Distributed constrained optimization under time-varying multi-agent interactions

Sonia Martínez

Mechanical and Aerospace Enginering University of California, San Diego soniamd@ucsd.edu

The 2011 Santa Barbara Control Workshop: Decision, Dynamics, and Control in Multi-Agent Systems

Joint work with Minghui Zhu (UCSD)

・ロト ・四ト ・ヨト ・ヨト

Multi-agent systems and distributed coordination

Common features:

- A common global objective
- Lack of a centralized authority
- Time-varying communication network topologies

Desired algorithms:

- Distributed decision-making utilizing local information
- Robust to dynamical changes of network topologies

Distributed cooperative optimization

Problem ingredients:

- A group of agents $V := \{1, \cdots, N\}$
- Local objective functions $f_i(x, p_i) \equiv f_i(x)$
- Global decision vector $x \in \mathbb{R}^n$, n < dN
- Global constraint functions g(x), h(x)
- Local constraint sets $X_i, i \in V$

General optimization problem:

$$\min_{x\in\mathbb{R}^n}\sum_{i\in V}f_i(x), \quad ext{s.t.} \ g(x)\leq \mathsf{0}, \ h(x)=\mathsf{0}, \ x\in X_i, \ i\in V$$

Network model

- A **directed weighted** graph $\mathcal{G}(k) := \{V, A(k), E(k)\}$
 - Adjacency matrix: $A(k) := [a_j^i(k)] \in \mathbb{R}_{\geq 0}^{N \times N}$
 - The set of edges with $a_j^i(k) > 0$: E(k)

Assumptions:

- Non-degeneracy: $a_i^i(k) \ge \alpha > 0$ and $a_j^i(k) \in \{0\} \cup [\alpha, 1]$
- Balanced communication: $\sum_{j=1}^{N} a_j^i(k) = 1$ and $\sum_{j=1}^{N} a_i^j(k) = 1$
- Periodic strong connectivity: $(V, \bigcup_{\tau=0}^{B} E(k+\tau))$ is strongly connected

Some relevant literature and our contributions

- Parallel computation and distributed optimization D.P. Bertsekas and J.N. Tsitsiklis, 1997 (book)
 - M. Chiang , S.H. Low , A.R. Calderbank , J.C. Doyle, 2007 (survey)
- Recent references on consensus algorithms

A. Jadbabaie, J. Lin and A.S. Morse, 2003R. Olfati-Saber and R.M. Murray, 2004L. Moreau, 2005

- Recent "cooperative" convex optimization refs M.G. Rabbat, R.D. Nowak and J.A. Buckley 2005 A. Nedic and A. Ozdaglar, TAC 2009 A. Nedic, A. Ozdaglar and P.A. Parrilo, TAC 2010
- Our contribution: distributed cooperative convex and non-convex optimization algorithms under time-varying interactions

Example problems

Multi-robot/WSN objectives

- (1) Constrained consensus
- (2) Optimal shape assignment
- (1) Constrained consensus. Given robot positions p_i , $i \in V$, and local data z_i , $i \in V$, solve the consensus problem:

Example problems

(2) **Optimal shape assignment.** Given a **robotic shape** $S = (s_1, \ldots, s_n)$, defining a class

$$[S] = \{ \alpha SR + \mathbf{1}_m d^T \mid \alpha \in [\mathbf{0}, \alpha_{\max}], \ R \in SO(k), \ d \in \mathbb{R}^k \}$$

and robot positions p_1, \ldots, p_n , find $(q_1, \ldots, q_n) \in [S]$:

$$\min \sum_{i=1}^{n} ||q_i - p_i||^2$$

$$A_{i1}(q_1 - q_2) + A_{i2}(q_i - q_1) = 0, \ i \in \{3, \dots, n\}$$

$$||q_i - p_i|| \le r_i$$

Agents agree on $(q_3, \ldots, q_n), i \in V$

Outline

- 1 Problem formulation and examples
- 2 Brief algorithm overview
 - Convex Problem (I)
 - Convex Problem (II)

3 Simulations

Primal problem

 $\min_{x \in \mathbb{R}^n} [f(x) := \sum_{i \in V} f_i(x)], \text{ s.t. } Ng(x) \leq 0, x \in X := \bigcap_{i \in V} X_i$ assume X_i compact, convexity, Slater condition (g(z) < 0)

Global Lagrangian function $\mathcal{L}(x,\mu) = f(x) + N\mu^T g(x)$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu \in \mathbb{R}^m_{\geq 0}} \mathcal{L}(x,\mu))$ Primal solution x^* , Optimal value $p^* = \sup_{\mu \in \mathbb{R}^m_{\geq 0}} \mathcal{L}(x^*,\mu)$

Dual problem $\max_{\mu \in \mathbb{R}^m} q(\mu)$ s.t. $\mu \ge 0$ Dual function $q(\mu) := \inf_{x \in X} \mathcal{L}(x, \mu)$, Dual solution and optimal value $\mu^*, q(\mu^*) = d^*$

Primal problem

 $\min_{x \in \mathbb{R}^n} [f(x) := \sum_{i \in V} f_i(x)], \text{ s.t. } Ng(x) \leq 0, x \in X := \bigcap_{i \in V} X_i$ assume X_i compact, convexity, Slater condition (g(z) < 0)

Global Lagrangian function $\mathcal{L}(x,\mu) = f(x) + N\mu^T g(x)$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x,\mu))$ Primal solution x^* , Optimal value $p^* = \sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x^*,\mu)$

Dual problem $\max_{\mu \in \mathbb{R}^m} q(\mu)$ s.t. $\mu \ge 0$ Dual function $q(\mu) := \inf_{x \in X} \mathcal{L}(x, \mu)$, Dual solution and optimal value $\mu^*, q(\mu^*) = d^*$

Primal problem

 $\min_{x \in \mathbb{R}^n} [f(x) := \sum_{i \in V} f_i(x)], \text{ s.t. } Ng(x) \leq 0, x \in X := \bigcap_{i \in V} X_i$ assume X_i compact, convexity, Slater condition (g(z) < 0)

Global Lagrangian function $\mathcal{L}(x,\mu) = f(x) + N\mu^T g(x)$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x,\mu))$ Primal solution x^* , Optimal value $p^* = \sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x^*,\mu)$

Dual problem $\max_{\mu \in \mathbb{R}^m} q(\mu)$ s.t. $\mu \ge 0$ Dual function $q(\mu) := \inf_{x \in X} \mathcal{L}(x, \mu)$, Dual solution and optimal value $\mu^*, q(\mu^*) = d^*$

Primal problem

 $\min_{x \in \mathbb{R}^n} [f(x) := \sum_{i \in V} f_i(x)], \text{ s.t. } Ng(x) \leq 0, x \in X := \bigcap_{i \in V} X_i$ assume X_i compact, convexity, Slater condition (g(z) < 0)

Global Lagrangian function $\mathcal{L}(x,\mu) = f(x) + N\mu^T g(x)$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x,\mu))$ Primal solution x^* , Optimal value $p^* = \sup_{\mu \in \mathbb{R}_{\geq 0}^m} \mathcal{L}(x^*,\mu)$

Dual problem $\max_{\mu \in \mathbb{R}^m} q(\mu)$ s.t. $\mu \ge 0$ Dual function $q(\mu) := \inf_{x \in X} \mathcal{L}(x, \mu)$, Dual solution and optimal value $\mu^*, q(\mu^*) = d^*$

 (x^*, μ^*) saddle point of $\mathcal{L} \iff (x^*, \mu^*)$ is a primal-dual solution and

$$\sup_{\mu \in \mathbb{R}^m_{\geq 0}} \inf_{x \in X} \mathcal{L}(x,\mu) = \mathcal{L}(x^*,\mu^*) = \inf_{x \in X} \sup_{\mu \in \mathbb{R}^m_{\geq 0}} \mathcal{L}(x,\mu)$$

Primal-dual algorithm

Centralized optimization

Player 1 : $U(x) = \sup_{\mu} \mathcal{L}(x, \mu)$ Player 2 : $V(\mu) = \inf_{x} \mathcal{L}(x, \mu)$

gradient descent/ascent \implies convergence to saddle point

Decentralized optimization

The network has to align the corresponding primal-dual actions

Network Lagrangian decomposition

Local primal problems $\mathcal{L}(x,\mu) = \sum_{i \in V} \mathcal{L}_i(x,\mu), \ \mathcal{L}_i(x,\mu) = f_i(x) + \mu^T g(x)$ Local dual problem functions satisfy $q(\mu) \ge \sum_{i \in V} \inf_{x \in X_i} (f_i(x) + \mu^T g(x)) = \sum_{i \in V} q_i(\mu)$

There exist M_i , compact and convex, such that $D^* \subseteq M_i$ for all i. The M_i depend on a Slater vector

Let $D^* \subset M = \bigcap_i M_i$ be a compact superset of the set of dual solutions

- If (x^{*}, μ^{*}) saddle point of L over X × ℝ^m_{≥0}, then (x^{*}, μ^{*}) saddle point of L over X × M
- If $(\tilde{x}, \tilde{\mu})$ saddle point of \mathcal{L} over $X \times M$, then $\mathcal{L}(\tilde{x}, \tilde{\mu}) = p^*$ and $\tilde{\mu}$ is Lagragian dual optimal

Network Lagrangian decomposition

Local primal problems $\mathcal{L}(x,\mu) = \sum_{i \in V} \mathcal{L}_i(x,\mu), \ \mathcal{L}_i(x,\mu) = f_i(x) + \mu^T g(x)$ Local dual problem functions satisfy $q(\mu) \ge \sum_{i \in V} \inf_{x \in X_i} (f_i(x) + \mu^T g(x)) = \sum_{i \in V} q_i(\mu)$

There exist M_i , compact and convex, such that $D^* \subseteq M_i$ for all i. The M_i depend on a Slater vector

Let $D^* \subset M = \bigcap_i M_i$ be a compact superset of the set of dual solutions

- If (x^{*}, μ^{*}) saddle point of L over X × ℝ^m_{≥0}, then (x^{*}, μ^{*}) saddle point of L over X × M
- If $(\tilde{x}, \tilde{\mu})$ saddle point of \mathcal{L} over $X \times M$, then $\mathcal{L}(\tilde{x}, \tilde{\mu}) = p^*$ and $\tilde{\mu}$ is Lagragian dual optimal

Network Lagrangian decomposition

Local primal problems $\mathcal{L}(x,\mu) = \sum_{i \in V} \mathcal{L}_i(x,\mu), \ \mathcal{L}_i(x,\mu) = f_i(x) + \mu^T g(x)$ Local dual problem functions satisfy $q(\mu) \ge \sum_{i \in V} \inf_{x \in X_i} (f_i(x) + \mu^T g(x)) = \sum_{i \in V} q_i(\mu)$

There exist M_i , compact and convex, such that $D^* \subseteq M_i$ for all i. The M_i depend on a Slater vector

Let $D^* \subset M = \cap_i M_i$ be a compact superset of the set of dual solutions

- If (x^{*}, μ^{*}) saddle point of L over X × ℝ^m_{≥0}, then (x^{*}, μ^{*}) saddle point of L over X × M
- If $(\tilde{x}, \tilde{\mu})$ saddle point of \mathcal{L} over $X \times M$, then $\mathcal{L}(\tilde{x}, \tilde{\mu}) = p^*$ and $\tilde{\mu}$ is Lagragian dual optimal

・ロト ・ 同ト ・ ヨト ・ ヨ

Init phase. Find $D^* \subseteq M_i$, compact superset of dual solutions Common Slater vector computation through max consensus

Let $x^i(k) \approx x^*, \ \mu^i(k) \approx \mu^*$

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $\begin{bmatrix} v_x^i(k), v_\mu^i(k) \end{bmatrix}^T = \sum_{i=1}^N a_j^i(k) [x_j^i(k), \mu_j^i(k)]^T$ Primal-dual step: $x^i(k+1) = P_{X_i} [v_x^i(k) - \alpha(k) \mathcal{D}_x^i(k)]$ $\mu^i(k+1) = P_{M_i} [v_\mu^i(k) + \alpha(k) \mathcal{D}_\mu^i(k)]$ $\mathcal{D}_x^i(k) \text{ subgradient of } \mathcal{L}_i (v_x^i(k), v_\mu^i(k)) \text{ at } x = v_x^i(k)$ $\mathcal{D}_\mu^i(k) \text{ supgradient of } \mathcal{L}_i (v_x^i(k), v_\mu^i(k)) \text{ at } \mu = v_\mu^i(k)$

Init phase. Find $D^* \subseteq M_i$, compact superset of dual solutions Common Slater vector computation through max consensus

Let $x^i(k) \approx x^*, \ \mu^i(k) \approx \mu^*$

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $\begin{bmatrix} v_x^i(k), v_\mu^i(k) \end{bmatrix}^T = \sum_{i=1}^N a_j^i(k) [x_j^i(k), \mu_j^i(k)]^T$ Primal-dual step: $x^i(k+1) = P_{X_i} [v_x^i(k) - \alpha(k) \mathcal{D}_x^i(k)]$ $\mu^i(k+1) = P_{M_i} [v_\mu^i(k) + \alpha(k) \mathcal{D}_\mu^i(k)]$ $\mathcal{D}_x^i(k) \text{ subgradient of } \mathcal{L}_i(v_x^i(k), v_\mu^i(k)) \text{ at } x = v_x^i(k)$ $\mathcal{D}_\mu^i(k) \text{ supgradient of } \mathcal{L}_i(v_x^i(k), v_\mu^i(k)) \text{ at } \mu = v_\mu^i(k)$

Init phase. Find $D^* \subseteq M_i$, compact superset of dual solutions Common Slater vector computation through max consensus

Let $x^i(k) \approx x^*$, $\mu^i(k) \approx \mu^*$

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $\begin{bmatrix} v_x^i(k), v_{\mu}^i(k) \end{bmatrix}^T = \sum_{i=1}^N a_j^i(k) [x_j^i(k), \mu_j^i(k)]^T$ Primal-dual step: $x^i(k+1) = P_{X_i} [v_x^i(k) - \alpha(k) \mathcal{D}_x^i(k)]$ $\mu^i(k+1) = P_{M_i} [v_{\mu}^i(k) + \alpha(k) \mathcal{D}_{\mu}^i(k)]$ $\mathcal{D}_x^i(k) \text{ subgradient of } \mathcal{L}_i(v_x^i(k), v_{\mu}^i(k)) \text{ at } x = v_x^i(k)$ $\mathcal{D}_{\mu}^i(k) \text{ supgradient of } \mathcal{L}_i(v_x^i(k), v_{\mu}^i(k)) \text{ at } \mu = v_{\mu}^i(k)$

Init phase. Find $D^* \subseteq M_i$, compact superset of dual solutions Common Slater vector computation through max consensus

Let $x^i(k) \approx x^*, \ \mu^i(k) \approx \mu^*$

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $\begin{bmatrix} v_x^i(k), v_{\mu}^i(k) \end{bmatrix}^T = \sum_{i=1}^N a_j^i(k) [x_j^i(k), \mu_j^i(k)]^T$ Primal-dual step: $x^i(k+1) = P_{X_i} [v_x^i(k) - \alpha(k) \mathcal{D}_x^i(k)]$ $\mu^i(k+1) = P_{M_i} [v_{\mu}^i(k) + \alpha(k) \mathcal{D}_{\mu}^i(k)]$ $\mathcal{D}_x^i(k) \text{ subgradient of } \mathcal{L}_i(v_x^i(k), v_{\mu}^i(k)) \text{ at } x = v_x^i(k)$ $\mathcal{D}_{\mu}^i(k) \text{ supgradient of } \mathcal{L}_i(v_x^i(k), v_{\mu}^i(k)) \text{ at } \mu = v_{\mu}^i(k)$

Convergence properties

Assume that:

- The time-varying network topologies are non degenerate, balanced, and periodically strongly connected
- The step-sizes { $\alpha(k)$ } satisfy (C1): $\lim_{k \to +\infty} \alpha(k) = 0, \sum_{k=0}^{+\infty} \alpha(k) = +\infty, \text{ and } \sum_{k=0}^{+\infty} \alpha(k)^2 < +\infty$

Then, each agent estimates $x^i(k)$, $\mu^i(k)$ converge:

$$\lim_{k \to +\infty} x^i(k) = x^*, \lim_{k \to +\infty} \mu^i(k) = \mu^*,$$

to a pair (x^*, μ^*) of **primal-dual optimal solutions**

Convergence properties

Assume that:

- The time-varying network topologies are non degenerate, balanced, and periodically strongly connected
- The step-sizes { $\alpha(k)$ } satisfy (C1): $\lim_{k \to +\infty} \alpha(k) = 0, \sum_{k=0}^{+\infty} \alpha(k) = +\infty, \text{ and } \sum_{k=0}^{+\infty} \alpha(k)^2 < +\infty$

Then, each agent estimates $x^i(k)$, $\mu^i(k)$ converge:

$$\lim_{k \to +\infty} x^i(k) = x^*, \lim_{k \to +\infty} \mu^i(k) = \mu^*,$$

to a pair (x^*, μ^*) of **primal-dual optimal solutions**

Convergence properties

Assume that:

- The time-varying network topologies are non degenerate, balanced, and periodically strongly connected
- The step-sizes { $\alpha(k)$ } satisfy (C1): $\lim_{k \to +\infty} \alpha(k) = 0, \sum_{k=0}^{+\infty} \alpha(k) = +\infty, \text{ and } \sum_{k=0}^{+\infty} \alpha(k)^2 < +\infty$

Then, each agent estimates $x^i(k)$, $\mu^i(k)$ converge:

$$\lim_{k \to +\infty} x^i(k) = x^*, \lim_{k \to +\infty} \mu^i(k) = \mu^*,$$

to a pair (x^*, μ^*) of **primal-dual optimal solutions**

Convergence properties

Assume that:

- The time-varying network topologies are non degenerate, balanced, and periodically strongly connected
- The step-sizes { $\alpha(k)$ } satisfy (C1): $\lim_{k \to +\infty} \alpha(k) = 0, \sum_{k=0}^{+\infty} \alpha(k) = +\infty, \text{ and } \sum_{k=0}^{+\infty} \alpha(k)^2 < +\infty$

Then, each agent estimates $x^i(k)$, $\mu^i(k)$ converge:

$$\lim_{k \to +\infty} x^i(k) = x^*, \lim_{k \to +\infty} \mu^i(k) = \mu^*,$$

to a pair (x^*, μ^*) of primal-dual optimal solutions

Main idea of the analysis

Decomposition:

$$\begin{aligned} x^{i}(k+1) &= v^{i}_{x}(k) + e^{i}_{x}(k) \\ \mu^{i}(k+1) &= v^{i}_{\mu}(k) + e^{i}_{\mu}(k) \end{aligned}$$

Projection errors:

$$e_x^i(k) := P_{X_i}[v_x^i(k) - \alpha(k)\mathcal{D}_x^i(k)] - v_x^i(k) e_\mu^i(k) := P_{M_i}[v_\mu^i(k) + \alpha(k)\mathcal{D}_\mu^i(k)] - v_\mu^i(k)$$

Main idea:

3 ×

Problem formulation and examples Brief algorithm overview Simulations Conclusions

Convex Problem (I) Convex Problem (II)

Main idea of the analysis

Decomposition:

$$x^{i}(k+1) = v^{i}_{x}(k) + e^{i}_{x}(k)$$

 $\mu^{i}(k+1) = v^{i}_{\mu}(k) + e^{i}_{\mu}(k)$

Projection errors:

$$e_x^i(k) := P_{X_i}[v_x^i(k) - \alpha(k)\mathcal{D}_x^i(k)] - v_x^i(k) e_\mu^i(k) := P_{M_i}[v_\mu^i(k) + \alpha(k)\mathcal{D}_\mu^i(k)] - v_\mu^i(k)$$

Main idea:

Image: A matrix

東下

Main idea of the analysis

Decomposition:

$$x^{i}(k+1) = v^{i}_{x}(k) + e^{i}_{x}(k)$$
$$\mu^{i}(k+1) = v^{i}_{\mu}(k) + e^{i}_{\mu}(k)$$

Projection errors:

$$e_x^i(k) := P_{X_i}[v_x^i(k) - \alpha(k)\mathcal{D}_x^i(k)] - v_x^i(k) \\ e_\mu^i(k) := P_{M_i}[v_\mu^i(k) + \alpha(k)\mathcal{D}_\mu^i(k)] - v_\mu^i(k)$$

Main idea:

- Errors are diminishing
- Reach consensus values
- Verify that consensus values coincide with a pair of primal-dual optimal solutions (saddle point)

Outline

- 2 Brief algorithm overview
 - Convex Problem (I)
 - Convex Problem (II)

3 Simulations

Convex Problem (II) – Penalty approach

Primal problem

 $\min_{x} \sum_{i=1}^{N} f_{i}(x), \ g(x) \leq 0, \ h(x) = 0, \ x \in X_{i} = X, \ i \in V$ Penalty function $\mathcal{H}(x, \mu, \lambda) = f(x) + N\mu^{T}[g(x)]^{+} + N\lambda^{T}|h(x)|$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu > 0, \lambda > 0} \mathcal{H}(x, \mu, \lambda))$

Dual problem: $\max_{\mu,\lambda} q(\mu, \lambda)$ s.t. $\mu \ge 0$, $\lambda \ge 0$, Dual function $q(\mu, \lambda) := \inf_{x \in X} \mathcal{H}(x, \mu, \lambda)$

 (x^*, μ^*, λ^*) saddle point of $\mathcal{H} \iff$ (x^*, μ^*, λ^*) primal-dual solution and

 $\sup_{\mu \ge 0, \lambda \ge 0} \inf_{x \in X} \mathcal{H}(x, \mu, \lambda) = \inf_{x \in X} \sup_{\mu \ge 0, \lambda \ge 0} \mathcal{H}(x, \mu, \lambda)$

Network penalty decomposition: $\mathcal{H}(x,\mu,\lambda) = \sum_{i \in V} \mathcal{H}_i(x,\mu,\lambda)$ $\mathcal{H}_i(x,\mu,\lambda) = f_i(x) + \mu^T [g(x)]^+ + \lambda^T |h(x)| \text{ convex-concave}$

Convex Problem (II) – Penalty approach

Primal problem

 $\min_{x} \sum_{i=1}^{N} f_{i}(x), \ g(x) \leq 0, \ h(x) = 0, \ x \in X_{i} = X, \ i \in V$ Penalty function $\mathcal{H}(x, \mu, \lambda) = f(x) + N\mu^{T}[g(x)]^{+} + N\lambda^{T}|h(x)|$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu > 0, \lambda > 0} \mathcal{H}(x, \mu, \lambda))$

Dual problem: $\max_{\mu,\lambda} q(\mu, \lambda)$ s.t. $\mu \ge 0, \lambda \ge 0$, Dual function $q(\mu, \lambda) := \inf_{x \in X} \mathcal{H}(x, \mu, \lambda)$

 (x^*, μ^*, λ^*) saddle point of $\mathcal{H} \iff$ (x^*, μ^*, λ^*) primal-dual solution and

 $\sup_{\mu \ge 0, \lambda \ge 0} \inf_{x \in X} \mathcal{H}(x, \mu, \lambda) = \inf_{x \in X} \sup_{\mu \ge 0, \lambda \ge 0} \mathcal{H}(x, \mu, \lambda)$

Network penalty decomposition: $\mathcal{H}(x,\mu,\lambda) = \sum_{i \in V} \mathcal{H}_i(x,\mu,\lambda)$ $\mathcal{H}_i(x,\mu,\lambda) = f_i(x) + \mu^T [g(x)]^+ + \lambda^T |h(x)| \text{ convex-concave}$

Convex Problem (II) – Penalty approach

Primal problem

 $\min_{x} \sum_{i=1}^{N} f_{i}(x), \ g(x) \leq 0, \ h(x) = 0, \ x \in X_{i} = X, \ i \in V$ Penalty function $\mathcal{H}(x, \mu, \lambda) = f(x) + N\mu^{T}[g(x)]^{+} + N\lambda^{T}|h(x)|$ Primal problem reduced to $\min_{x \in X} (\sup_{\mu > 0, \lambda > 0} \mathcal{H}(x, \mu, \lambda))$

Dual problem: $\max_{\mu,\lambda} q(\mu, \lambda)$ s.t. $\mu \ge 0, \lambda \ge 0$, Dual function $q(\mu, \lambda) := \inf_{x \in X} \mathcal{H}(x, \mu, \lambda)$

 $\begin{array}{l} (x^*,\mu^*,\lambda^*) \text{ saddle point of } \mathcal{H} \Longleftrightarrow \\ (x^*,\mu^*,\lambda^*) \text{ primal-dual solution } \text{and} \\ & \sup_{\mu \ge 0,\lambda \ge 0} \inf_{x \in X} \mathcal{H}(x,\mu,\lambda) = \inf_{x \in X} \sup_{\mu \ge 0,\lambda \ge 0} \mathcal{H}(x,\mu,\lambda) \end{array}$

Network penalty decomposition: $\mathcal{H}(x,\mu,\lambda) = \sum_{i \in V} \mathcal{H}_i(x,\mu,\lambda)$ $\mathcal{H}_i(x,\mu,\lambda) = f_i(x) + \mu^T[g(x)]^+ + \lambda^T|h(x)|$ convex-concave

Algorithm sketch

Main algorithm. At each $k \ge 0$, agents apply:

Algorithm sketch

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $v_x^i(k) = \sum_{i=1}^N a_j^i(k) x^j(k)$ $[v_\mu^i(k), v_\lambda^i(k)]^T = \sum_{i=1}^N a_j^i(k) [\mu^j(k), \lambda^j(k)]^T$ Primal-dual update: $x^i(k+1) = P_X[v^i x(k) - \alpha(k) S_x^i(k)]$ $\mu^i(k+1) = v_\mu^i(k) + \alpha(k) [g(v_x^i(k))]^+$ $\lambda^i(k+1) = v_\lambda^i(k) + \alpha(k) |h(v_x^i(k))|$

 $\begin{aligned} \mathcal{S}_x^i(k) \text{ subgradient of } \mathcal{H}_i(\cdot, v_\mu^i(k), v_\lambda^i(k)) & \text{at } x = v_x^i(k) \\ ([g(v_x^i(k))]^+, |h(v_x^i(k))|) \text{ supgradient of } \mathcal{H}_i(v_x^i(k), \cdot, \cdot) \\ & \text{at } (\mu, \lambda) = (v_\mu^i(k), v_\lambda^i(k)) \end{aligned}$

Algorithm sketch

Main algorithm. At each $k \ge 0$, agents apply:

Average computation: $v_x^i(k) = \sum_{i=1}^N a_j^i(k) x^j(k)$ $[v_\mu^i(k), v_\lambda^i(k)]^T = \sum_{i=1}^N a_j^i(k) [\mu^j(k), \lambda^j(k)]^T$

Primal-dual update:

$$\begin{aligned} x^{i}(k+1) &= P_{X}[v^{i}x(k) - \alpha(k)\mathcal{S}_{x}^{i}(k)] \\ \mu^{i}(k+1) &= v_{\mu}^{i}(k) + \alpha(k)[g(v_{x}^{i}(k))]^{+} \\ \lambda^{i}(k+1) &= v_{\lambda}^{i}(k) + \alpha(k)|h(v_{x}^{i}(k))| \end{aligned}$$

 $\begin{aligned} \mathcal{S}_x^i(k) \text{ subgradient of } \mathcal{H}_i(\cdot, v_{\mu}^i(k), v_{\lambda}^i(k)) \text{ at } x &= v_x^i(k) \\ ([g(v_x^i(k))]^+, |h(v_x^i(k))|) \text{ supgradient of } \mathcal{H}_i(v_x^i(k), \cdot, \cdot) \\ \text{ at } (\mu, \lambda) &= (v_{\mu}^i(k), v_{\lambda}^i(k)) \end{aligned}$

Convergence properties

Assume that:

- the time-varying network topologies are non degenerate, balanced, and periodically strongly connected, and
- the step sizes $\{\alpha(k)\}$ satisfy (C1) and $\lim_{k \to +\infty} \alpha(k+1) \sum_{\ell=0}^{k} \alpha(\ell) = 0, \quad \sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell)) < +\infty,$ $\sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell))^2 < +\infty$

Convergence properties

Assume that:

- the time-varying network topologies are non degenerate, balanced, and periodically strongly connected, and
- the step sizes $\{\alpha(k)\}$ satisfy (C1) and $\lim_{k \to +\infty} \alpha(k+1) \sum_{\ell=0}^{k} \alpha(\ell) = 0, \quad \sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell)) < +\infty,$ $\sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell))^2 < +\infty$

Convergence properties

Assume that:

- the time-varying network topologies are non degenerate, balanced, and periodically strongly connected, and
- the step sizes $\{\alpha(k)\}$ satisfy (C1) and $\lim_{k \to +\infty} \alpha(k+1) \sum_{\ell=0}^{k} \alpha(\ell) = 0, \qquad \sum_{k=0}^{+\infty} \alpha(k+1)^{2} (\sum_{\ell=0}^{k} \alpha(\ell)) < +\infty,$ $\sum_{k=0}^{+\infty} \alpha(k+1)^{2} (\sum_{\ell=0}^{k} \alpha(\ell))^{2} < +\infty$

Convergence properties

Assume that:

- the time-varying network topologies are non degenerate, balanced, and periodically strongly connected, and
- the step sizes $\{\alpha(k)\}$ satisfy (C1) and $\lim_{k \to +\infty} \alpha(k+1) \sum_{\ell=0}^{k} \alpha(\ell) = 0, \qquad \sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell)) < +\infty,$ $\sum_{k=0}^{+\infty} \alpha(k+1)^2 (\sum_{\ell=0}^{k} \alpha(\ell))^2 < +\infty$

Outline

- 1 Problem formulation and examples
- 2 Brief algorithm overview
 - Convex Problem (I)
 - Convex Problem (II)

3 Simulations

Example simulation

Optimal shape assignment problem:

$$\min_{q \in \mathbb{R}^{10}} \sum_{i=1}^{5} |q_{2i-1} - z_{2i-1}| + |q_{2i} - z_{2i}|, Aq = 0, \ q \in X = [-5, 5]^{10}$$

Desired Shape: $S = \{[0,0], [1,0], [0,1], [-1,0], [0,-1]\}$ **Initial positions:** $\mathbf{z}_i = [z_{2i}, z_{2i+1}]$, **Final positions:** $\mathbf{q}_i = [q_{2i}, q_{2i+1}]$ **Agents agree on:** $\mathbf{q}_3, \mathbf{q}_4, \mathbf{q}_5$

Example simulation

Figure: Objective function evolution and disagreement evolution

< A

Outline

- 1 Problem formulation and examples
- 2 Brief algorithm overview
 - Convex Problem (I)
 - Convex Problem (II)

3 Simulations

Conclusions

- Presented distributed algorithms to solve a class of cooperative convex programs
- Guarantee the convergence to primal-dual solutions
- Future and current work: convergence-time study, uncertainty effect

Conclusions

- Presented distributed algorithms to solve a class of cooperative convex programs
- Guarantee the convergence to primal-dual solutions
- Future and current work: convergence-time study, uncertainty effect

Thank you!