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Multi-agent systems and distributed coordination

Common features:

e A common global objective
o Lack of a centralized authority

o Time-varying communication network topologies

Desired algorithms:
e Distributed decision-making utilizing local information

@ Robust to dynamical changes of network topologies
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Problem formulation and examples

Distributed cooperative optimization

Problem ingredients: fz(r)

e A group of agents V := {1,--- | N} (X)O \
e Local objective functions f;(x,p;) = fi(z) /:/ \ \ﬁm

o Global decision vector z € R™, n < dN Oﬁu) fs(x)

e Global constraint functions g(z), h(x) /

o Local constraint sets X;, i € V O <—>O
Jo(x) S(x)

General optimization problem:

. _ " < _ .
CErg}annEzvfl(nc), st. g(z) <0, h(z)=0, z€X;,i€eV
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Problem formulation and examples

Network model

A directed weighted graph
G(k) == {V, A(k), E(k)}
o Adjacency matrix:
A(k) = [at (k)] € REgN
o The set of edges with a’(k) > 0: E(k)

Assumptions:
o Non-degeneracy: aj(k) > a >0 and a(k) € {0} U[a, 1]
e Balanced communication: Z] y ab(k) =1 and Z] 1 al(k)=1

e Periodic strong connectivity: (V, Ufzo E(k + 7)) is strongly
connected

Sonia Martinez Distributed constrained optimization under time-va



Problem formulation and examples

Some relevant literature and our contributions

o Parallel computation and distributed optimization
D.P. Bertsekas and J.N. Tsitsiklis, 1997 (book)
M. Chiang , S.H. Low , A.R. Calderbank , J.C. Doyle, 2007 (survey)

@ Recent references on consensus algorithms
A. Jadbabaie, J. Lin and A.S. Morse, 2003
R. Olfati-Saber and R.M. Murray, 2004
L. Moreau, 2005

@ Recent “cooperative” convex optimization refs
M.G. Rabbat, R.D. Nowak and J.A. Buckley 2005
A. Nedic and A. Ozdaglar, TAC 2009
A. Nedic, A. Ozdaglar and P.A. Parrilo, TAC 2010

@ Our contribution: distributed cooperative convex and non-convex

optimization algorithms under time-varying interactions
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Problem formulation and examples

Example problems

Multi-robot/WSN objectives
(1) Constrained consensus
(2) Optimal shape assignment

(1) Constrained consensus. Given robot positions p;, ¢ € V, and
local data z;, ¢ € V, solve the consensus problem:

Wlndowﬂ P@ Door 1
|
Ay min3" (g
Infort

hation lev
9(q) £0,qge X

Spuriol
\nfcrmat n

communications

Sl

Door Z

with e.g. ¢(e) = X1y pl(e!), ple') = o <% ~log (1 + %»
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Problem formulation and examples

Example problems

(2) Optimal shape assignment. Given
a robotic shape S = (s1,..., $,), defining a class

[S] = {aSR +1,,d" | & € [0, amax], R € SO(k), d € R*}

and robot positions pi,...,p,, find (q1,...,q,) € [S]:

n
min _ llg; —pil?
i=1

Aa(qr — @) + A(qi —q1) =0, i € {3,...,n}
llgi — pill <7

Agents agree on (¢3,...,qn), 1 €V
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brithm overview Convex Problem (I)
Convex Problem (II

Outline

@ Problem formulation and examples

© Brief algorithm overview
e Convex Problem (I)
e Convex Problem (II)

© Simulations

O Conclusions
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convex Problem (I) — Lagrangian approach

Primal problem
mingern [f(2) 1= D ,cv fi(z)], st. Ng(z) <0, € X = Nicv X;
assume X; compact, convexity, Slater condition (g(z) < 0)
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convex Problem (I) — Lagrangian approach

Primal problem
mingern [f(2) 1= D ,cv fi(z)], st. Ng(z) <0, € X = Nicv X;
assume X; compact, convexity, Slater condition (g(z) < 0)
Global Lagrangian function L(z,u) = f(x) + NuTg(x)
Primal problem reduced to mingcx (SUPMER;”O L(z, 1))

Primal solution z*, Optimal value p* = SUP ez, L(x*, p1)
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Convex Problem (I)
P

Brief algorithm overview
Convex roblem (II)

Convex Problem (I) — Lagrangian approach

Primal problem
mingern [f(2) 1= D ,cv fi(z)], st. Ng(z) <0, € X = Nicv X;
assume X; compact, convexity, Slater condition (g(z) < 0)
Global Lagrangian function L(z,u) = f(x) + NuTg(x)
Primal problem reduced to mingcx (SUPMER;”O L(z, 1))
Primal solution z*, Optimal value p* = sup,cgm L(x*, p1)

Dual problem max,erm q(p) s.t. 1 >0
Dual function q(p) :=infrex L(x, 1),
Dual solution and optimal value p*, g(u*) = d*
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convex Problem (I) — Lagrangian approach

Primal problem
mingern [f(2) 1= D ,cv fi(z)], st. Ng(z) <0, € X = Nicv X;
assume X; compact, convexity, Slater condition (g(z) < 0)
Global Lagrangian function L(z,u) = f(x) + NuTg(x)
Primal problem reduced to mingcx (SUPMER;”O L(z, 1))

Primal solution z*, Optimal value p* = sup,cgm L(x*, p1)
Dual problem max,erm q(p) s.t. © >0

Dual function q(p) :=infrex L(x, 1),
Dual solution and optimal value p*, g(u*) = d*

(z*, u*) saddle point of £ <= (z*, u*) is a primal-dual solution and

SUPery, infrex L(z, p) = L(z*, p*) = infrex SUPery, L(z, 1)
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Brief algorithm overview Convex Problem (I)
2 =

Convex Problem (II)

Primal-dual algorithm

Centralized optimization
Player 1: U(z) = sup,, L(z, 1)
Player 2 : V(p) = inf, L(z, 1) Q0—0

gradient descent/ascent = convergence to saddle point

Decentralized optimization
The network has to align the corresponding primal-dual actions
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Network Lagrangian decomposition

Local primal problems

[,(x,,u) = Ziev ‘Ci(xvﬂ)v ’Ci(xa:u') = fl(x) + NTg(‘T)

Local dual problem functions satisfy
a(1) = Yiev infoex, (fi(z) + 1 g(2)) = Xier ai(1)
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Network Lagrangian decomposition

Local primal problems

[,(x,,u) = Ziev ‘Ci(xvﬂ)v ’Ci(xa:u') = fl(x) + NTg(‘T)

Local dual problem functions satisfy
a(1) = Yiev infoex, (fi(z) + 1 g(2)) = Xier ai(1)

There exist M;, compact and convex, such that D* C M; for all . The
M; depend on a Slater vector
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Network Lagrangian decomposition

Local primal problems

[,(x,,u) = Ziev ‘Ci(xvﬂ)v ’Ci(xa:u') = fl(x) + NTg(x)

Local dual problem functions satisfy
a(1) = Yiev infoex, (fi(z) + 1 g(2)) = Xier ai(1)

There exist M;, compact and convex, such that D* C M; for all . The
M; depend on a Slater vector

Let D* ¢ M = N;M; be a compact superset of the set of dual solutions
o If (z*, u*) saddle point of £ over X x RZ,, then (z*,u*) saddle
point of £ over X x M a

e If (%, i) saddle point of £ over X x M, then £(Z, i) = p* and /i is
Lagragian dual optimal
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Algorithm sketch

Init phase. Find D* C M;, compact superset of dual solutions
Common Slater vector computation through max consensus
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Algorithm sketch

Let 2%(k) ~ z*, pi(k) =~ p*

Main algorithm. At each k > 0, agents apply:
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Brief algorithm overview Convex P1 JH em (I)
Convex P n (II)

Algorithm sketch

Let 2%(k) ~ z*, pi(k) ~
Main algorithm. At each k > 0, agents apply:

Average computation:

[k (), v (T = 3231 @ (k) [ (k), e (R)]
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Brief algorithm overview Convex P1 JH em (I)
Convex P n (II)

Algorithm sketch

Let 2%(k) ~ z*, pi(k) =~ p
Main algorithm. At each k > 0, agents apply:

Average computation:

[k (k), o (RN = 3005, al (k) (k), ()]
Primal-dual step:

xl(k +1) = Py, [v;(k) — a(k)D;(k)]

' (k +1) = Pag, [0, (k) + (k) D, ()]

D} (k) subgradient of L;(v%(k), v%(k)) at = = vl (k)
);v

D: (k) supgradient of £;(v%(k u(k)) at p = v}, (k)
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Convex Proble (
Convex Problem (

Convergence properties

Assume that:
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convergence properties

Assume that:

e The time-varying network topologies are non degenerate,
balanced, and periodically strongly connected
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convergence properties

Assume that:

e The time-varying network topologies are non degenerate,
balanced, and periodically strongly connected

e The step-sizes {a(k)} satisfy (C1):

+0o 10
. IiT a(k) =0, Za(k) = 400, and Z a(k)? < o0
> k=0 k=0
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convergence properties

Assume that:

e The time-varying network topologies are non degenerate,
balanced, and periodically strongly connected

e The step-sizes {a(k)} satisfy (C1):

+0o 10
. IiT a(k) =0, Za(k) = 400, and Z a(k)? < o0
> k=0 k=0

Then, each agent estimates x%(k), u‘(k) converge:

lim z'(k) ==« ,kﬂToou(k):u ,

k—4o00

to a pair (z*, u*) of primal-dual optimal solutions
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Main idea of the analysis

Decomposition:
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Main idea of the analysis

Projection errors:

ek (k) := Px, [vh(k) — a(k)DL (k)] — v (k)
el (k) == Pa, [v],(k) + o(k) D}, (k)] — v}, (k)
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brithm overview Convex Problem (I)
Convex Problem (II)

Main idea of the analysis

Main idea:
o Errors are diminishing
@ Reach consensus values

o Verify that consensus values coincide with a pair of primal-dual
optimal solutions (saddle point)
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brithm overview e} Problem (I)

x Problem (IT)

Outline

@ Problem formulation and examples

© Brief algorithm overview
e Convex Problem (I)
e Convex Problem (II)

© Simulations

O Conclusions
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Cc vex Problem (I)

Brief algorithm overview
Convex Problem (II)

Convex Problem (II) — Penalty approach

Primal problem

min,, Zf\il fi(z), g(z) <0, h(z)=0,z€e X;, =X, i€V
Penalty function  H(z,u,A) = f(x) + Nul[g(z)]" + NAT|h(z)]
Primal problem reduced to mingex (sup,>o.x>0 H(z, 11, A))

Dual problem: max, xq(g,A) st. £ >0, A>0,
Dual function g(p, A) := infex H(z, p, A)
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convex Problem (II) — Penalty approach

Primal problem

min,, Zf\il fi(z), g(z) <0, h(z)=0,z€e X;, =X, i€V
Penalty function  H(z,u,A) = f(x) + Nul[g(z)]" + NAT|h(z)]
Primal problem reduced to mingex (sup,>o.x>0 H(z, 11, A))
Dual problem: max, xq(g,A) st. £ >0, A>0,
Dual function g(p, A) := infex H(z, p, A)

(z*, u*, \*) saddle point of H <
(z*, p*, A*) primal-dual solution and

Sup,>o0x>0 iNfeex H(z, 1, A) = infrex sup,,>q >0 H(z, 1, A)
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Brief algorithm overview Convex Problem (I)
Convex Problem (II)

Convex Problem (II) — Penalty approach

Primal problem

min,, Zf\il fi(z), g(z) <0, h(z)=0,z€e X;, =X, i€V
Penalty function  H(x, pu, \) = f(x) + Nullg(2)]t + NAT |h(z)]
Primal problem reduced to mingex (sup,>o.x>0 H(z, 11, A))
Dual problem: max, xq(g,A) st. £ >0, A>0,
Dual function g(p, A) := infex H(z, p, A)

(z*, u*, \*) saddle point of H <
(z*, p*, A*) primal-dual solution and

Sup,>o0x>0 iNfeex H(z, 1, A) = infrex sup,,>q >0 H(z, 1, A)

Network penalty decomposition:

H(-’IJ, Hy )‘) = Z'LGV Hi(xa Hy )‘)
Hi(z, 1, A) = fi(x) + uTlg(x)]t + AT |h(z)| convex-concave
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Brief algorithm overview Problem (I)
Convex Problem (IT)

Algorithm sketch

Main algorithm. At each k > 0, agents apply:
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Brief algorithm overview Convex Problem (I)
Convex Problem (IT)

Algorithm sketch

Main algorithm. At each k > 0, agents apply:

Avera}ge con’lputa‘tion:‘
vi(k) = TN, ai(k)ai(h)
[o7, (), o ()] = 2Ly (k) [ (R), 29 ()]
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Brief algorithm overview Convex Problem (I)
Convex Problem (IT)

Algorithm sketch

Main algorithm. At each k > 0, agents apply:

Average computation:
v (k) = 3234 af (k)2 (k)
[o7, (), o ()] = 2Ly (k) [ (R), 29 ()]
Primal-dual update:
xz(k +1)= Py [viz(k) — a(k)_S;(k)]
i (k + 1) = o (k) + a (k) g (v (k)]
A (k +1) = vy (k) + a(k)|h(v, (k)|

S (k) subgradient of H;(-,v%(k), v} (k)) at = = v (k)
(A |h(v;(k))|) supgradient of H;(vi(k),-,")
at (1, A) = (v, (k) vi(K))
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Problem (I)
Convex Problem (IT)

Convergence properties

Assume that:
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Brief algorithm overview Convex Problem (I)
Convex Problem (IT)

Convergence properties

Assume that:

e the time-varying network topologies are non degenerate,
balanced, and periodically strongly connected, and
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Brief algorithm overview Convex Problem (I)
Convex Problem (IT)

Convergence properties

Assume that:

e the time-varying network topologies are non degenerate,
balanced, and periodically strongly connected, and

e the step sizes {a(k:)} satisfy (C1) and

400 k
kﬂrroo alk+1) )y a)=0, Z (k+ 1)2(2 a(f)) < +oo,
k=0 =0

=0
“+o00o k
Z k—i—l Za 2 < 400
k=0 =0
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Brief algorithm overview Convex Problem (I)
Convex Problem (IT)

Convergence properties

Assume that:

e the time-varying network topologies are non degenerate,
balanced, and periodically strongly connected, and

e the step sizes {a(k:)} satisfy (C1) and

400 k
kﬂrroo alk+1) )y a)=0, Z (k+ 1)2(2 a(f)) < +oo,
k=0 =0

=0
“+o00o k
Z k—i—l Za 2 < 400
k=0 =0

Then, each agent primal estimates z¢(k) converge, limy_ o 2 (k) = z*,
to a primal optimal solution x*
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Simulations

Outline

@ Problem formulation and example

© Brief algorithm overview
e Convex Problem (I)
e Convex Problem (II)

@ Simulations

O Conclusions
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Simulations

Example simulation

Optimal shape assignment problem:

min,cRao Z?:]_ |g2i—1 — 22i—1| + |q2i — 22il,
Ag=0, g€ X =[-5,5]*

5 I 4 4 -5
5
]
K 3
. 2
o4 -1 o2 . 2
5
:
3

Desired Shape: S = {]0,0],[1,0],[0,1],[-1,0],[0,—1]}
Initial positions: z; = [22;, 22i41], Final positions: q; = [q2i, ¢2i+1]
Agents agree on: qs,qa,qs
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Simulations

Example simulation

50,
30 W\
40!
25
20 30,
15 il 20
10 10 ‘
5 '
ol T S R =
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000

Figure: Objective function evolution and disagreement evolution
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Concl

Outline

@ Problem formulation and examples

© Brief algorithm overview
e Convex Problem (I)
e Convex Problem (II)

© Simulations

@ Conclusions
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Concl

Conclusions

o Presented distributed algorithms to solve a class of cooperative
convex programs

o Guarantee the convergence to primal-dual solutions

e Future and current work: convergence-time study, uncertainty effect
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Concl

Conclusions

o Presented distributed algorithms to solve a class of cooperative
convex programs

o Guarantee the convergence to primal-dual solutions

e Future and current work: convergence-time study, uncertainty effect

Thank you!
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