Prey Modeling in Predator/Prey Interaction: Risk Avoidance, Group Foraging, and Communication

June 24, 2011, Santa Barbara Control Workshop: Decision, Dynamics and Control in Multi-Agent Systems Karl Hedrick Shih-Yuan Liu Jared Garvey University of California, Berkeley

Outline

- Introduction
 - The HUNT Project
 - Why Form A Team?
 - Communication
 - Focus & Motivation
- □ Risk Avoidance within a Group: Domain of Danger
 - Domain of Danger
 - Limited Domain of Danger
 - Movement Rule Based on Selfish Herd Assumption
 - A Better Movement Rule
 - Greedily Shrink the Domain of Danger
- □ Trade-off between Risk Avoidance and Foraging
 - Greedy Foraging and De-confliction
 - Different Movement Rules
 - Performance of Different Movement Rules
 - Summary
- Future Work

- □ The Heterogeneous Unmanned Networked Team (HUNT) project is a multi-university project funded by Office of Naval Research (ONR).
- □ The goal of the project is to study the mechanism behind cooperative teams in animal kingdom, and apply theses insights on autonomous agent teams in various scenarios.

Revolutionaria Research . . . Relevant Results

Why Do Predators Form a Team?

□Group Hunting

- Teams can be more successful hunting than individuals, e.g. bring down bigger prey
- Lower risk for each individual
- Role specialization in some cases

Why Do Prey Form a Team?

Predator Avoidance

- Sharing of predation risk

 Dilution Effect
- Sharing of vigilance cost
- Can be among same or different species

Group Foraging

- Sharing information
 - Communicate to one another the location of available food
- Also comes with in-group competition

©Yann Arthus-Bertrand

Communication

- Communication can take several forms:
 - Audio
 - Visual
 - Chemical
- □ Within the same species
 - Location of prey and coordinate hunting strategies
 - Location of food
- □ Among same or different species
 - Presence of predators

Focus & Motivation

- We focus on the following aspects:
 - Predation risk avoidance
 - The trade-off between foraging efficiency and predation risk avoidance
 - The communication mechanism that enables the cooperation
- Good analogy to information gathering mission in risky environment for autonomous agent teams

Lioness hunting warthog, © Peter Blackwell / naturepl.com

A group of wildebeest facing an African wild dog. ©Image courtesy of Aurora images; Photo taken by Adrian Bailey

Outline

- Introduction
 - The HUNT Project
 - Why Form A Team?
 - Communication
 - Focus & Motivation

Risk Avoidance within a Group: Domain of Danger

- Domain of Danger
- Limited Domain of Danger
- Movement Rule Based on Selfish Herd Assumption
- A Better Movement Rule
- Greedily Shrink the Domain of Danger
- □ Trade-off between Risk Avoidance and Foraging
 - Greedy Foraging and De-confliction
 - Different Movement Rules
 - Performance of Different Movement Rules
 - Summary
- Future Work

Domain of Danger

- The domain of danger idea was proposed by W. D. Hamilton in 1971 as a way to explain the gregarious behavior of animals under predation risk.
- □ Assumptions:
 - There is an **undetected** predator that can be anywhere.
 - The predator attacks the closest prey.
- Domain of danger defined to be the Voronoi polygon occupied by each agent.^[1]

$$P = \{p_i \dots p_n\} ; p_i \in \mathbb{R}^2 \text{ for } i = 1, \dots, n$$

$$V(p_i) = \{x | \|x - p_i\|_2 \le \|x - p_j\|_2, \forall j \neq i\}$$

Measurement of relative predation risk:

Relative Predation Risk $\propto \operatorname{Area}(V(p_i))$

[1] W. D. Hamilton, 1971, Geometry for the selfish herd

Limited Domain of Danger

- An agent on the boundary of the group will have domain of danger that extends to infinity.
- Limited domain of danger: [2]

 $L(p_i) = \{x | ||x - p_i||_2 \le D^*\}$ $V_L(p_i) = V(p_i) \cap L(p_i)$

- □ Optimal escape theory: [3]
 - Prey only start fleeing when predators are detected closer than a certain distance.

[2] James et al., 2004, Geometry for mutualistic and selfish herds: the limited domain of danger[3] Ydenberg & Dill, 1986, The Economics of Fleeing from Predators

Movement Rules Based on Selfish Herd Assumption

Selfish herd assumption: Each individual in the group tries to shrink its own domain of danger.

- □ Movement rules:
 - Nearest Neighbor [4]
 - Local Crowded Horizon [5]
- Resulting behavior matches data gathered from real animal groups such as fiddler crabs under predation risk [6]

[4] W. D. Hamilton, 1971, Geometry for the selfish herd [5] Viscido, et al., 2002, The Dilemma of the Selfish Herd: The Search for a Realistic Movement Rule [6]STEVEN V. VISCIDO, M. MILLER, and D. S. WETHEY, "The Response of a Selfish Herd to an Attack from Outside the Group Perimeter," *Journal of Theoretical Biology*, vol. 208, no. 3, pp. 315-328, 2001. 11/25

Greedily Shrink the Domain of Danger

- We propose a movement rule to shrink the domain of danger in a greedy manner
 - Assume all other agents are stationary
 - Calculate domain of danger at some possible locations it can be at next time step
 - Move to the one with smallest domain of danger
- Agents gather together to shrink their domain of danger

Outline

- □ Introduction
 - The HUNT Project
 - Why Form A Team?
 - Communication
 - Focus & Motivation
- □ Risk Avoidance within a Group: Domain of Danger
 - Domain of Danger
 - Limited Domain of Danger
 - Movement Rule Based on Selfish Herd Assumption
 - A Better Movement Rule
 - Greedily Shrink the Domain of Danger
- Trade-off between Risk Avoidance and Foraging
 - Greedy Foraging and De-confliction
 - Different Movement Rules
 - Performance of Different Movement Rules
 - Summary
- Future Work

Greedy Foraging and De-confliction

□ Foraging model:

- Foraging area is divided into discrete cells
- Each cell contains unit amount of food
- Agents can gather all food within its foraging radius

Greedy Approach with De-confliction

- Agents consider all possible locations they can be at the next time step
- Move to the location that will give the most food income
- Using Voronoi polygon as de-confliction mechanism

Movement Rule A: Greedy Foraging

Movement Rule B: Greedy Foraging with De-confliction

Movement Rule C: Greedy Foraging then Domain of Danger

Movement Rule D: DOD as a Constraint while Foraging

۲

۲

Performance of Different Movement Rules

Ideal Optimal: Assuming that every agent gets the highest foraging gain at every time step

- 4 Different movement rules:
 - A: Greedy Foraging
 - B: Greedy Foraging with De-confliction
 - C: Greedy Foraging then domain of danger
 - D: Domain of Danger as a constraint while Foraging
- Performance Index:
 - Percentage of food left in the field
 - Ratio of team domain of danger to maximum possible team domain of danger

Foraging Efficiency

100 x 100 food nodes

Foraging Efficiency with 10 agents 141 x 141 food nodes (twice the amount of food)

Foraging Efficiency (Zoomed In)

Foraging Efficiency with 10 agents 141 x 141 food nodes (twice the amount of food)

100 x 100 food nodes

Team Domain of Danger Performance

Summary of Performance Comparison

- Adding de-confliction enhances the foraging performance but causes the team to spread
- Adding the DoD shrinking mechanism prevents over-spreading and further enhances foraging performance
- Foraging under the constraint of domain of danger size greatly degrades the foraging performance
- The effect on foraging efficiency of the domain of danger constraint is smaller when there are more agents

Possible Applications in Autonomous Agent Team

Analogy between food gathering for animals and information gathering for autonomous agents:
Foraging-like behavior especially suitable for exploration scenarios where the goal is to explore an unexplored region of interest

- Domain of danger concept

 Fits nicely into scenarios where undetected threat is expected in the region of interest
 - •e.g. SAM sites or hostile enemy units.

Future Work

- Sparse patches of food
- Estimation of foraging gain for longer horizon
- More explicit trade-off tuning between risk avoidance and foraging gain
- Domain of danger with obstacles
- Limited Communication
 - Obstacles
 - Range
- Trade-off with communication
 - Agents determine whether to forage by themselves or to communicate food location to others

Thank you

Predator-Prey Interaction

- Predator-prey interaction: one of the most important factors affecting behavior of animals
 - Especially true for prey: have to constantly be aware of predation risk
- Prey animals living in a group
 - Benefit of reduced predation risk,
 - Decreased foraging efficiency due to foraging competition from groupmates
- Trade-off between predation risk and foraging gain: Information gathering missions in risky environments have similar characteristics

Lioness hunting warthog, © Peter Blackwell / naturepl.com

A group of wildebeest facing an African wild dog. ©Image courtesy of Aurora images; Photo taken by Adrian Bailey

Team Domain of Danger Performance (Actual Area)

Team DOD with 5 agents 100 x 100 food nodes Team DOD with 10 agents 141 x 141 food nodes (twice the amount of food)

A Better Movement Rule

- Assuming all other agents are stationary, an agent can calculates its domain of danger at any location
- With a domain of danger map, the agent can aim for the safest location in the field
- However
 - Other agents are not stationary
 - Sampling domain of danger at every location is computationally expensive
- Instead of planning for a long time horizon, an agent can just plan one step ahead

Plan a Path to the Global Min

- Assuming all other agents stay where they are, we can calculate the size of domain of danger at every position
- Convert the DOD area to log of probability of being targeted.

 $R(s) = \log(\varepsilon \times \frac{\text{area of Voronoi polygon}}{\text{area of the whole field}})$

Obtain a DOD area map

- Given initial position of agent, we can identify position with the smallest domain of danger and move our agent towards it
- □ The log of probability of being targeted while traveling a path indicated by a series of points: s_0 , s_1 , ..., s_n can be represented by $\sum_{i=1}^{n} R(s_i)$

Gradient Decent on Volume of DOD

Definition of Voronoi Partition

$$P = \{p_i \dots p_n\}$$
$$V(p_i) = \{x | ||x - p_i||_2 \le ||x - p_j||_2, \forall j \ne i, j \le n\}$$

Limit Domain of Danger (LDOD)

$$B(p) = \{x | ||x - p||_2 < R\}$$
$$D(p) = V(p) \cap B(p)$$

Volume of LDOD

$$H(p) = \int_{D(p)} \phi(\tau) d\tau$$

 $\phi{:}$ the density function

Gradient Decent

$$p_{next} = p + d\nabla H(p)$$

Consider Selfish Vigilance with DOD

Center of mass and the gradient

$$P = \{p_i \dots p_n\}$$

$$H_V(P) = \int_Q \min_i ||q - p_i||^2 d\phi(q)$$

$$= \sum_i \int_{V_i} ||q - p_i||^2 d\phi(q)$$

$$\frac{\partial H_V(P)}{\partial p_i} = 2M_{V_i}(p_i - C_{V_i})$$

$$M_{V_i} = \int_{V_i} \phi(q) dq ; C_{V_i} = \frac{1}{M_{V_i}} \int_{V_i} q\phi(q) dq$$

$$C_{V^*} = \operatorname{argmin} H_V(P)$$

[1]M. Lindhe, P. Ogren, and K. Johansson, "Flocking with Obstacle Avoidance: A New Distributed Coordination Algorithm Based on Voronoi Partitions," *Robotics and Automation*, 2005. *ICRA* 2005. *Proceedings of the* 2005 *IEEE International Conference on*, 2005, pp. 1785-1790.

 p_i

Consider Selfish Vigilance with DOD

Modified Threat Coverage

$$H_V(P) = \sum_i \int_{V_i} \frac{\|q - p_i\|^2}{R^2} d\phi(q)$$
$$H_{V_i}(p_i) = \int_{V_i} \frac{\|q - p_i\|^2}{R^2} d\phi(q)$$

 $\frac{\|q-p_i\|^2}{R^2}$: Vigilance discount for position q $\phi(q)$: How likely that a predator is at q

- Each agent moves toward its Cv to minimize it's modified threat coverage (Lloyd Algorithm)
- Explains the tendency for prey to "spread" evenly by moving toward the center of its DOD in safe situation

However

 The partial gradient formula is derived when Vi is consider fixed.

$$H_{V_i}(p_i) = \int_{V_i} \frac{\|q - p_i\|^2}{R^2} d\phi(q)$$
$$\frac{\partial H_{V_i}(p_i)}{\partial p_i} = 2M_{V_i}(p_i - C_{V_i})$$

- Doesn't take into account that Vi changes as agent move.
- In fact the direction to shrink the threat value within DOD is usually the opposite direction.
- □ How to derive exactly?

$$H(p_i) = \int_{V(p_i)} \|p_i - q\|^2 \phi(q) dq$$
$$\frac{\partial H(p_i)}{\partial p_i} = ?$$

