Mean-field Games for Fun and Profit

Santa Barbara Control Workshop Decision, Dynamics and Control in Multi-Agent Systems

Sean P. Meyn

Joint work with: H. Yin, T. Yang, P. G. Mehta, and U. V. Shanbhag,

Coordinated Science Laboratory and the Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, USA

Thanks to NSF & AFOSR

Outline

Introduction

Oscillator Games

3 Learning

Particle Filter Games

5 Conclusions

6 Bibliography

Introduction

Who Cares About Oscillators?

Can you spot the lunacy?

Can you spot the lunacy?

A New Era For Control

We should remove derivative control from our engineering curriculum!

Can you spot the lunacy?

A New Era For Control

We should remove derivative control from our engineering curriculum!

Fundamental Theorem of Calculus: If the airplane is flying at level height, then the ultimate contribution of the derivative is *zero*:

$$0 = y(T) - y(0) = \int_0^T \dot{y}(t) \, dt$$

Can you spot the lunacy?

A New Era For Government

We should remove government spending from our economics curriculum!

Barro-Ricardo Equivalence Proposition: Government budget imbalances are irrelevant to resource allocation. Every dollar of taxes postponed today must be paid with interest tomorrow by the exact same group of taxpayers alive today.

Ericson and Pakes^[3]

This paper provides a model of firm and industry dynamics that allows for entry, exit and firm-specific uncertainty generating variability in the fortunes of firms. It focuses on the impact of uncertainty arising from investment in research and exploration-type processes. ...

Coupled Markov models to address transients.

-Transients are *everything* in both business and economics

^[3] Markov-perfect industry dynamics: A framework for empirical work, Rev. of Econ. Studies 1995

Ericson and Pakes^[3]

This paper provides a model of firm and industry dynamics that allows for entry, exit and firm-specific uncertainty generating variability in the fortunes of firms. It focuses on the impact of uncertainty arising from investment in research and exploration-type processes. ...

Coupled Markov models to address transients.

-Transients are *everything* in both business and economics

Computation of Nash equilibria for coupled MDP models?

^[3] Markov-perfect industry dynamics: A framework for empirical work, Rev. of Econ. Studies 1995

Background: Economics Greater sanity

Weintraub, Benkard, and Van Roy^[17]

 \dots oblivious equilibrium (OE) is an approximation in which each player makes decisions based on his own state and the "average" state of the other players. \dots

Some aspects of dynamics and uncertainty are preserved.

Computation of Nash equilibria is possible.

^[17] Markov perfect industry dynamics with many firms, Econometrica 2008; [6] Huang et al., TAC, 2007

Introduction

Background: Synchrony in Nature

Synchrony is Good

Pacemaker cells

Laser light

Introduction

Background: Synchrony in Nature

Synchrony is Good

Pacemaker cells

Synchrony is Not Good Bridges

Laser light

Question (Fundamental question in Neuroscience) Why is synchrony (neural rhythms) useful? Does it have a functional role?

Destexhe & Marder, Nature, 2004; Kopell et al., Neuroscience, 2009; Lee & Mumford, J. Opt. Soc, 2003

Question (Fundamental question in Neuroscience)

Why is synchrony (neural rhythms) useful? Does it have a functional role?

Synchronization

- Phase transition in controlled system (motivated by coupled oscillators)
- H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, "Synchronization of Coupled Oscillators is a Game," TAC

Question (Fundamental question in Neuroscience)

Why is synchrony (neural rhythms) useful? Does it have a functional role?

Synchronization

- Phase transition in controlled system (motivated by coupled oscillators)
- H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, "Synchronization of Coupled Oscillators is a Game," TAC

4 Learning

- Synaptic plasticity via long term potentiation (Hebbian learning) "Neurons that fire together wire together"
- H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, "Learning in Mean-Field Oscillator Games," CDC 2010

Destexhe & Marder, Nature, 2004; Kopell et al., Neuroscience, 2009; Lee & Mumford, J. Opt. Soc, 2003

Question (Fundamental question in Neuroscience)

Why is synchrony (neural rhythms) useful? Does it have a functional role?

Synchronization

- Phase transition in controlled system (motivated by coupled oscillators)
- H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, "Synchronization of Coupled Oscillators is a Game," TAC

4 Learning

- Synaptic plasticity via long term potentiation (Hebbian learning) "Neurons that fire together wire together"
- H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, "Learning in Mean-Field Oscillator Games," CDC 2010

O Neuronal computations

- Bayesian inference
- Neural circuits as particle filters (Lee & Mumford)
- T. Yang, P. G. Mehta and S. P. Meyn, "A Control-oriented Approach for Particle Filtering," ACC&CDC 2011

$$\mathrm{d}\theta_i(t) = \left(\omega_i + \frac{\kappa}{N}\sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t))\right) \mathrm{d}t + \sigma \,\mathrm{d}\xi_i(t), \quad i = 1, \dots, N$$

٠

$$\mathrm{d}\theta_i(t) = \left(\frac{\omega_i}{N} + \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t)) \right) \mathrm{d}t + \sigma \mathrm{d}\xi_i(t), \quad i = 1, \dots, N$$

 ω_i : taken from distribution $g(\omega)$ over $[1 - \gamma, 1 + \gamma]$ γ : measures the heterogeneity of the population

$$\mathrm{d}\theta_i(t) = \left(\omega_i + \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t))\right) \mathrm{d}t + \sigma \mathrm{d}\xi_i(t), \quad i = 1, \dots, N$$

• K: measures the strength of coupling

$$\mathrm{d}\theta_i(t) = \left(\omega_i + \frac{\kappa}{N}\sum_{j=1}^N \sin(\theta_j(t) - \theta_i(t))\right) \mathrm{d}t + \sigma \,\mathrm{d}\xi_i(t), \quad i = 1, \dots, N$$

N oscillators with natural frequency ω_i , chosen from distribution $g(\cdot)$

N oscillators with natural frequency ω_i , chosen from distribution $g(\cdot)$

Dynamics of i^{th} oscillator, $d\theta_i = (\omega_i + u_i(t))dt + \sigma d\xi_i$

N oscillators with natural frequency ω_i , chosen from distribution $g(\cdot)$

Dynamics of i^{th} oscillator, $d\theta_i = (\omega_i + u_i(t))dt + \sigma d\xi_i$ Oscillator seeks control $u_i(\cdot)$ to minimize,

$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}\left[\underbrace{c(\theta_i; \theta_{-i})}_{\text{cost of anarchy}} + \underbrace{\frac{1}{2} R u_i^2}_{\text{cost of control}}\right] \mathrm{d}s$$

N oscillators with natural frequency ω_i , chosen from distribution $g(\cdot)$

Dynamics of i^{th} oscillator, $d\theta_i = (\omega_i + u_i(t))dt + \sigma d\xi_i$ Oscillator seeks control $u_i(\cdot)$ to minimize,

$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}\left[\underbrace{c(\theta_i; \theta_{-i})}_{\text{cost of anarchy}} + \underbrace{\frac{1}{2} R u_i^2}_{\text{cost of control}}\right] \mathrm{d}s$$

Cost of anarchy,

$$c(\theta_i; \theta_{-i}) = \frac{1}{N} \sum_{j \neq i} c^{\bullet}(\theta_i - \theta_j)$$

$$d\theta_i = (\omega_i + u_i(t)) dt + \sigma d\xi_i$$

$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}[c(\theta_i; \theta_{-i}) + \frac{1}{2}Ru_i^2] ds$$

$$c(\theta_i;\theta_{-i}) = \frac{1}{N} \sum_{j \neq i} c^{\bullet}(\theta_i,\theta_j(t)) \xrightarrow{N \to \infty} \bar{c}(\theta_i,t)$$

[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;

$$d\theta_{i} = (\omega_{i} + u_{i}(t))dt + \sigma d\xi_{i}$$

$$\eta_{i}(u_{i}; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbb{E}[c(\theta_{i}; \theta_{-i}) + \frac{1}{2}Ru_{i}^{2}]ds$$

$$Letting N \to \infty \text{ and assume} \quad c(\theta_{i}, \theta_{-i}) \to \overline{c}(\theta_{i}, t)$$

$$HJB: \quad \partial_{t}h + \omega \partial_{\theta}h = \frac{1}{2R}(\partial_{\theta}h)^{2} - \overline{c}(\theta, t) + \eta^{*} - \frac{\sigma^{2}}{2}\partial_{\theta\theta}^{2}h \quad \Rightarrow \quad h(\theta, t, \omega)$$

^[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;

$$d\theta_{i} = (\omega_{i} + u_{i}(t))dt + \sigma d\xi_{i}$$

$$\eta_{i}(u_{i}; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} E[c(\theta_{i}; \theta_{-i}) + \frac{1}{2}Ru_{i}^{2}]ds$$

$$Letting N \to \infty \text{ and assume} \quad c(\theta_{i}, \theta_{-i}) \to \overline{c}(\theta_{i}, t)$$

$$HJB: \quad \partial_{t}h + \omega \partial_{\theta}h = \frac{1}{2R}(\partial_{\theta}h)^{2} - \overline{c}(\theta, t) + \eta^{*} - \frac{\sigma^{2}}{2}\partial_{\theta\theta}^{2}h \quad \Rightarrow \quad h(\theta, t, \omega)$$

$$FPK: \quad \partial_{t}p + \omega \partial_{\theta}p = \frac{1}{R}\partial_{\theta}[p(\partial_{\theta}h)] + \frac{\sigma^{2}}{2}\partial_{\theta\theta}^{2}p \qquad \Rightarrow \qquad p(\theta, t, \omega)$$

^[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;

$$d\theta_{i} = (\omega_{i} + u_{i}(t)) dt + \sigma d\xi_{i}$$

$$\eta_{i}(u_{i}; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbb{E}[c(\theta_{i}; \theta_{-i}) + \frac{1}{2}Ru_{i}^{2}] ds$$

$$\boxed{\text{Letting } N \to \infty \text{ and assume} \quad c(\theta_{i}, \theta_{-i}) \to \overline{c}(\theta_{i}, t)}$$

$$\text{HJB:} \quad \partial_{t}h + \omega \partial_{\theta}h = \frac{1}{2R} (\partial_{\theta}h)^{2} - \overline{c}(\theta, t) + \eta^{*} - \frac{\sigma^{2}}{2} \partial_{\theta\theta}^{2}h \implies h(\theta, t, \omega)$$

$$\text{FPK:} \quad \partial_{t}p + \omega \partial_{\theta}p = \frac{1}{R} \partial_{\theta}[p(\partial_{\theta}h)] + \frac{\sigma^{2}}{2} \partial_{\theta\theta}^{2}p \implies p(\theta, t, \omega)$$

$$\overline{c}(\vartheta, t) = \int_{\Omega} \int_{0}^{2\pi} c^{\bullet}(\vartheta, \theta) p(\theta, t, \omega) g(\omega) d\theta d\omega$$

[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;

$$d\theta_{i} = (\omega_{i} + u_{i}(t))dt + \sigma d\xi_{i}$$

$$\eta_{i}(u_{i}; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mathbb{E}[c(\theta_{i}; \theta_{-i}) + \frac{1}{2}Ru_{i}^{2}]ds$$

$$\boxed{\text{Letting } N \to \infty \text{ and assume}} \quad c(\theta_{i}, \theta_{-i}) \to \overline{c}(\theta_{i}, t)$$

$$HJB: \quad \partial_{t}h + \omega \partial_{\theta}h = \frac{1}{2R}(\partial_{\theta}h)^{2} - \overline{c}(\theta, t) + \eta^{*} - \frac{\sigma^{2}}{2}\partial_{\theta\theta}^{2}h \implies h(\theta, t, \omega)$$

$$FPK: \quad \partial_{t}p + \omega \partial_{\theta}p = \frac{1}{R}\partial_{\theta}[p(\partial_{\theta}h^{*})] + \frac{\sigma^{2}}{2}\partial_{\theta\theta}^{2}p \implies p(\theta, t, \omega)$$

$$\overline{c}(\vartheta, t) = \int_{\Omega} \int_{0}^{2\pi} c^{\bullet}(\vartheta, \theta) p(\theta, t, \omega) g(\omega) d\theta d\omega$$

 \bigcirc

[7] Huang et al., TAC, 2007; [12] Lasry & Lions, Japan. J. Math, 2007; [16] Weintraub et al., NIPS, 2006;

Solution of PDEs gives ε -Nash equilibrium

Solution of PDEs gives ε -Nash equilibrium

ε-Nash equilibrium

Solution to PDE \implies Oblivious control for *i*th oscillator,

$$u_i^o = -rac{1}{R}\partial_ heta h(heta(t),t,\omega)ig|_{\omega=\omega_i}$$

Theorem: ϵ -Nash equilibrium property,

$$\eta_i(u_i^o;u_{-i}^o) \leq \eta_i(u_i;u_{-i}^o) + O(rac{1}{\sqrt{N}}), \quad i=1,\ldots,N,$$

for any adapted control u_i .

Solution of PDEs gives ε -Nash equilibrium

ε-Nash equilibrium

Solution to PDE \implies Oblivious control for *i*th oscillator,

$$u_i^o = -rac{1}{R}\partial_ heta h(heta(t),t,\omega) ig|_{\omega=\omega_i}$$

Theorem: ϵ -Nash equilibrium property,

$$\eta_i(u_i^o;u_{-i}^o) \leq \eta_i(u_i;u_{-i}^o) + O(rac{1}{\sqrt{N}}), \quad i=1,\ldots,N,$$

for any adapted control u_i .

Solution to PDE?

Incoherent Solution

$$h(\theta, t, \omega) \equiv 0, \qquad p(\theta, t, \omega) \equiv \frac{1}{2\pi}$$

Incoherent Solution

$$h(\theta, t, \omega) \equiv 0, \qquad p(\theta, t, \omega) \equiv \frac{1}{2\pi}$$

$$(incoherence)$$

$$t, \omega) = 0 \quad \Rightarrow \quad \partial_t h + \omega \partial_\theta h = \frac{1}{2\pi} (\partial_\theta h)^2 - \bar{c}(\theta, t) + \eta^* - \frac{\sigma^2}{2} \partial_{\theta\theta}^2$$

 $p(\theta, t, \omega) = \frac{1}{2}$

$$\begin{aligned} h(\theta, t, \omega) &= 0 \quad \Rightarrow \quad \partial_t h + \omega \partial_\theta h = \frac{1}{2R} (\partial_\theta h)^2 - \bar{c}(\theta, t) + \eta^* - \frac{\partial}{2} \partial_{\theta\theta}^2 h \\ p(\theta, t, \omega) &= \frac{1}{2\pi} \quad \Rightarrow \quad \partial_t p + \omega \partial_\theta p = \frac{1}{R} \partial_\theta [p(\partial_\theta h)] + \frac{\sigma^2}{2} \partial_{\theta\theta}^2 p \\ p(\theta, t, \omega) &= \frac{1}{2\pi} \quad \Rightarrow \quad \bar{c}(\theta, t) = \int_\Omega \int_0^{2\pi} c^{\bullet}(\theta, \vartheta) p(\vartheta, t, \omega) g(\omega) \, \mathrm{d}\vartheta \, \mathrm{d}\omega \\ &= \int_\Omega \int_0^{2\pi} \frac{1}{2} \sin^2 \left(\frac{\theta - \vartheta}{2}\right) \frac{1}{2\pi} g(\omega) \, \mathrm{d}\vartheta \, \mathrm{d}\omega \\ &= \frac{1}{4} \end{aligned}$$

Incoherent Solution

$$h(\theta, t, \omega) \equiv 0, \qquad p(\theta, t, \omega) \equiv \frac{1}{2\pi}$$

$$h(\theta, t, \omega) = 0 \qquad \Rightarrow \qquad \partial_t h + \omega \partial_\theta h = \frac{1}{2R} (\partial_\theta h)^2 - \bar{c}(\theta, t) + \eta^* - \frac{\sigma^2}{2} \partial_{\theta\theta}^2 h$$

$$p(\theta, t, \omega) = \frac{1}{2\pi} \qquad \Rightarrow \qquad \partial_t p + \omega \partial_\theta p = \frac{1}{R} \partial_\theta [p(\partial_\theta h)] + \frac{\sigma^2}{2} \partial_{\theta\theta}^2 p$$

$$p(\theta, t, \omega) = \frac{1}{2\pi} \qquad \Rightarrow \qquad \bar{c}(\theta, t) = \int_\Omega \int_0^{2\pi} c^{\bullet}(\theta, \vartheta) p(\vartheta, t, \omega) g(\omega) d\vartheta d\omega$$

$$= \int_\Omega \int_0^{2\pi} \frac{1}{2} \sin^2 \left(\frac{\theta - \vartheta}{2}\right) \frac{1}{2\pi} g(\omega) d\vartheta d\omega$$

 $=\frac{1}{4}$
Incoherent Solution

$$h(\theta, t, \omega) \equiv 0, \qquad p(\theta, t, \omega) \equiv \frac{1}{2\pi}$$

$$h(\theta, t, \omega) = 0 \quad \Rightarrow \quad \partial_t h + \omega \partial_\theta h = \frac{1}{2R} (\partial_\theta h)^2 - \bar{c}(\theta, t) + \eta^* - \frac{\sigma^2}{2} \partial_{\theta\theta}^2 h$$

$$p(\theta, t, \omega) = \frac{1}{2\pi} \quad \Rightarrow \quad \partial_t p + \omega \partial_\theta p = \frac{1}{R} \partial_\theta [p(\partial_\theta h)] + \frac{\sigma^2}{2} \partial_{\theta\theta}^2 p$$

$$p(\theta, t, \omega) = \frac{1}{2\pi} \quad \Rightarrow \quad \bar{c}(\theta, t) = \int_\Omega \int_0^{2\pi} c^{\bullet}(\theta, \vartheta) p(\vartheta, t, \omega) g(\omega) \, \mathrm{d}\vartheta \, \mathrm{d}\omega$$

$$= \int_\Omega \int_0^{2\pi} \frac{1}{2} \sin^2 \left(\frac{\theta - \vartheta}{2}\right) \frac{1}{2\pi} g(\omega) \, \mathrm{d}\vartheta \, \mathrm{d}\omega$$

$$= \frac{1}{4}$$

Oscillator Games

Examples of Solutions: Incoherence and Synchrony

Incoherence

Synchrony

Bifurcation

$$d\theta_i = (\omega_i + u_i) dt + \sigma d\xi_i$$

$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}[c(\theta_i; \theta_{-i}) + \frac{1}{2}Ru_i^2] ds$$

Yin et al., ACC 2010

Bifurcation

$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}[c(\theta_i; \theta_{-i}) + \frac{1}{2}Ru_i^2] \mathrm{d}s$$

Strogatz et al., J. Stat. Phy., 1991

Yin et al., ACC 2010

Comparison of controls

Comparison of controls

▶ Mean-field Filter

Learning to Control

Approximate Dynamic Programming

• Optimality equation

$$\min_{u_i} \{ \underbrace{c(\theta; \theta_{-i}(t)) + \frac{1}{2} R u_i^2 + \mathscr{D}_{u_i} h_i(\theta, t)}_{=: H_i(\theta, u_i; \theta_{-i}(t))} \} = \eta_i^*$$

Watkins & Dayan, Q-learning, 1992; Bertsekas & Tsitsiklis, NDP, 1996; Mehta & Meyn, CDC 2009

Approximate Dynamic Programming

• Optimality equation

$$\min_{u_i} \{ \underbrace{c(\theta; \theta_{-i}(t)) + \frac{1}{2} R u_i^2 + \mathscr{D}_{u_i} h_i(\theta, t)}_{=: H_i(\theta, u_i; \theta_{-i}(t))} \} = \eta_i^*$$

• Optimal control law

$$u_i^* = -\frac{1}{R}\partial_{\theta}h_i(\theta, t)$$

Watkins & Dayan, Q-learning, 1992; Bertsekas & Tsitsiklis, NDP, 1996; Mehta & Meyn, CDC 2009

Approximate Dynamic Programming

- Optimality equation $\min_{u_i} \{ \underbrace{c(\theta; \theta_{-i}(t)) + \frac{1}{2} R u_i^2 + \mathscr{D}_{u_i} h_i(\theta, t)}_{=: H_i(\theta, u_i; \theta_{-i}(t))} \} = \eta_i^*$
- Optimal control law

$$u_i^* = -\frac{1}{R}\partial_{\theta}h_i(\theta,t)$$

• Parameterization for approximation:

$$H_{i}^{(A_{i},\phi_{i})}(\theta, u_{i}; \theta_{-i}(t)) = c(\theta; \theta_{-i}(t)) + \frac{1}{2}Ru_{i}^{2} + (\omega_{i} - 1 + u_{i})A_{i}S^{(\phi_{i})} + \frac{\sigma^{2}}{2}A_{i}C^{(\phi_{i})}$$

where

$$S^{(\phi)}(\theta, \theta_{-i}) = \frac{1}{N} \sum_{j \neq i} \sin(\theta - \theta_j - \phi), \quad C^{(\phi)}(\theta, \theta_{-i}) = \frac{1}{N} \sum_{j \neq i} \cos(\theta - \theta_j - \phi)$$

Watkins & Dayan, Q-learning, 1992; Bertsekas & Tsitsiklis, NDP, 1996; Mehta & Meyn, CDC 2009

Approximate Dynamic Programming

- Optimality equation $\min_{u_i} \{ \underbrace{c(\theta; \theta_{-i}(t)) + \frac{1}{2} R u_i^2 + \mathscr{D}_{u_i} h_i(\theta, t)}_{=: H_i(\theta, u_i; \theta_{-i}(t))} \} = \eta_i^*$
- Optimal control law

$$u_i^* = -\frac{1}{R}\partial_{\theta}h_i(\theta, t)$$

• Parameterization for approximation:

$$H_{i}^{(A_{i},\phi_{i})}(\theta, u_{i}; \theta_{-i}(t)) = c(\theta; \theta_{-i}(t)) + \frac{1}{2}Ru_{i}^{2} + (\omega_{i} - 1 + u_{i})A_{i}S^{(\phi_{i})} + \frac{\sigma^{2}}{2}A_{i}C^{(\phi_{i})}$$

where

$$S^{(\phi)}(\theta, \theta_{-i}) = rac{1}{N} \sum_{j \neq i} \sin(\theta - \theta_j - \phi), \quad C^{(\phi)}(\theta, \theta_{-i}) = rac{1}{N} \sum_{j \neq i} \cos(\theta - \theta_j - \phi)$$

• Approx. optimal control:

$$u_i^{(A_i,\phi_i)} = \arg\min_{u_i} \{H_i^{(A_i,\phi_i)}(\theta, u_i; \theta_{-i}(t))\} = -\frac{A_i}{RN} \sum_{j \neq i} \sin(\theta - \theta_j(t) - \phi_i)$$

Watkins & Dayan, Q-learning, 1992; Bertsekas & Tsitsiklis, NDP, 1996; Mehta & Meyn, CDC 2009

Learning algorithm

• Bellman error:

$$\mathsf{Pointwise:} \quad \mathscr{L}^{(\mathcal{A}_i,\phi_i)}(\theta,t) = \min_{u_i} \{H_i^{(\mathcal{A}_i,\phi_i)}\} - \eta_i^{(\mathcal{A}_i^*,\phi_i^*)}$$

• Stochastic approximation based on ODE,

$$\begin{split} \tilde{e}(A_i,\phi_i) &= \sum_{k=1}^2 |\langle \mathscr{L}^{(A_i,\phi_i)}, \tilde{\varphi}_k(\theta) \rangle|^2 \\ \frac{\mathrm{d}A_i}{\mathrm{d}t} &= -\varepsilon \frac{\mathrm{d}\tilde{e}(A_i,\phi_i)}{\mathrm{d}A_i}, \quad \frac{\mathrm{d}\phi_i}{\mathrm{d}t} = -\varepsilon \frac{\mathrm{d}\tilde{e}(A_i,\phi_i)}{\mathrm{d}\phi_i} \end{split}$$

Learning algorithm

• Bellman error:

$$\text{Pointwise:} \quad \mathscr{L}^{(A_i,\phi_i)}(\theta,t) = \min_{u_i} \{H^{(A_i,\phi_i)}_i\} - \eta^{(A^*_i,\phi^*_i)}_i \}$$

Stochastic approximation based on ODE,

Yin et al., CDC 2010

Comparison of average cost

$$d\theta_i = (\omega_i + u_i)dt + \sigma d\xi_i \qquad u_i = -\frac{A_i^*}{RN} \sum_{j \neq i} \sin(\theta_i - \theta_j(t) - \phi_i^*)$$
$$\eta_i(u_i; u_{-i}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathsf{E}[c(\theta_i; \theta_{-i}) + \frac{1}{2}Ru_i^2]ds$$

Particle Filter Games

Filtering problem

Signal, observation processes:

 $d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + \sigma_W dW_t$

Filtering problem

Signal, observation processes:

 $d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + \sigma_W dW_t$

Nonlinear Filtering

Objective: estimate the posterior distribution p^* of θ_t given \mathscr{Z}^t .

Filtering problem

Signal, observation processes:

 $d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + \sigma_W dW_t$

Nonlinear Filtering

Objective: estimate the posterior distribution p^* of θ_t given \mathscr{Z}^t .

Solution approaches:

- Linear system: Kalman filter (R. E. Kalman, 1960)
- Nonlinear system: Wonham filter (W. M. Wonham, 1965)
- Numerical Methods: Particle filter (N. J. Gordon et al., 1993)

Feedback Particle Filter

Signal, observation processes:

$$d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$$
$$dZ_t = h(\theta_t) dt + \sigma_W dW_t$$

Feedback Particle Filter

Particles evolve as controlled SDEs with independent noise,

$$\mathrm{d}\theta_t^i = \omega \, \mathrm{d}t + \sigma_B \, \mathrm{d}B_t^i + \mathrm{d}U_t^i \mod 2\pi, \quad i = 1, ..., N.$$

Feedback Particle Filter

Signal, observation processes:

$$d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$$
$$dZ_t = h(\theta_t) dt + \sigma_W dW_t$$

Feedback Particle Filter

Particles evolve as controlled SDEs with independent noise,

$$\mathrm{d}\theta_t^i = \omega \, \mathrm{d}t + \sigma_B \, \mathrm{d}B_t^i + \mathrm{d}U_t^i \mod 2\pi, \quad i = 1, ..., N.$$

Objective: Choose control U_t^i so that,

$$\mathsf{P}\{\theta_t^i \in \cdot \mid Z_0^t\} = \mathbf{p}^* = \mathsf{P}\{\theta_t \in \cdot \mid Z_0^t\}$$

Feedback Particle Filter

Signal, observation processes:

$$d\theta_t = \omega dt + \sigma_B dB_t \mod 2\pi$$
$$dZ_t = h(\theta_t) dt + \sigma_W dW_t$$

Feedback Particle Filter

Particles evolve as controlled SDEs with independent noise,

$$\mathrm{d}\theta_t^i = \omega \, \mathrm{d}t + \sigma_B \, \mathrm{d}B_t^i + \mathrm{d}U_t^i \mod 2\pi, \quad i = 1, ..., N.$$

Objective: Choose control U_t^i so that,

$$\mathsf{P}\{\theta_t^i \in \cdot \mid Z_0^t\} = \mathbf{p}^* = \mathsf{P}\{\theta_t \in \cdot \mid Z_0^t\}$$

 \implies Empirical distribution of particles approximates p^* .

Filtering for Oscillator

Signal, observation processes:

 $\begin{aligned} \mathrm{d}\theta_t &= \omega \,\mathrm{d}t + \sigma_B \,\mathrm{d}B_t \mod 2\pi \\ \mathrm{d}Z_t &= h(\theta_t) \,\mathrm{d}t + \sigma_W \,\mathrm{d}W_t \end{aligned}$ Particle evolution,

$$d\theta_t^i = \omega dt + \sigma_B dB_t^i + v(\theta_t^i) [dZ_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}) dt] + \frac{1}{2} \sigma_W^2 v v' dt \mod 2\pi, \quad i = 1, ..., N.$$

Observer gain $v(\theta_t^i)$ is obtained via the solution of an E-L equation,

$$-\frac{\partial}{\partial\theta}\left(\frac{1}{p(\theta,t)}\frac{\partial}{\partial\theta}\{p(\theta,t)v(\theta,t)\}\right) = -\frac{\sin\theta}{\sigma_W^2}$$

Filtering for Oscillator

Fourier form of $p(\theta, t)$,

$$p(\theta, t) = \frac{1}{2\pi} + P_s(t)\sin\theta + P_c(t)\cos\theta$$

Approx. solution of E-L equation, using a perturbation method:

$$v(\theta,t) = \frac{1}{2\sigma_W^2} \left\{ -\sin\theta + \frac{\pi}{2} [P_c(t)\sin 2\theta - P_s(t)\cos 2\theta] \right\},$$

$$v'(\theta,t) = \frac{1}{2\sigma_W^2} \left\{ -\cos\theta + \pi [P_c(t)\cos 2\theta + P_s(t)\sin 2\theta] \right\}$$

where

$$P_c(t) pprox ar{P}_c^{(N)}(t) = rac{1}{\pi N} \sum_{j=1}^N \cos heta_t^j, \quad P_s(t) pprox ar{P}_s^{(N)}(t) = rac{1}{\pi N} \sum_{j=1}^N \sin heta_t^j.$$

Simulation Results

Signal, observation processes:

 $d\theta_t = 1 dt + 0.5 dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + 0.4 dW_t$

N = 100 particles,

$$\mathrm{d} heta_t^i = 1 \, \mathrm{d} t + 0.5 \, \mathrm{d} B_t^i + U(heta_t^i; ar{P}_c^{(N)}(t), ar{P}_s^{(N)}(t)) \mod 2\pi$$

Simulation Results

Signal, observation processes:

 $d\theta_t = 1 dt + 0.5 dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + 0.4 dW_t$

N = 100 particles,

 $\mathrm{d} heta_t^i = 1 \, \mathrm{d} t + 0.5 \, \mathrm{d} B_t^i + U(heta_t^i; ar{P}_c^{(N)}(t), ar{P}_s^{(N)}(t)) \mod 2\pi$

Simulation Results

Signal, observation processes:

 $d\theta_t = 1 dt + 0.5 dB_t \mod 2\pi$ $dZ_t = h(\theta_t) dt + 0.4 dW_t$

N = 100 particles,

 $\mathrm{d} heta_t^i = 1 \, \mathrm{d} t + 0.5 \, \mathrm{d} B_t^i + U(heta_t^i; ar{P}_c^{(N)}(t), ar{P}_s^{(N)}(t)) \mod 2\pi$

Variance Reduction

Filtering for simple linear model.

Mean-square error:
$$\frac{1}{T} \int_0^T \left(\frac{\Sigma_t^{(N)} - \Sigma_t}{\Sigma_t} \right)^2 dt$$

Conclusions

Fun and Profit?

• Without doubt, MFGs provide a great playground.

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities?

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities? What is the value of Winfree / Kuramoto models? *I don't know.*

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities? What is the value of Winfree / Kuramoto models? *I don't know.*
- Possibilities for learning?

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities? What is the value of Winfree / Kuramoto models? *I don't know.*
- Possibilities for learning? Obvious!

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities? What is the value of Winfree / Kuramoto models? *I don't know.*
- Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous potential for approximate nonlinear filtering in practice.

- Without doubt, MFGs provide a great playground.
- Neuro-morphic possibilities? What is the value of Winfree / Kuramoto models? *I don't know.*
- Possibilities for learning? Obvious!

The Feedback Particle Filter is a great playground, and has enormous potential for approximate nonlinear filtering in practice.

Perhaps this is where the profit lies?

Thank you!

Collaborators

Huibing Yin Tao Yang

Prashant Mehta

Uday Shanbhag

- "Q-learning and Pontryagin's Minimum Principle," CDC 2009
- Synchronization of coupled oscillators is a game," IEEE TAC, ACC 2010
- "Learning in Mean-Field Oscillator Games," CDC 2010
- On the Efficiency of Equilibria in Mean-field Oscillator Games," ACC 2011
- "A Mean-field Control-oriented Approach for Particle Filtering," ACC2011
- "Feedback Particle Filter with Mean-field Coupling," CDC2011
Bibliography

- Eric Brown, Jeff Moehlis, and Philip Holmes. On the phase reduction and response dynamics of neural oscillator populations. <u>Neural Computation</u>, 16(4):673–715, 2004.
- A. Doucet, N. de Freitas, and N. Gordon. <u>Sequential Monte-Carlo Methods in Practice</u>. Springer-Verlag, April 2001.
- R. Ericson and A. Pakes. Markov-perfect industry dynamics: A framework for empirical work. The Review of Economic Studies, 62(1):53–82, 1995.
- N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. <u>IEE Proceedings F Radar and Signal Processing</u>, 140(2):107–113, 1993.
- J. Guckenheimer. Isochrons and phaseless sets. J. Math. Biol., 1:259–273, 1975.
- M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε -Nash equilibria. 52(9):1560–1571, 2007.
- Minyi Huang, Peter E. Caines, and Roland P. Malhame. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε -nash equilibria. IEEE transactions on automatic control, 52(9):1560–1571, 2007.
- R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960.

Y. Kuramoto. International Symposium on Mathematical Problems in Theoretical Physics, volume 39 of Lecture Notes in Physics. Springer-Verlag, 1975.

Bibliography

- H. J. Kushner. On the differential equations satisfied by conditional probability densities of markov process. SIAM J. Control, 2:106–119, 1964.
 - J. Lasry and P. Lions. Mean field games. <u>Japanese Journal of Mathematics</u>, 2(2):229–260, 2007.
- Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. <u>Japan. J. Math.</u>, 2:229–260, 2007.

- S. H. Strogatz and R. E. Mirollo. Stability of incoherence in a population of coupled oscillators. Journal of Statistical Physics, 63:613–635, May 1991.
- Huibing Yin, Prashant G. Mehta, Sean P. Meyn, and Uday V. Shanbhag. Synchronization of coupled oscillators is a game. In <u>Proc. of 2010 American Control Conference</u>, pages 1783–1790, Baltimore, MD, 2010.
- Mehta P. G. Meyn S. P. Yin, H. and U. V. Shanbhag. Synchronization of coupled oscillators is a game. IEEE Trans. Automat. Control.

- G. Y. Weintraub, L. Benkard, and B. Van Roy. Oblivious equilibrium: A mean field approximation for large-scale dynamic games. In <u>Advances in Neural Information</u> Processing Systems, volume 18. MIT Press, 2006.
- G. Y. Weintraub, L. Benkard, and B. V. Roy. Markov perfect industry dynamics with many firms. Econometrica, 76(6):1375–1411, 2008.