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| Wind power over land
B (outside Antartica):
70-170 TW

nNo

90 180 World power demand:

16 TW

Solar power over land:
340 TW

Source: M. Jacobson, 2011



Why renewable integration?

Global energy demand
(16 TW)

Global electricity demand

(2.2 TW) 1

Source: Cristina Archer, 2010



T US electricity flow 2009
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T Renewables are exploding

0 Renewables in 2009
B 26% of global electricity capacity
B 18% of global electricity generation

B Developing countries have >50% of world’s
renewable capacity

B In both US & Europe, more than 50% of added
capacity is renewable

0 Grid-connected PV has been doubling/yr for
the past decade, 100x since 2000

0 Wind capacity has grown by 27%/yr from
2004 - 09

Source: Renewable Energy Global Status Report, Sept 2010



@ Key challenges: uncertainty
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T Today’s demand response

0 Load side management has been practiced
for a long time

B E.g., direct load control

0 They are simple and small

B Centralized and static

B Invoked rarely
0 Hottest days in summer

B Small number of participants
0 Usually industrial, commercial

[ Because
B Simple system is sufficient

B Lack of sensing, control, & 2-way
communication infrastructure



T Tomorrow’s demand response

0 Benefits
B Adapt elastic demand to uncertain supply
B Reduce peak, shift load

0 Much more scalable
B Distributed
B Real-time dynamic
B lLarger user participation

It'd be cheaper to use photons than electrons
to deal with power shortages!



Automated Demand Response Saves
Capacity and Energy
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@ Features to capture
Wholesale markets
B Day ahead, real-time balancing

Renewable generation
B Non-dispatchable

Demand response
B Real-time control (through pricing)

day ahead balancing renewable

utility utility




@ Model: user

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(¢)

B Attains utility u(x,(f)) when consumes x(¢)

x(D=x0)=x01) Hx)=X,

Demand at f:
1 wp (1)
0 wp 1-m,(2)




Kg Model: LSE (load serving entity)

Power procurement
capacity

B Renewable power: P (), c,,(Pr(t))=O
/energy

0 Random variable, realized in real-time /
m Day-ahead power: P (1), c,(P (1)), c,(Ax(1))
0 Control, decided a day ahead
B Real-time balancing power: P,(¢), cb(Pb(t))

0 P, ()=D@)-P,.(1)-P,(1)

» Use as much renewable as possible
« Optimally provision day-ahead power
 Buy sufficient real-time power to balance demand



@ Key assumption

Simplifying assumption
B No network constraints



@ Questions

Day-ahead decision

B How much power P, should LSE buy from day-
ahead market?

Real-time decision (at 7-)

®m How much X;(%) should users consume, given
realization of wind power P.(f) and 0;?

How to compute these decisions distributively?
How does closed-loop system behave ?
t —24hrs -

|

available info: ui(-),Jz’l.,F,,C) 51'»Pr(t)an

decision: P, x. (1)




@ Our approach

Real-time (at 7-)

B Given P, and realizations of P(1),0, choose
optimal x; (z) = x, (P,;P.(0), 5) to max social
welfare, through DR

Day-ahead
B Choose optimal P, that maximizes expected
optimal social welfare

t —24hrs [-
! -

available info: ui(°),Jz’i,F,,(°) 5i’P(t)’Pd

decision: P, x. (1)
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@ T=1 case

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(¢)

B Attains utility u(x,(f)) when consumes x(¢)

x, () = x,(t) = X, (1) E)@@é?

Demand at f:
1 wp (1)
0 wp 1-m,(2)




@ Welfare function

Supply cost
C(Pd,X) =c, (Pd)+co (A(x))gd +c, (A(X)—Pd)+

A(x) = Eél.xi -P excess demand




@ Welfare function

Supply cost
c(P,x)=c,(P,)+c, (M) +c,(Ax)-P,).
A(x) = Eél.xi -P excess demand

A

g (Pd) Ca (A(x))gd o (A(x) ~ )+ > A(x)




K§ Welfare function

Supply cost
c(P,x)=c,(P,)+c, (M) +c,(Ax)-P,).
A(x) = Eél.xi -P excess demand

Welfare function (random)

Eéu(x) c )
Y Y

user utility  supply cost



< Optimal operation

Welfare function (random)
W (P,,x) Eéu(x) c(P,,x)

Optimal real-time demand response

given realization
mjle(Pd,x) of P



< Optimal operation

Welfare function (random)
W (P,,x) Eéu(x) c(P,,x)

Optimal real-time demand response

x (P)) = arg IIlleW(Pd,x) giver;fregljfg}ion



< Optimal operation

Welfare function (random)

Eéu (x.)—c Pd,x)

Optimal real-time demand response

x (P)) = arg IIlleW(Pd,x) giver;fre}elljfg}ion

Optimal day-ahead procurement

%k

P, := arg max EW(Pd,x*(Pd))

Overall problem: max E maxW (P,,x)



@ Algorithm 1 (real-time DR)

max E maxW (P,,x)

Fy L X ]
|
real-time DR

Active user i computes x;
B Optimal consumption

LSE computes
m Real-time price u,
B Optimal day-ahead power to use yz
B Optimal real-time balancing power yZ



@ Algorithm 1 (real-time DR)

Active user i : X =(xik +)/(ui'(xf)‘“§))i

l

inc if marginal utility > real-time price

LSE : " = (e + v (A(x) -4 —yif))+

inc if total demand > total supply

* Decentralized
* |terative computation at ¢-



@ Algorithm 1 (real-time DR)

Theorem: Algorithm 1

Socially optimal
B Converges to welfare-maximizing DR x’ =x*(Pd)

B Real-time price aligns marginal cost of real-
time power with individual marginal utility

i =ci{yi) =)

Incentive compatible
B X. max I's surplus given price U,



@ Algorithm 1 (real-time DR)

Theorem: Algorithm 1

Marginal costs, optimal day-ahead and
balancing power consumed:

e, (v )=c )+,

Y
" GW( *)

U, =




Eg Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement
max EW(P,.x"(P,))

LSE: P = (P +y" () =<, (R)))

Y

calculated from Monte Carlo
simulation of Alg 1
(stochastic approximation)

+



Eg Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement
max EW(P,.x"(P,))

LSE: P = (P +y" () =<, (R)))

Given 6",P": U, = a?(Pdm)
d



@ Algorithm 2 (day-ahead procurement)

Theorem

Algorithm 2 converges a.s. to optimal P,
for appropriate stepsize a
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@ General T case

Each user has 1 appliance (wlog)
B Operates appliance with probability 7;(¢)

B Attains utility u(x,(f)) when consumes x(¢)
x,(H)=x,(t)=X,(1) Exi(t) > X,
t

Coupling across time
= Need state

Demand at f:
1 wp (1)
0 wp 1-m,(2)




@ Time correlation

0 Example: EV charging .
B Time-correlating constraint: >, % (¥) = R,, Vi

0 Day-ahead decision and realtjcime

decisions
Day-ahead {- t=1,2,..., T
| — >
available info: Ml(),Fr() R»(t)apd(t)aRz-(f)\
decision: Pd* (1), Vt x; (2), Vi Remaining
demand

0 (1+T)-period dynamic programming



@ Algorithm 3 (t>1)

0 Main idea

B Solve deterministic problem in each step using
conditional expectation of P. (distributed)

B Apply decision at current step

0 One day ahead, decide Pd by solvmg
max W (P, (), x(x); B(7)) st Exl(r)>Rl.

T=t

0 At time t-, decide x*(t) by solving
max i W(Pd* (1), x(7); P.(t| t)) S.t. i x ()= R (2)



T Algorithm 3 (t>1)

Theorem: performance
0 Algorithm 3 is optimal in special cases

—2
i J"°-J ==TP., 500 | ; | |
2 Welfare with heuristic algorithm
——— Welfare with idealized algorithm
-1000
///
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p: penetration of renewable energy



K§ Effect of renewable on welfare

Renewable power:
P(a,b)=a-u +b-V

I

mean zero-mean RV

Optimal welfare of (1+T)-period DP
W (P,.(a,b))



K§ Effect of renewable on welfare

P(a,b)=a-u +b-V

Theorem
Cost increases in var of P,

W(P,,(a,b)) increases in a, decreases in b

W (P.(s,s)) increases in s



