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We start with a line of research on
vehicle formations:

. Melzer and Kuo 1971  0yeas)
. Bamieh, Paganini, Dahleh 2002

. D’Andrea and Dullerud 2003
. Motee and Jadbabaie 2008

. Curtain 2009

. Curtain, Iftime, Zwart 2010




Melzer & Kuo, Automatica, 1971

Optimal Regulation of Systems Described
by a Countably Infinite Number of Objects

“Consider a system comprised of a large
number of indexed identical objects. ... Then,
1t 1s of interest to investigate the
corresponding case of an infinite number of

objects to reveal the behaviour of a typical
object.”




Central question

N large

model by N = infinity

Are the behaviours consistent?




Notice that N = infinity is
not necessarily the same as

lim
N — 00

because of boundary conditions.




Infinite chain 1n a physics context:

T

-

A

Newton, speed of sound 1n an

elastic medium.




Another physics context:

Brillouin: Wave Propagation in Periodic Structures

crystals




In the physics literature, there are

derivations (e.g., the velocity of a wave),

but nothing 1s proved.




the Melzer-Kuo problem

n an Iinteger
positions ¢y, (1)
velocities vy, (1)

control forces u,, ()



Vectors

All vectors are functions of ¢




The control objective

Gn+1 — 4n — h/y

Introduce

Y = U_lxa Yn = Ln+1; 1 =




The error vectors
(Ut —I)g—h-1

V— Vgs - 1

The cost function

J - / (U = Da(t) — k- 1) + [|[o(t) — v - 1]dt
0

(+ control penalty)




] - / (U = Da(t) — k- 1) + [|o(t) — v - 1]2dt
0

" "—

temporal norm £? spatial norm = =

What spatial norm do Melzer and Kuo take?

As well as Bamieh, Paganini, Dahleh,
D’Andrea, Dullerud, Motee, Jadbabaie,
Curtain, Iftime, and Zwart.




The ¢/? norm.

¢?. Hilbert space

r, Tp, €R, nelZ

(2,9) = > Tnyn
ol = (3a2)

r, — 0, n— £oo




If Ji1s finite, then already, without
any control, the spacing 1s correct
far away:

J:/ (U~ = Dg(t) — b 1|2 + ... dt < o
0

—  lim [gn4+1(0) —¢n(0) —h[ =0

n— 1o




For every € > 0, infinitely many vehicles have

spacing error < €.




The formation control problem i1s surely
easlier if only a few vehicles are out of whack.

Conclusion: Optimal control for N large 1s not

captured by N = infinity in /.




And yet ...

Melzer and Kuo claim

“that the infinite object theory accurately

describes the properties of the typical

vehicle controller in a long finite string.”




They then show by example that

vehicle 5 1n a string of 9 behaves
like the middle of the infinite string.

But 9 1s not large, and “most” vehicles
are not in the middle.




Our thesis 1s that, for some

problems, if you use ¢? then N =

infinity does not approximate the
behaviour of large N.
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Example of serial pursuit

N kinematic points

only onboard sensors

Actually, on the z-axis.







formation in the limit




What happens?




If the state space is ¢?, the vehicles

rendezvous at the origin.

As if they had GPS! But they don'’t.




In fact, the only equilibrium in ¢?

1s the origin.




Let’s try for a better model of N large.

¢>°, Banach space

r, T, €R, nelk

(7,y), none

|]lcc = sup,, |2




The key ¢? tools are not available.

No inner product means no Cauchy-Schwarz.

No Fourier transform. (there s in a distributional sense)




Serial pursuit 1 £°°

Every point 1s a possible rendezvous point.




But, as 1t turns out, the points
don’t necessarily converge.

An example ...







qn(0) Define A = {n: ¢,(0) = 1}.




When does ¢, (t) converge as t — 00?

It depends on what kind of set A is.




Diaconis and Stein, 1978

toss a coln n times

S,, 1s the number of heads

{S,, € A} is an event




When does Pr(S,, € A) converge as n — oo?

It depends on what kind of set A is.

Tauberian theory




Surprise!

qn(t) converges as t — o0
iff

Pr(S,, € A) converges as n — o0

Thanks to Ronen Peretz




From this theory, we can get a q(0) € £*°

for which ¢(t) does not converge.




something like this

q(t) doesn’t converge




But ...



q(t) doesn’t converge

¢(t) converges to 0




Results
q = Agq

q(t) = e*'q(0)

spectrum of A

Jle?|] =1

Ae* 50 in B((>°)

Therefore
Aq(t) — 0




Daleckii and Krein

Stability of Solutions of Differential

Equations in Banach Space
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Summary

If the state space 1s ¢? , the vehicles

rendezvous at the origin.
If the state space 1s ¢>°, the vehicles
may not converge.




Extension in the paper to

q.n — (Qn—l—l — q"n,) + (Qn—l — Qn)

¢={U+U"—2I)g

Partial results for masses

i=...




Finally

We had hoped for a more definitive treatment.

There are lots of open questions in ¢ .




Thanks for your attention.




