Optimal Demand Response

Libin Jiang Steven Low

Computing + Math Sciences Electrical Engineering Caltech

June 2011

o Motivation

o Demand response model

o Some results

Wind power over land (outside Antartica): 70 – 170 TW

World power demand: 16 TW

Solar power over land: 340 TW

Source: M. Jacobson, 2011

Why renewable integration?

Source: Cristina Archer, 2010

US electricity flow 2009

Source: EIA Annual Energy Review 2009

- o Renewables in 2009
 - 26% of global electricity capacity
 - 18% of global electricity generation
 - Developing countries have >50% of world's renewable capacity
 - In both US & Europe, more than 50% of added capacity is renewable
- Grid-connected PV has been doubling/yr for the past decade, 100x since 2000
- Wind capacity has grown by 27%/yr from
 2004 09

Source: Rosa Yang

Today's demand response

- Load side management has been practiced for a long time
 - E.g., direct load control
- They are simple and small
 - Centralized and static
 - Invoked rarely
 - o Hottest days in summer
 - Small number of participants
 - o Usually industrial, commercial
- o Because
 - Simple system is sufficient
 - Lack of sensing, control, & 2-way communication infrastructure

Tomorrow's demand response

o Benefits

- Adapt elastic demand to uncertain supply
- Reduce peak, shift load
- o Much more scalable
 - Distributed
 - Real-time dynamic
 - Larger user participation

It'd be cheaper to use photons than electrons to deal with power shortages!

Automated Demand Response Saves Capacity and Energy

Electric load profile for PG&E participants on 8/30/2007

Source: Steven Chu, GridWeek 2009

o Motivation

o Demand response model

o Some results

Wholesale markets
Day ahead, real-time balancing
Renewable generation
Non-dispatchable
Demand response

Real-time control (through pricing)

Each user has 1 appliance (wlog)

- Operates appliance with probability $\pi_i(t)$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \le x_i(t) \le \overline{x}_i(t) \qquad \sum_t x_i(t) \ge \overline{X}_i$$

Demand at *t*:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

Power procurement

Renewable power: $P_r(t)$, $c_r(P_r(t)) = 0$

• Random variable, realized in real-time

Day-ahead power: $P_d(t)$, $c_d(P_d(t))$, $c_o(\Delta x(t))$

capacity

energy

o Control, decided a day ahead

Real-time balancing power: $P_{b}(t), c_{b}(P_{b}(t))$

•
$$P_b(t) = D(t) - P_r(t) - P_d(t)$$

- Use as much renewable as possible
- Optimally provision day-ahead power
- Buy sufficient real-time power to balance demand

Simplifying assumptionNo network constraints

Day-ahead decision

How much power P_d should LSE buy from dayahead market?

Real-time decision (at *t*-)

How much $x_i(t)$ should users consume, given realization of wind power $P_r(t)$ and δ_i ?

How to compute these decisions distributively? How does closed-loop system behave ?

Real-time (at t-)

Given P_d and realizations of $P_r(t), \delta_i$ choose optimal $x_i^*(t) = x_i^*(P_d; P_r(t), \delta_i)$ to max social welfare, through DR

Day-ahead

Choose optimal P_d^* that maximizes expected optimal social welfare

available info:
$$u_i(\cdot), \pi_i, F_r(\cdot)$$

decision: P_d^*
 $t - 24hrs$
 $u_i(\cdot), \pi_i, F_r(\cdot)$
 $\delta_i, P_r(t), P_d^*$
 $x_i^*(t)$

o Motivation

o Demand response model

• Some results

- T=1 case: distributed alg
- General T: distributed alg
- Impact of uncertainty

Each user has 1 appliance (wlog)

- Operates appliance with probability $\, \pi_i(t) \,$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \leq x_i(t) \leq \overline{x}_i(t)$$

Demand at *t*:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

Supply cost

$$c(P_d, x) = c_d (P_d) + c_o (\Delta(x))_0^{P_d} + c_b (\Delta(x) - P_d)_+$$
$$\Delta(x) \coloneqq \sum_i \delta_i x_i - P_r \quad \longleftarrow \text{ excess demand}$$

Supply cost

$$c(P_{d}, x) = c_{d}(P_{d}) + c_{o}(\Delta(x))_{0}^{P_{d}} + c_{b}(\Delta(x) - P_{d})_{+}$$
$$\Delta(x) \coloneqq \sum_{i} \delta_{i} x_{i} - P_{r} \qquad \text{excess demand}$$

$$c_d(P_d) \qquad c_d(\Delta(x))_0^{P_d} \quad c_b(\Delta(x) - P_d)_+ \land \Delta(x)$$

Supply cost

$$c(P_d, x) = c_d (P_d) + c_o (\Delta(x))_0^{P_d} + c_b (\Delta(x) - P_d)_+$$
$$\Delta(x) \coloneqq \sum_i \delta_i x_i - P_r \quad \longleftarrow \text{ excess demand}$$

Welfare function (random)

$$W(P_d, x) = \sum_i \delta_i u_i(x_i) - c(P_d, x)$$

user utility supply cost

Welfare function (random) $W(P_d, x) = \sum_i \delta_i u_i(x_i) - c(P_d, x)$

Optimal real-time demand response $\max_{x} W(P_{d}, x) \qquad \begin{array}{c} \text{given realization} \\ \text{of } P_{r}, \delta_{i} \end{array}$

Welfare function (random) $W(P_d, x) = \sum_i \delta_i u_i(x_i) - c(P_d, x)$

Optimal real-time demand response $x^*(P_d) := \arg \max_x W(P_d, x) \qquad \begin{array}{c} \text{given realization} \\ \text{of } P_r, \delta_i \end{array}$

Welfare function (random) $W(P_d, x) = \sum_i \delta_i u_i(x_i) - c(P_d, x)$

Optimal real-time demand response $x^*(P_d) := \arg \max_x W(P_d, x) \qquad \text{given realization} \ \text{of } P_r, \delta_i$

Optimal day-ahead procurement

$$P_d^* := \arg \max_{P_d} EW(P_d, x^*(P_d))$$

Overall problem: $\max_{P_d} E \max_{x} W(P_d, x)$

$$\max_{P_d} E \max_{x} W(P_d, x)$$
real-time DR

Active user *i* computes x_i^*

Optimal consumption

LSE computes

- Real-time price μ_b^*
 - Optimal day-ahead power to use y_o^*
- Optimal real-time balancing power y_b^{*}

Active user
$$i: x_i^{k+1} = \left(x_i^k + \gamma \left(u_i' \left(x_i^k\right) - \mu_b^k\right)\right)_{\underline{x}_i}^{\overline{x}_i}$$

inc if marginal utility > real-time price

LSE: $\mu_b^{k+1} = \left(\mu_b^k + \gamma \left(\Delta \left(x^k\right) - y_o^k - y_b^k\right)\right)_+$

inc if total demand > total supply

- Decentralized
- Iterative computation at *t*-

Theorem: Algorithm 1

Socially optimal

- Converges to welfare-maximizing DR $x^* = x^* (P_d)$
- Real-time price aligns marginal cost of realtime power with individual marginal utility

$$\mu_{b}^{*} = c_{b}'(y_{b}^{*}) = u_{i}'(x_{i}^{*})$$

Incentive compatible

• x_i^* max *i*'s surplus given price μ_b^*

Theorem: Algorithm 1

Marginal costs, optimal day-ahead and balancing power consumed:

$$c_{b}'(y_{b}^{*}) = c_{o}'(y_{o}^{*}) + \mu_{o}^{*}$$

$$\downarrow$$

$$\mu_{o}^{*} = \frac{\partial W}{\partial P_{d}}(P_{d}^{*})$$

Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement

$$\max_{P_d} EW(P_d, x^*(P_d))$$

LSE:
$$P_d^{m+1} = \left(P_d^m + \gamma^m \left(\mu_o^m - c_d' \left(P_d^m\right)\right)\right)_+$$

calculated from Monte Carlo

simulation of Alg 1 (stochastic approximation)

Algorithm 2 (day-ahead procurement)

Optimal day-ahead procurement

$$\max_{P_d} EW(P_d, x^*(P_d))$$

LSE:
$$P_d^{m+1} = \left(P_d^m + \gamma^m \left(\mu_o^m - c_d' \left(P_d^m\right)\right)\right)_+$$

Given
$$\delta^m, P_r^m$$
: $\mu_o^m = \frac{\partial W}{\partial P_d} \left(P_d^m \right)$
 $\mu_b^m = \mu_o^m + c_o' \left(y_o^m \right)$

Theorem

Algorithm 2 converges a.s. to optimal P_d^* for appropriate stepsize γ^k

o Motivation

o Demand response model

• Some results

- T=1 case: distributed alg
- General T: distributed alg
- Impact of uncertainty

Each user has 1 appliance (wlog)

- Operates appliance with probability $\pi_i(t)$
- Attains utility $u_i(x_i(t))$ when consumes $x_i(t)$

$$\underline{x}_i(t) \leq x_i(t) \leq \overline{x}_i(t)$$

$$\sum_{t} x_i(t) \ge \overline{X}_i$$

→ Need state

Demand at *t*:

$$D(t) := \sum_{i} \delta_{i} x_{i}(t) \qquad \delta_{i} = \begin{cases} 1 & \text{wp } \pi_{i}(t) \\ 0 & \text{wp } 1 - \pi_{i}(t) \end{cases}$$

- o Example: EV charging
 - Time-correlating constraint: $\sum_{i=1}^{n} x_i(t) \ge R_i, \forall i$
- Day-ahead decision and real-time decisions

o (1+T)-period dynamic programming

o Main idea

- Solve deterministic problem in each step using conditional expectation of P_r (distributed)
- Apply decision at current step
- One day ahead, decide P_d^* by solving $\max_{P_d, x} \sum_{\tau=t}^{T} W(P_d(\tau), x(\tau); \overline{P}_r(\tau)) \quad s.t. \sum_{\tau=1}^{T} x_i(\tau) \ge R_i$
- At time *t*-, decide x*(t) by solving

$$\max_{x} \sum_{\tau=t}^{T} W\left(P_{d}^{*}(\tau), x(\tau); \overline{P}_{r}(\tau \mid t)\right) \quad s.t. \sum_{\tau=t}^{T} x_{i}(\tau) \geq R_{i}(t)$$

Theorem: performance

• Algorithm 3 is optimal in special cases

Renewable power:

$$P_r(a,b) := a \cdot \mu_r + b \cdot V_r$$

$$\uparrow \qquad \uparrow$$

$$mean \quad \text{zero-mean RV}$$

Optimal welfare of (1+T)-period DP $W(P_r(a,b))$

$$P_r(a,b) \coloneqq a \cdot \mu_r + b \cdot V_r$$

Theorem

- Cost increases in var of P_r
- $W(P_r(a,b))$ increases in a, decreases in b
- $W(P_r(s,s))$ increases in s