Infinite Chains of Vehicles

Avraham Feintuch Bruce Francis

Math Dept, Ben Gurion Univ ECE Dept, Univ of Toronto

(submitted to Automatica)

distributed control principles? separation theorem optimization anomaly

Introduction

An example

Conclusion

We start with a line of research on vehicle formations:

- 1. Melzer and Kuo 1971 (-40 years)
- 2. Bamieh, Paganini, Dahleh 2002
- 3. D'Andrea and Dullerud 2003
- 4. Motee and Jadbabaie 2008
- 5. Curtain 2009
- 6. Curtain, Iftime, Zwart 2010

Melzer & Kuo, Automatica, 1971

Optimal Regulation of Systems Described by a Countably Infinite Number of Objects

"Consider a system comprised of a large number of indexed identical objects. ... Then, it is of interest to investigate the corresponding case of an infinite number of objects to reveal the behaviour of a typical object." Central question

N large

model by N = infinity

Are the behaviours consistent?

Notice that N = infinity is not necessarily the same as

 $\lim_{N \to \infty}$

because of boundary conditions.

Infinite chain in a physics context:

Newton, speed of sound in an elastic medium.

Another physics context:

Brillouin: Wave Propagation in Periodic Structures

crystals

In the physics literature, there are derivations (e.g., the velocity of a wave), but nothing is proved.

the Melzer-Kuo problem

n an integer positions $q_n(t)$ $\dot{q}_n = v_n$ velocities $v_n(t)$ $\dot{v}_n = u_n$ control forces $u_n(t)$

Vectors

All vectors are functions of t

The control objective

$$q_{n+1} - q_n = h, \qquad v_n = v_{ss}$$

Then

$$U^{-1}q - q = h \cdot \mathbf{1}, \qquad v = v_{ss} \cdot \mathbf{1}$$

The error vectors

$$(U^{-1} - I)q - h \cdot \mathbf{1}$$

$$v - v_{ss} \cdot \mathbf{1}$$

The cost function

$$J = \int_0^\infty \| (U^{-1} - I)q(t) - h \cdot \mathbf{1} \|^2 + \| v(t) - v_{ss} \cdot \mathbf{1} \|^2 dt$$

(+ control penalty)

What spatial norm do Melzer and Kuo take?

As well as Bamieh, Paganini, Dahleh, D'Andrea, Dullerud, Motee, Jadbabaie, Curtain, Iftime, and Zwart.

The ℓ^2 norm.

ℓ^2 , Hilbert space

 $x, x_n \in \mathbb{R}, n \in \mathbb{Z}$

$$\langle x, y \rangle = \sum x_n y_n$$

$$\|x\|_2 = \left(\sum x_n^2\right)^{1/2}$$

$$x_n \to 0, \quad n \to \pm \infty$$

If J is finite, then already, without any control, the spacing is correct far away:

$$J = \int_0^\infty \| (U^{-1} - I)q(t) - h \cdot \mathbf{1} \|_2^2 + \dots dt < \infty$$

$$\implies \lim_{n \to \pm \infty} |q_{n+1}(0) - q_n(0) - h| = 0$$

For every $\varepsilon > 0$, infinitely many vehicles have spacing error $< \varepsilon$.

The formation control problem is surely easier if only a few vehicles are out of whack.

Conclusion: Optimal control for N large is not captured by $N = \text{infinity in } \ell^2$.

And yet ...

Melzer and Kuo claim

"that the infinite object theory accurately describes the properties of the typical vehicle controller in a long finite string." They then show by example that vehicle 5 in a string of 9 behaves like the middle of the infinite string.

But 9 is not large, and "most" vehicles are not in the middle.

Our thesis is that, for some problems, if you use ℓ^2 then N =infinity does not approximate the behaviour of large N.

Introduction

An example

Conclusion

Example of serial pursuit

Actually, on the *x*-axis.

formation in the limit

0

What happens?

If the state space is ℓ^2 , the vehicles rendezvous at the origin.

As if they had GPS! But they don't.

In fact, the only equilibrium in ℓ^2 is the origin.

Let's try for a better model of N large.

 ℓ^{∞} , Banach space

 $x, x_n \in \mathbb{R}, n \in \mathbb{Z}$

 $\langle x, y \rangle$, none

 $||x||_{\infty} = \sup_{n} |x_{n}|$

The key ℓ^2 tools are not available.

No inner product means no Cauchy-Schwarz.

No Fourier transform. (there is in a distributional sense)

Serial pursuit in ℓ^{∞}

Every point is a possible rendezvous point.

But, as it turns out, the points don't necessarily converge.

An example ...

When does $q_n(t)$ converge as $t \to \infty$?

It depends on what kind of set \mathbb{A} is.
Diaconis and Stein, 1978

toss a coin n times

 S_n is the number of heads

 $\{S_n \in \mathbb{A}\}$ is an event

When does $\Pr(S_n \in \mathbb{A})$ converge as $n \to \infty$?

It depends on what kind of set \mathbb{A} is.

Tauberian theory

Surprise!

 $q_n(t)$ converges as $t \to \infty$

iff

 $Pr(S_n \in \mathbb{A})$ converges as $n \to \infty$

Thanks to Ronen Peretz

From this theory, we can get a $q(0) \in \ell^{\infty}$

for which q(t) does not converge.

something like this

But ...

Results

$$\dot{q} = Aq$$
 $A = U - I$
 $q(t) = e^{At}q(0)$
spectrum of A
 $\|e^{At}\| = 1$
 $Ae^{At} \to 0$ in $\mathcal{B}(\ell^{\infty})$
Therefore

$$Aq(t) \to 0$$

Daleckii and Krein Stability of Solutions of Differential Equations in Banach Space

Introduction

An example

Conclusion

If the state space is ℓ^2 , the vehicles rendezvous at the origin. If the state space is ℓ^{∞} , the vehicles may not converge.

Extension in the paper to

$$\dot{q}_n = (q_{n+1} - q_n) + (q_{n-1} - q_n)$$

 $\dot{q} = (U + U^{-1} - 2I)q$

Partial results for masses

$$\ddot{q} = \dots$$

Finally

We had hoped for a more definitive treatment.

There are lots of open questions in ℓ^{∞} .

Thanks for your attention.