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Multi-agent systems and distributed coordination

Common features:

A common global objective

Lack of a centralized authority

Time-varying communication network topologies

Desired algorithms:
Distributed decision-making utilizing local information

Robust to dynamical changes of network topologies
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Distributed cooperative optimization

Problem ingredients:

A group of agents V := {1, · · · , N}
Local objective functions fi(x, pi) ≡ fi(x)

Global decision vector x ∈ Rn, n < dN

Global constraint functions g(x), h(x)

Local constraint sets Xi, i ∈ V
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General optimization problem:

min
x∈Rn

∑
i∈V

fi(x), s.t. g(x) ≤ 0, h(x) = 0, x ∈ Xi, i ∈ V
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Network model

A directed weighted graph
G(k) := {V,A(k), E(k)}

Adjacency matrix:
A(k) := [ai

j(k)] ∈ RN×N
≥0

The set of edges with ai
j(k) > 0: E(k)

Assumptions:
Non-degeneracy: ai

i(k) ≥ α > 0 and ai
j(k) ∈ {0} ∪ [α, 1]

Balanced communication:
∑N

j=1 ai
j(k) = 1 and

∑N
j=1 aj

i (k) = 1

Periodic strong connectivity: (V,
⋃B

τ=0 E(k + τ)) is strongly
connected
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Some relevant literature and our contributions

Parallel computation and distributed optimization
D.P. Bertsekas and J.N. Tsitsiklis, 1997 (book)

M. Chiang , S.H. Low , A.R. Calderbank , J.C. Doyle, 2007 (survey)

Recent references on consensus algorithms
A. Jadbabaie, J. Lin and A.S. Morse, 2003

R. Olfati-Saber and R.M. Murray, 2004

L. Moreau, 2005

Recent “cooperative” convex optimization refs
M.G. Rabbat, R.D. Nowak and J.A. Buckley 2005

A. Nedic and A. Ozdaglar, TAC 2009

A. Nedic, A. Ozdaglar and P.A. Parrilo, TAC 2010

Our contribution: distributed cooperative convex and non-convex

optimization algorithms under time-varying interactions
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Example problems

Multi-robot/WSN objectives
(1) Constrained consensus
(2) Optimal shape assignment

(1) Constrained consensus. Given robot positions pi, i ∈ V , and
local data zi, i ∈ V , solve the consensus problem:

min
q

∑
i∈V

ϕ(q − zi),

g(q) ≤ 0, q ∈ X

with e.g. ϕ(e) =
∑d

l=1 ρ(el), ρ(el) = σ2
(
|el|
σ − log

(
1 + |el|

σ

))
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Example problems

(2) Optimal shape assignment. Given
a robotic shape S = (s1, . . . , sn), defining a class

[S] = {αSR + 1mdT | α ∈ [0, αmax], R ∈ SO(k), d ∈ Rk}

and robot positions p1, . . . , pn, find (q1, . . . , qn) ∈ [S]:

min
n∑

i=1

‖qi − pi‖2

Ai1(q1 − q2) + Ai2(qi − q1) = 0, i ∈ {3, . . . , n}
‖qi − pi‖ ≤ ri

Agents agree on (q3, . . . , qn), i ∈ V
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2 Brief algorithm overview
Convex Problem (I)
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3 Simulations

4 Conclusions
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Convex Problem (I)
Convex Problem (II)

Convex Problem (I) – Lagrangian approach

Primal problem
minx∈Rn [f(x) :=

∑
i∈V fi(x)], s.t. Ng(x) ≤ 0, x ∈ X := ∩i∈V Xi

assume Xi compact, convexity, Slater condition (g(z) < 0)

Global Lagrangian function L(x, µ) = f(x) + NµT g(x)
Primal problem reduced to minx∈X(supµ∈Rm

≥0
L(x, µ))

Primal solution x∗, Optimal value p∗ = supµ∈Rm
≥0
L(x∗, µ)

Dual problem maxµ∈Rm q(µ) s.t. µ ≥ 0
Dual function q(µ) := infx∈X L(x, µ),
Dual solution and optimal value µ∗, q(µ∗) = d∗

(x∗, µ∗) saddle point of L ⇐⇒ (x∗, µ∗) is a primal-dual solution and

supµ∈Rm
≥0

infx∈X L(x, µ) = L(x∗, µ∗) = infx∈X supµ∈Rm
≥0
L(x, µ)
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Convex Problem (I)
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Primal-dual algorithm

Centralized optimization

Player 1 : U(x) = supµ L(x, µ)
Player 2 : V (µ) = infx L(x, µ)

gradient descent/ascent =⇒ convergence to saddle point

Decentralized optimization
The network has to align the corresponding primal-dual actions
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Network Lagrangian decomposition

Local primal problems
L(x, µ) =

∑
i∈V Li(x, µ), Li(x, µ) = fi(x) + µT g(x)

Local dual problem functions satisfy
q(µ) ≥

∑
i∈V infx∈Xi(fi(x) + µT g(x)) =

∑
i∈V qi(µ)

There exist Mi, compact and convex, such that D∗ ⊆ Mi for all i. The
Mi depend on a Slater vector

Let D∗ ⊂ M = ∩iMi be a compact superset of the set of dual solutions

• If (x∗, µ∗) saddle point of L over X × Rm
≥0, then (x∗, µ∗) saddle

point of L over X ×M

• If (x̃, µ̃) saddle point of L over X ×M , then L(x̃, µ̃) = p∗ and µ̃ is
Lagragian dual optimal
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Convex Problem (I)
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Algorithm sketch

Init phase. Find D∗ ⊆ Mi, compact superset of dual solutions
Common Slater vector computation through max consensus

Let xi(k) ≈ x∗, µi(k) ≈ µ∗

Main algorithm. At each k ≥ 0, agents apply:

Average computation:
[vi

x(k), vi
µ(k)]T =

∑N
i=1 ai

j(k)[xi
j(k), µi

j(k)]T

Primal-dual step:
xi(k + 1) = PXi [v

i
x(k)− α(k)Di

x(k)]
µi(k + 1) = PMi

[vi
µ(k) + α(k)Di

µ(k)]

Di
x(k) subgradient of Li(v

i
x(k), vi

µ(k)) at x = vi
x(k)

Di
µ(k) supgradient of Li(v

i
x(k), vi

µ(k)) at µ = vi
µ(k)
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Convergence properties

Assume that:
• The time-varying network topologies are non degenerate,

balanced, and periodically strongly connected

• The step-sizes {α(k)} satisfy (C1):

lim
k→+∞

α(k) = 0,
+∞∑
k=0

α(k) = +∞, and
+∞∑
k=0

α(k)2 < +∞

Then, each agent estimates xi(k), µi(k) converge:

lim
k→+∞

xi(k) = x∗, lim
k→+∞

µi(k) = µ∗,

to a pair (x∗, µ∗) of primal-dual optimal solutions
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Main idea of the analysis

Decomposition:

xi(k + 1) = vi
x(k) + ei

x(k)

µi(k + 1) = vi
µ(k) + ei

µ(k)

Projection errors:

ei
x(k) := PXi [v

i
x(k)− α(k)Di

x(k)]− vi
x(k)

ei
µ(k) := PMi [v

i
µ(k) + α(k)Di

µ(k)]− vi
µ(k)

Main idea:

Errors are diminishing
Reach consensus values
Verify that consensus values coincide with a pair of primal-dual
optimal solutions (saddle point)
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Convex Problem (I)
Convex Problem (II)

Convex Problem (II) – Penalty approach

Primal problem
minx

∑N
i=1 fi(x), g(x) ≤ 0, h(x) = 0, x ∈ Xi = X, i ∈ V

Penalty function H(x, µ, λ) = f(x) + NµT [g(x)]+ + NλT |h(x)|
Primal problem reduced to minx∈X(supµ≥0,λ≥0H(x, µ, λ))

Dual problem: maxµ,λ q(µ, λ) s.t. µ ≥ 0, λ ≥ 0,
Dual function q(µ, λ) := infx∈X H(x, µ, λ)

(x∗, µ∗, λ∗) saddle point of H ⇐⇒
(x∗, µ∗, λ∗) primal-dual solution and

supµ≥0,λ≥0 infx∈X H(x, µ, λ) = infx∈X supµ≥0,λ≥0H(x, µ, λ)

Network penalty decomposition:
H(x, µ, λ) =

∑
i∈V Hi(x, µ, λ)

Hi(x, µ, λ) = fi(x) + µT [g(x)]+ + λT |h(x)| convex-concave
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Hi(x, µ, λ) = fi(x) + µT [g(x)]+ + λT |h(x)| convex-concave
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Algorithm sketch

Main algorithm. At each k ≥ 0, agents apply:

Average computation:
vi

x(k) =
∑N

i=1 ai
j(k)xj(k)

[vi
µ(k), vi

λ(k)]T =
∑N

i=1 ai
j(k)[µj(k), λj(k)]T

Primal-dual update:
xi(k + 1) = PX [vix(k)− α(k)Si

x(k)]
µi(k + 1) = vi

µ(k) + α(k)[g(vi
x(k))]+

λi(k + 1) = vi
λ(k) + α(k)|h(vi

x(k))|

Si
x(k) subgradient of Hi(·, vi

µ(k), vi
λ(k)) at x = vi

x(k)

([g(vi
x(k))]+, |h(vi

x(k))|) supgradient of Hi(v
i
x(k), ·, ·)

at (µ, λ) = (vi
µ(k), vi

λ(k))
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Convergence properties

Assume that:
• the time-varying network topologies are non degenerate,

balanced, and periodically strongly connected, and

• the step sizes {α(k)} satisfy (C1) and

lim
k→+∞

α(k + 1)
k∑

`=0

α(`) = 0,

+∞∑
k=0

α(k + 1)2(
k∑

`=0

α(`)) < +∞,

+∞∑
k=0

α(k + 1)2(
k∑

`=0

α(`))2 < +∞

Then, each agent primal estimates xi(k) converge, limk→+∞ xi(k) = x∗,
to a primal optimal solution x∗
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Example simulation

Optimal shape assignment problem:
minq∈R10

∑5
i=1 |q2i−1 − z2i−1|+ |q2i − z2i|,

Aq = 0, q ∈ X = [−5, 5]10

Desired Shape: S = {[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]}
Initial positions: zi = [z2i, z2i+1], Final positions: qi = [q2i, q2i+1]
Agents agree on: q3,q4,q5
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Example simulation

Figure: Objective function evolution and disagreement evolution
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Conclusions

Presented distributed algorithms to solve a class of cooperative
convex programs

Guarantee the convergence to primal-dual solutions

Future and current work: convergence-time study, uncertainty effect

Thank you!
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