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Source: M. Jacobson, 2011 

Wind power over land 
(outside Antartica):  
70 – 170 TW 

Solar power over land: 
340 TW 

World power demand: 
16 TW 



Global energy demand 
(16 TW) 

Global electricity demand 
(2.2 TW) 

Why renewable integration? 

Global wind power potential 
(72 TW) 

Global installed  
wind capacity 

(128 GW) 

Source: Cristina Archer, 2010 



US electricity flow 2009 

Source: EIA Annual Energy Review 2009 

Conversion loss: 63% 

quadrillion Btu 

Plant use: 2% 
T&D losses: 2.6% 

End use: 33% 

Gross gen: 37% 

Fossil : 67% 

Nuclear: 22% 

Renewable: 11% 

US total energy use: 94.6 quads 
For electricity gen: 41% 



Renewables are exploding 
o  Renewables in 2009 

n  26% of global electricity capacity 
n  18% of global electricity generation 
n  Developing countries have >50% of world’s 

renewable capacity 
n  In both US & Europe, more than 50% of added 

capacity is renewable 

o  Grid-connected PV has been doubling/yr for 
the past decade, 100x since 2000 

o  Wind capacity has grown by 27%/yr from 
2004 – 09 

Source: Renewable Energy Global Status Report, Sept 2010 



Key challenges: uncertainty 

High Levels of Wind and Solar PV Will 
Present an Operating Challenge! 

Source: Rosa Yang 



Today’s demand response 
o  Load side management has been practiced 

for a long time  
n  E.g., direct load control 

o  They are simple and small 
n  Centralized and static 
n  Invoked rarely 

o  Hottest days in summer 

n  Small number of participants 
o  Usually industrial, commercial 

o  Because  
n  Simple system is sufficient 
n  Lack of  sensing, control, & 2-way 

communication infrastructure 



Tomorrow’s demand response 
o  Benefits 

n  Adapt elastic demand to uncertain supply 
n  Reduce peak, shift load  
 

o  Much more scalable 
n  Distributed 
n  Real-time dynamic 
n  Larger user participation 

It’d be cheaper to use photons than electrons 
 to deal with power shortages! 



Source: Steven Chu, GridWeek 2009 
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Features to capture 
Wholesale markets 

n  Day ahead, real-time balancing  
Renewable generation 

n  Non-dispatchable 
Demand response 

n  Real-time control (through pricing) 
 
 
 
 

 day ahead balancing renewable 

utility 

users 

utility 

users 



Model: user 
Each user has 1 appliance (wlog) 

n  Operates appliance with probability 
n  Attains utility ui(xi(t)) when consumes xi(t) 

 
 
 

 
 
 

Demand at t:  
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Model: LSE (load serving entity) 

Power procurement 
n  Renewable power: 

o  Random variable, realized in real-time 

n  Day-ahead power: 
o  Control, decided a day ahead 

n  Real-time balancing power: 

o    )()()()( tPtPtDtP drb −−=

( ) 0)(   ),( =tPctP rrr

( ))(   ),( tPctP bbb

•  Use as much renewable as possible 
•  Optimally provision day-ahead power 
•  Buy sufficient real-time power to balance demand 

capacity 

energy 



Key assumption 
 
Simplifying assumption 

n  No network constraints 

 
 



Questions 
Day-ahead decision 

n  How much power       should LSE buy from day-
ahead market? 

Real-time decision (at t-) 
n  How much         should users consume, given 

realization of wind power          and     ? 
How to compute these decisions distributively? 
How does closed-loop system behave ? 

dP

xi (t)

t- 

iδPr (t)

t – 24hrs 

available info: 

decision: 
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Our approach 
Real-time (at t-) 

n  Given      and realizations of        ,     choose 
optimal                                    to max social 
welfare, through DR 

Day-ahead 
n  Choose optimal       that maximizes expected 

optimal social welfare 

*
dP
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t- t – 24hrs 

available info: 

decision: 
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T=1 case 
Each user has 1 appliance (wlog) 

n  Operates appliance with probability 
n  Attains utility ui(xi(t)) when consumes xi(t) 

 
 
 

 
 
 

Demand at t:  
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Welfare function 
Supply cost 

Welfare function (random) 
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excess demand 

user utility supply cost 



Welfare function 
Supply cost 

 
 

 

c Pd, x( ) = cd P d( )+ co !(x)( )0
Pd + cb !(x)"P d( )+
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Welfare function 
Supply cost 

Welfare function (random) 
 
 

 

c Pd, x( ) = cd P d( )+ co !(x)( )0
Pd + cb !(x)"P d( )+

!(x) := !i xi
i
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W Pd, x( ) = !iui
i
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excess demand 

user utility supply cost 



Optimal operation 

Welfare function (random) 
 

 
Optimal real-time demand response 
 
 
Optimal day-ahead procurement 
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Optimal operation 

Welfare function (random) 
 

 
Optimal real-time demand response 
 
 
Optimal day-ahead procurement 

  

W Pd, x( ) = !iui
i
! (xi )" c Pd, x( )

x* Pd( )   :=   arg   max
x
W Pd, x( ) given realization 

       of  P r ,!i

Pd
*   :=  arg  max

Pd
 EW Pd, x

* Pd( )( )

max
Pd

 E max
x
W Pd, x( )Overall problem: 



Optimal operation 

Welfare function (random) 
 

 
Optimal real-time demand response 
 
 
Optimal day-ahead procurement 
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Algorithm 1 (real-time DR) 

Active user i computes  
n  Optimal consumption 

 
LSE computes 

n  Real-time price 
n  Optimal day-ahead power to use 
n  Optimal real-time balancing power 
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*

µb
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real-time DR 



Active user i : 
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k+1 = xi
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xi
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inc if marginal utility > real-time price 

LSE :  
 
 

 

  

µb
k+1 = µb

k +! ! xk( ) " yok " ybk( )( )
+

inc if total demand > total supply 

Algorithm 1 (real-time DR) 

•  Decentralized 
•  Iterative computation at t- 



Theorem: Algorithm 1 
Socially optimal  

n  Converges to welfare-maximizing DR 
n  Real-time price aligns marginal cost of real-

time power with individual marginal utility 
 
 
Incentive compatible 

n      max i’s surplus given price     

  
 
 
 
  

x* = x* Pd( )

Algorithm 1 (real-time DR) 
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Theorem: Algorithm 1 
 
Marginal costs, optimal day-ahead and 
balancing power consumed: 

Algorithm 1 (real-time DR) 

cb
' yb
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*

µo
* =

!W
!Pd

Pd
*( )



Algorithm 2 (day-ahead procurement) 

Optimal day-ahead procurement 

  
max
Pd

  EW Pd, x
* Pd( )( )

Pd
m+1 = Pd
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m( )( )( )
+

LSE:  

  calculated from Monte Carlo 
simulation of Alg 1 

(stochastic approximation)  



Algorithm 2 (day-ahead procurement) 

Optimal day-ahead procurement 

  
max
Pd

  EW Pd, x
* Pd( )( )

LSE:  
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Given !m,Pr
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Theorem 
 
Algorithm 2 converges a.s. to optimal   
for appropriate stepsize 
 
 
 

Pd
*

Algorithm 2 (day-ahead procurement) 

! k
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General T case 
Each user has 1 appliance (wlog) 

n  Operates appliance with probability 
n  Attains utility ui(xi(t)) when consumes xi(t) 

 
 
 

 
 
 

Demand at t:  
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     Coupling across time  
è Need state 



Time correlation 

o  Example: EV charging 
n  Time-correlating constraint: 

o  Day-ahead decision and real-time 
decisions 

o  (1+T)-period dynamic programming 

Day-ahead 

available info: 

decision: 
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Algorithm 3 (T>1)  

o  Main idea 
n  Solve deterministic problem in each step using 

conditional expectation of Pr  (distributed) 
n  Apply decision at current step 

o  One day ahead, decide Pd
* by solving 

o  At time t-, decide x*(t) by solving 
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Theorem: performance 
o  Algorithm 3 is optimal in special cases 

o    
 
 

Algorithm 3 (T>1) 

J A3 ! J * ! 1
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ρ: penetration of renewable energy
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Welfare with heuristic algorithm
Welfare with idealized algorithm



Effect of renewable on welfare 

Pr (a,b) := a !µr + b !Vr

mean 

Renewable power: 

zero-mean RV 

W Pr (a,b)( )

Optimal welfare of (1+T)-period DP 



Effect of renewable on welfare 

Pr (a,b) := a !µr + b !Vr

Theorem  
o  Cost increases in var of  
o                 increases in a, decreases in b  
o                 increases in s 

W Pr (a,b)( )
W Pr (s, s)( )

Pr


