:

dθt = ω dt + σB dBt mod 2π

dZt = h(θt)dt + σW dWt −π 0 π

h(θ) =
1 + cos(θ

θ

)

2

Feedback Particle Filter

Particles evolve as controlled SDEs with independent noise,

dθ
i
t = ω dt + σB dB i

t + dU i
t mod 2π, i = 1, ...,N.

Objective: Choose control U i
t so that,

P{θ i
t ∈ · | Z t

0}= p∗ = P{θt ∈ · | Z t
0}

=⇒ Empirical distribution of particles approximates p∗.
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Particle Filter Games

Filtering for Oscillator

Signal, observation processes:

dθt = ω dt + σB dBt mod 2π

dZt = h(θt)dt + σW dWt −π 0 π

h(θ) =
1 + cos(θ

θ

)

2

Particle evolution,

dθ
i
t = ω dt + σB dB i

t + v(θ
i
t )[dZt −

1

2
(h(θ

i
t ) + ĥ)dt]

+
1

2
σ

2
W vv ′ dt mod 2π, i = 1, ...,N.

Observer gain v(θ
i
t ) is obtained via the solution of an E-L equation,

− ∂

∂θ

(
1

p(θ , t)

∂

∂θ
{p(θ , t)v(θ , t)}

)
=−sinθ

σ2
W



Particle Filter Games

Filtering for Oscillator

Fourier form of p(θ , t),

p(θ , t) =
1

2π
+Ps(t)sinθ +Pc(t)cosθ

Approx. solution of E-L equation, using a perturbation method:

v(θ , t) =
1

2σ2
W

{
−sinθ +

π

2
[Pc(t)sin2θ −Ps(t)cos2θ ]

}
,

v ′(θ , t) =
1

2σ2
W

{−cosθ + π[Pc(t)cos2θ +Ps(t)sin2θ ]}

where

Pc(t)≈ P̄
(N)
c (t) =

1

πN

N

∑
j=1

cosθ
j
t , Ps(t)≈ P̄

(N)
s (t) =

1

πN

N

∑
j=1

sinθ
j
t .



Particle Filter Games

Simulation Results

Signal, observation processes:

dθt = 1dt + 0.5dBt mod 2π

dZt = h(θt)dt + 0.4dWt −π 0 π

h(θ) =
1 + cos(θ

θ

)

2

N = 100 particles,

dθ
i
t = 1dt + 0.5dB i

t +U(θ
i
t ; P̄

(N)
c (t), P̄

(N)
s (t)) mod 2π
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Particle Filter Games

Variance Reduction
Filtering for simple linear model.

Mean-square error:
1

T

∫ T

0

(
Σ

(N)
t −Σt

Σt

)2

dt

102 103

10−3

10−2

10−1

N (number of particles)
 

Bootstrap (BPF)

Feedback (FPF)

MSE



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?

What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning?

Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Conclusions

Conclusions
Fun and Profit?

Without doubt, MFGs provide a great playground.

Neuro-morphic possibilities?
What is the value of Winfree / Kuramoto models?
I don’t know.

Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous
potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?



Thank you!
Collaborators

Huibing Yin Tao Yang Prashant Mehta Uday Shanbhag

“Q-learning and Pontryagin’s Minimum Principle,” CDC 2009

“Synchronization of coupled oscillators is a game,” IEEE TAC, ACC 2010

“Learning in Mean-Field Oscillator Games,” CDC 2010

“On the Efficiency of Equilibria in Mean-field Oscillator Games,” ACC 2011

“A Mean-field Control-oriented Approach for Particle Filtering,” ACC2011

“Feedback Particle Filter with Mean-field Coupling,” CDC2011



Bibliography

Eric Brown, Jeff Moehlis, and Philip Holmes. On the phase reduction and response
dynamics of neural oscillator populations. Neural Computation, 16(4):673–715, 2004.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte-Carlo Methods in Practice.
Springer-Verlag, April 2001.

R. Ericson and A. Pakes. Markov-perfect industry dynamics: A framework for empirical
work. The Review of Economic Studies, 62(1):53–82, 1995.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal
Processing, 140(2):107–113, 1993.

J. Guckenheimer. Isochrons and phaseless sets. J. Math. Biol., 1:259–273, 1975.

M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled LQG problems
with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria.
52(9):1560–1571, 2007.

Minyi Huang, Peter E. Caines, and Roland P. Malhame. Large-population cost-coupled
LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-nash
equilibria. IEEE transactions on automatic control, 52(9):1560–1571, 2007.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960.

Y. Kuramoto. International Symposium on Mathematical Problems in Theoretical Physics,
volume 39 of Lecture Notes in Physics. Springer-Verlag, 1975.



Bibliography

H. J. Kushner. On the differential equations satisfied by conditional probability densities of
markov process. SIAM J. Control, 2:106–119, 1964.

J. Lasry and P. Lions. Mean field games. Japanese Journal of Mathematics, 2(2):229–260,
2007.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japan. J. Math., 2:229–260,
2007.

S. H. Strogatz and R. E. Mirollo. Stability of incoherence in a population of coupled
oscillators. Journal of Statistical Physics, 63:613–635, May 1991.

Huibing Yin, Prashant G. Mehta, Sean P. Meyn, and Uday V. Shanbhag. Synchronization
of coupled oscillators is a game. In Proc. of 2010 American Control Conference, pages
1783–1790, Baltimore, MD, 2010.

Mehta P. G. Meyn S. P. Yin, H. and U. V. Shanbhag. Synchronization of coupled
oscillators is a game. IEEE Trans. Automat. Control.

G. Y. Weintraub, L. Benkard, and B. Van Roy. Oblivious equilibrium: A mean field
approximation for large-scale dynamic games. In Advances in Neural Information
Processing Systems, volume 18. MIT Press, 2006.

G. Y. Weintraub, L. Benkard, and B. V. Roy. Markov perfect industry dynamics with many
firms. Econometrica, 76(6):1375–1411, 2008.


	Introduction
	Oscillator Games
	Learning
	Particle Filter Games
	Conclusions
	Bibliography

