

Resource Allocation in Contention-Based WiFi Networks

Laura Giarré

Universita' di Palermo

(giarre@unipa.it)

Joint works with I. Tinnirello (Università di Palermo), G. Neglia (Inria - France), R. Pesenti (Università di Venezia)

Resource allocation in Contention-based networks

- Analysis with rational nodes:
 - Infrastructured IEEE 802.11 Networks
 - Achieving distributed fair bandwith among nodes in non homogeneous bidirectional traffic to optimize throughput
 - Game theoretical analysis and design
- Schemes for multi-hop topologies
 - Wireless Ad-Hoc Networks
 - Grouping contending nodes (TDMA approach) in combination with Carrier Sense to access the channel (CSMA/CA)
 - Graph coloring solution to assign slots

Santa Barbara

Infrastructured Networks

If station X tries to get all wireless resources \implies no space for the other stations, including the AP!

If station X leaves spaces to the AP \implies also the other stations able to transmit. ki - desired up/down ratio for each station

24/06/2011

IEEE 802.11 DCF as a Slotted Access protocol

- Distributed Coordination Function (DCF) regulates access to the shared medium:
 - dynamic adaptation of the contention windows (short term unfairness)
 - use of **homogeneous** contention parameters among the contending nodes
- Protocol operations summarized in terms of **average access probability** in a slotted channel (with uneven or even slot size)
- In each system slot, each station accesses with probability τ (and does not access with probability 1- τ).
- Most protocols make τ depending on the collision probability p, $\tau = f(p)$, as a tradeoff between channel wastes due to collisions and idle slots.

Actual Time

Game Theoretic Approach

- Thanks to open source drivers and programmable cards, we propose a dynamic tuning of the contention parameters used by the nodes via a game-theoretic approach.
- **AIM:** To guarantee a fair resource sharing among the nodes, while **optimizing** the per-node uploading and downloading bandwidth.
- SOLUTION:
 - Some DCF protocol EXTENSIONS able to cope with current resource sharing problems.
 - A non cooperative game where the contending stations act as the players
 - The stations works in saturated conditions and DCF can be modeled as a slotted access protocol while the station behavior is summarized in terms of per slot access probability

Contention-based access as a non-cooperative game

-Contending stations = players

-Channel access probability τ = player strategy

Game definition:

N players, [0,1]^N set of strategies, node payoff (J1, J2, ..., JN)

-Payoff perceived by each station depends on the whole set of probability (τ_1 , τ_2 , ... τ_n) chosen by all the stations

$$(\tau_1, \tau_{2, \dots}, \tau_n) \rightarrow (\tau_i, p_i)$$
 with pi = $1 - \prod_{j \neq i} (1 - \tau_j)$

Node Payoff with Bidirectional Traffic

- Assumption: AP is a legacy station τ_{AP}=f(p_{AP}) equally sharing the downlink throughput among the stations.
- For the i-station:

- Uplink throughput: $S_{u}^{i}(\tau_{i}, p_{i}) = \frac{\tau_{i}(1 - p_{i})(1 - \tau_{AP})P}{E[slot]}$ $(\tau_{i}, p_{i}) = \frac{\tau_{i}(1 - p_{i})(1 - \tau_{AP})P}{E[slot]}$

– Downlink throughput:

$$S^{i}_{d}(\tau_{i}, p_{i}) = x_{i} \frac{\tau_{AP}(1 - p_{AP})P}{E[slot]} \qquad \downarrow \tau_{i}$$

The utility function
 with ki in (0, ∞)

$$J^{i}(\tau_{i}, p_{i}) = \min(S^{i}_{u}, k_{i}S^{i}_{d})$$

Main Results

- Determination of Nash Equilibria and Pareto
 Optimality
- Mechanism design -> using of the AP to force desired equilibria
- Implementation of new DCF operations with best response strategy
- Implementation of Channel Monitoring functionalities (estimation of number of nodes and load conditions)
- Analysis of NE convergence and stability

References

- L. Giarré, G. Neglia, I. Tinnirello. "Medium Access in WiFi Networks: Strategies of Selfish Nodes", IEEE Signal Processing Magazine (SPM), Vol. 26, Issue 5, 2009, pp.124-128
- I.Tinnirello, L. Giarré, G. Neglia. "MAC design for WiFi infrastructure networks: a game theoretic approach. IEEE Transaction on Wireless Communication, in print, 2011.
- I. Tinnirello, L. Giarré, G. Neglia, "The role of the Access Point in Wi-Fi networks with selfish nodes", **IEEE GAMENETS**, 2009.
- L. Giarré, G. Neglia, I. Tinnirello, "Performance Analysis of Selfish Access Strategies on WiFi Infrastructure Networks", **IEEE Globecom** 2009
- L. Giarré, G. Neglia, I. Tinnirello, "Resource Sharing Optimality in WiFi infrastructure networks", **IEEE CDC**, 2009
- I. Tinnirello, L. Giarré, G. Neglia. A Game Theoretic Approach to MAC Design for Infrastructure Networks, IEEE CDC, 2010.

Ad-hoc networks

•Suitable for a large number of applications:

- from **low-range** sensor networks targeted to distributed monitoring
- to high-range mesh networks targeted to build
- infrastructure-less transport networks.

Santa Barbara

Ad-hoc Networks

- Most ad-hoc networks rely on contention-based medium access protocols,
- regardless to the specific physical layer technology
 (IEEE 802.15.4 PHY or 802.11a/b/g/n PHY, defining available bandwidth, transmission power, modulation coding scheme..)
- The use of carrier sense and random backoff mechanisms is a simple and well-established solution to manage multiple access over a shared channel bandwidth.
- CSMA/CA protocols exhibit very poor performance for **multihop** transmissions (inter-link interference due to imperfect carrier sensing).

Ad hoc Networks

Ad-Hoc networks

- **Aim:** Distributed resource allocation problems for multi-hop wireless networks.
- Main idea: Combining the TDMA approach for grouping the contending nodes in non-interfering sets) with the CSMA/CA approach (for managing the final access to the shared channel).
- **Solution:** determining the best number of slots in a frame and the best assignment of slots to different in terms of a map coloring problem, by trying to identify the most effective trade-offs between complexity, signaling overheads and performance gain.

Main Results

- Problem: Determine a distributed protocol setting the number x of slots in a frame and the slots allocations, in order to maximize the per-node throughput in saturation conditions
- Network transport capacity is critically affected by the number of slots x!
- Incompatibility constraints:
 - all neighbors and hidden nodes on different colors
 - only hidden nodes on different colors

References

(Ad hoc networks)

- I. Tinnirello, L.Giarrè and R. Pesenti. Decentralized Synchronization for Zigbee Sensor Networks in Multihop topology. **Necsys** 2010.
- L.Giarrè, F.G. La Rosa, R. Pesenti and I. Tinnirello.
 Coloring-based Resource Allocations in Ad-hoc
 Wireless Networks. Medhoc 2011.
- L.Giarrè, F.G. La Rosa, R. Pesenti and I. Tinnirello.
 Distributed Resource Allocation in Ad-hoc Wireless
 Networks. CDC 2011.

Infrastructure Networks with heterogeneous applications

It might happen that k1 != k2

 $J_{i}(\tau_{i},p)=\min(S_{u}^{i},\mathbf{k}_{i}^{i},S_{d}^{i})$

1. Does a best response policy lead to a NE?

2. How should the AP share the downlink throughput ?(choice of xi)

Node Best Response

Nash Equilibrium (ki=k=cost,xi=1/n)

Proposition: The homogeneous strategy vector $(\tau^*, \tau^*, ..., \tau^*)$ such that $kf(1-(1-\tau^*)^n)$

$$\tau^* = \frac{kf(1 - (1 - \tau^{-1})^n)}{n - (n - k)f(1 - (1 - \tau^{-1})^n)}$$

is the only Nash equilibrium in [0,1)ⁿ of the game with non-null utility.

Proof sketch:

At the NE point, two conditions simultaneously hold:

$$\begin{cases} \tau^* = \frac{k\tau_{AP}}{n - (n - k)\tau_{AP}} = g(\tau_{AP}) \\ \tau_{AP} = f(1 - (1 - \tau^*)^N) \end{cases}$$

being f() decreasing in τ^* starting from 0, and g() increasing in τ_{AP} , a single intersection exists Infrastructred Networks

Nash Equilibrium (ki, xi=1/n)

Proposition: For a given vector $\mathbf{k} = (k_1, k_2, ..., k_n)$ of application requirements, by equally sharing the downlink throughput, it exists a unique NE with non-null utility.

Proof sketch:

At the NE point, N+1 conditions simultaneously hold:

$$\begin{cases} \tau_{1} = \frac{k_{1}\tau_{AP}}{n - (n - k_{1})\tau_{AP}} \\ \tau_{2} = \frac{k_{2}\tau_{AP}}{n - (n - k_{2})\tau_{AP}} \\ \dots \\ \tau_{n} = \frac{k_{n}\tau_{AP}}{n - (n - k_{n})\tau_{AP}} \\ \tau_{AP} = f(1 - \Pi(1 - \tau_{i})) \end{cases}$$

The first N conditions represent a 1-dim curve in a N+1 space; the last one a surface..

Santa Barbara

Nash Equilibrium (ki, xi)

Proposition: For a given vector $\mathbf{k} = (k_1, k_2, ..., k_n)$ of application requirements, and a given vector of downlink throughput coefficients (x1,x2...,xn), it exists a unique NE with non-null utility.

Mechanism design

- Can the AP play the role of arbitrator in order to improve the performance of its access network?
 - 1. Using τ_{AP} as a configuration parameter (rather than $f(p_{AP})$)

Employing a downlink scheduling according to the application requirement k=(k1,k2,k2,..,kn)

Tuning the AP channel access probability

• The best response is

$$\tau_i^+ = \frac{k_i x_i \cdot c}{1 - (1 - k_i x_i)c}$$

The NE becomes the intersection between an hyperplane T_{AP}=c and the parametric curve identified by the best response equations

Per-station total bandwidth

Downlink Scheduling

By equally sharing the downlink, stations with higher **k** get an higher total up-down capacity

A fairer criterion could be an equal repartition of the perstation up+down capacity! $S_d^{i}=x_iS_{AP}$ with $x_i = \frac{\frac{1}{k_i+1}}{\sum_{j=1}^n \frac{1}{k_j+1}}$ The unique NE still exists

Scheduling policies

• AA: Application Agnostic

The AP is **not aware** of the per station application requirements (Ki). AP equally shares the downlink throughput among the stations $(S_d = S_{AP}/n)$.

- At NE each station perceives a throughput of $(1+k_i)S_d$

• AW: Application aWare

The AP is **aware** of Ki. AP can allocate and heterogeneous downlink throughput $S_d^i = x_i S_{AP}$

with

$$x_i = \frac{\frac{1}{k_i + 1}}{\sum_{j=1}^{n} \frac{1}{k_j + 1}}$$

Game-based MAC Scheme implementation and evaluation

- Each station has an two estimators for probing uplink and downlink load conditions
- The station best response depends not only on the application requirements (Ki) but also on the uplink load (n) and downlink load (Tap)
- Cases
 - 1) AP as a legacy
 - 2) AP implementing the adaptive tuning mechanism of the channel access probability
- Algorithms: AA (Application Agnostic scheduling) and AW (Application aWare scheduling)

Infrastructred Networks

Numerical Example: Resource Repartition

-Custom-made simulation platform;

-Interval update:0.5 seconds; 802.11b; P=1500 bytes

Infrastructred Networks

Effects of best response strategy (Time-varying Application requirements)

Final Remarks on Infrastructure Networks

• Contention-based access protocols can be defined in terms of non-cooperative games

- Standards are somehow limited with the proliferation of open-source drivers
- In infrastructure networks, the node strategies converge to Nash equilibria with non-zero payoff, by considering both uplink and downlink bandwidth requirements of user applications
- AP can be used for mechanism design, in order to force desired equilibrium conditions
 - by tuning its channel access probability
 - by employing scheduling policies for improving the network fairness

Ad-hoc Networks Minimum Graph Coloring

- Minimum Graph Coloring (MGC) problem on an incompatibility graph, built on the basis of network topology G = (V,E) V: nodes i of the network, E: pairs of nodes
- He is the **Incompatibility graph type I** (V, Fe), where for each $e \in 2^{E}$: $F_{e} = \{(j,k): \exists i \in V \text{ s.t. } (j,i), (i,k) \in E\}$
 - (j,k) frame may collide if transmitted simultaneously
 - $H_e=G^2$: all nodes have non-interfering allocations and we can guarantee a collision-free throughput proportional to r/x
- Ho is the Incompatibility graph type II (V, Fo), where for each e ∈ 2^E: F₀ ={(j,k):∃ i ∈ V s.t. (j,i),(i,k) ∈ E, but (j.k) ∉ E}
 - (j,k) collide and reciprocally hidden
 - $H_{\rho}=G^2$ -G: visible nodes share the same allocations

Santa Barbara

Coloring Algorithms

• Select and Compare (SC):

- **1. First coloring** Randomly pick a color from a list of available colors.
- 2. Conflict Resolution If none of your (1-hop or 2-hop) neighboring nodes has chosen the same color, keep it as definitive color, otherwise remove it form the list and try again the next step.
- **3.** List update If the color list is empty, add new colors. The list is updated starting from min(c+1, xmax) color, where c=max(neighboring node colors)

• Choose the First Available color (CFA) :

Instead of randomly picking a color from the available ones, each node first updates the list of available colors and then selects the color with the lowest index

Example of colored network

A network topology colored with different CFA maps for the incompatibility graphs G,G², G²-G

Santa Barbara

Performance Evaluation

- Given a graph He, the maximum number of needed colors is upper bounded by Δ_e +1, where Δ_e is the maximum node degree of the graph.
- Let x_e the number of colors required in H_e and c_e the number of cliques. After coloring, the throughput sum perceived by all the nodes belonging to each clique is obviously r/x_e , thus resulting in a total throughput equal to: $\rho_{tot}^e = \frac{r}{r^e}c^e$
- Average per-node throughput as ρ_{tot}/n = r / x_e E[d_e] (E[d_e] = n/c_e represents the average after coloring clique size).

Performance Evaluation

Topology	He	x_e	Ce	$\hat{\rho}^{e}/r$	$E[\rho^e]/r$
1	G^2	16	30	0.0624	0.0625
1	$G^2 - G$	5	12	0.0792	0.0800
2	G^2	13	30	0.0768	0.0769
2	$G^2 - G$	5	11	0.0730	0.0733
3	G^2	15	30	0.0666	0.0667
3	$G^2 - G$	5	13	0.0863	0.0867

TABLE I

MEASUREMENTS AND ESTIMATES OF THROUGHPUT.

Performance Evaluation

Average throughput under the SC coloring scheme

Average throughput under the CFA coloring scheme

Some Observations

- **1. Coloring G** can be useless, because the carrier sense functionality is already able to avoid interference among adjacent nodes. For the CFA case, the performance obtained under the G coloring are even worse than the ones obtained with the CSMA/CA protocol, because the slot allocations may synchronize hidden nodes for lower packet generation rates.
- 2. Coloring G2 can be more efficient (CFA case) or less efficient (SC case) than coloring G2-G, according to the network topology and to the effectiveness of the coloring scheme in selecting a limited number of colors and/or leaving a limited number of bottlenecks.
- **3.** If we allow node i to transmit during the slots associated to its color and to colors different form the ones of its adjacent nodes (schemes G2+ and G2-G+), we can further improve the network performance

From PALERMO to SANTA BARBARA

THANKS!