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We start with a line of research on 
vehicle formations:

(-40 years)



“Consider a system comprised of a large 
number of indexed identical objects. ... Then, 
it is of interest to investigate the 
corresponding case of an infinite number of 
objects to reveal the behaviour of a typical 
object.” 

Melzer & Kuo, Automatica, 1971

Optimal Regulation of Systems Described 
by a Countably Infinite Number of Objects



N large

model by N = infinity

Are the behaviours consistent?

Central question



Notice that N = infinity is
not necessarily the same as 

lim
N→∞

because of boundary conditions. 



0 1−1 2

· · · · · ·

Figure 1: Infinite chain of cars

space �2 of square-summable sequences, the advantage of this setting being that Fourier transforms

can be exploited. But this assumption requires that pn(t) → 0 as n goes to ±∞, for every t. This
seems to be an unjustified assumption to make at the start of a stability theory, before anything

has been proved: If we want to know about the behaviour of p(t) as t → ∞ there is no justification

in limiting p(0) to satisfy pn(0) → 0 as n → ±∞. Therefore we take the state space to be the

Banach space �∞ of bounded sequences. Then pn(0) can all be of roughly equal magnitude, or they

can be randomly distributed in an interval, etc. The only requirement is that pn(0) lie in some

interval independent of n. The goal of this paper is to develop a stability theory in this context,

an �∞ theory, and to show that it is different from the �2 theory. We illustrate with an example.

Example

Suppose each car is coupled to its two neighbours by a spring and dashpot of unit spring constant

and unit damping constant, as shown in Figure 2. The rest length of the springs is 1 m. Then

q̈n = (qn+1 − qn − 1)− (qn − qn−1 − 1) + (q̇n+1 − q̇n)− (q̇n − q̇n−1)

= qn+1 + qn−1 − 2qn + q̇n+1 + q̇n−1 − 2q̇n.

It follows that pn satisfies the same equation:

p̈n = pn+1 + pn−1 − 2pn + ṗn+1 + ṗn−1 − 2ṗn.

The difference between the two equations is in the initial conditions: pn(0) are bounded but qn(0)
are not. Let p denote the infinite vector of displacements and v of velocities. Take the state to be

x = (p, v). Thus x = (0, 0) is an equilibrium. If p(0) ∈ �2 and v(0) = 0, it turns out (proved in

the paper) that p(t) and v(t) converge to zero, that is, the cars return to their original positions!

Thus the infinite chain of cars behave like the finite, constrained one in Figure 3 instead of the
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Figure 2: Infinite chain of cars connected by springs and dashpots

unconstrained one in Figure 4. But why should the infinite chain in Figure 2 behave in this way?

After all, the cars are not constrained. This anomaly is caused entirely by taking p(0) in �2. On the

other hand, if pn(0) = c �= 0 for all n and v(0) = 0, then the cars will not move. This equilibrium

is not captured by the �2 theory, because �2 does not contain nontrivial constant sequences; it is
captured by the �∞ theory developed in this paper.

A literature review at this point is difficult because of lack of notation. It is therefore postponed

until the end of the paper.
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Infinite chain in a physics context:

Newton, speed of sound in an
elastic medium.



Brillouin: Wave Propagation in Periodic Structures

crystals

Another physics context:



In the physics literature, there are
derivations (e.g., the velocity of a wave), 
but nothing is proved.
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Figure 1: Infinite chain of cars

Let p(t) denote the infinite vector of displacements at time t, that is, the components of p(t) are
pn(t), n ∈ Z. In the existing literature, e.g., [1], [5], the state space for p(t) has been the Hilbert
space �2 of square-summable sequences, the advantage of this setting being that Fourier transforms
can be exploited. But this assumption requires that pn(t)→ 0 as n goes to ±∞, for every t. This
seems to be an unjustified assumption to make at the start of a stability theory, before anything
has been proved: If we want to know about the behaviour of p(t) as t→∞ there is no justification
in limiting p(0) to satisfy pn(0) → 0 as n → ±∞. Therefore we take the state space to be the
Banach space �∞ of bounded sequences. Then pn(0) can all be of roughly equal magnitude, or they
can be randomly distributed in an interval, etc. The only requirement is that pn(0) lie in some
interval independent of n. The goal of this paper is to develop a stability theory in this context,
an �∞ theory, and to show that it is different from the �2 theory. We illustrate with an example.

Example

Suppose each car heads toward the sum of the relative displacements to its two neighbours:

q̇n = (qn+1 − qn) + (qn−1 − qn)
= qn+1 + qn−1 − 2qn.

It follows that pn satisfies the same equation:

ṗn = pn+1 + pn−1 − 2pn.

Let p denote the infinite vector of displacements. Thus p = 0 is an equilibrium. If p(0) ∈ �2, it
turns out (proved in the paper) that p(t) converges to zero, that is, the cars return to their original
positions! But why should the infinite chain behave in this way? After all, the cars are not fitted
with global sensors to know where the origin is. This anomaly is caused entirely by taking p(0)
in �2. On the other hand, if pn(0) = c for some nonzero c and all n, then the cars will not move.
This equilibrium is not captured by the �2 theory, because �2 does not contain nontrivial constant
sequences; it is captured by the �∞ theory developed in this paper.

A literature review at this point is difficult because of lack of notation. It is therefore postponed
until the end of the paper.

2 Preliminaries

The signals that we deal with are denoted, for example, by x(t), where t denotes time and x is a
vector with an infinite number of components, xn, n ∈ Z. The meaning is that xn(t) is the state
vector of car n. For simplicity, the dimension of xn(t) is just 1. Thus for each t, x(t) is the state
vector of the entire chain. The simplest situation is where the chain is spatially invariant, a
property to be defined soon.
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positions qn(t)

velocities vn(t)

control forces un(t)

q̇n = vn

v̇n = un

the Melzer-Kuo problem

n an integer



Vectors

q =





...
q−1

q0
q1
...





, v, u, q̇ = v

v̇ = u

All vectors are functions of t



The control objective

1 =





...
1
1
1
...





vn = vss

v = vss · 1

Introduce

Then

qn+1 − qn = h,

y = U−1x, yn = xn+1,

U−1q − q = h · 1,



The error vectors

v − vss · 1

The cost function

(+ control penalty)

(U−1 − I)q − h · 1

J =

� ∞

0
�(U−1 − I)q(t)− h · 1�2 + �v(t)− vss · 1�2dt



What spatial norm do Melzer and Kuo take?

As well as Bamieh, Paganini, Dahleh, 
D’Andrea, Dullerud, Motee, Jadbabaie, 
Curtain, Iftime, and Zwart.

temporal norm L2 spatial norm = ?

J =

� ∞

0
�(U−1 − I)q(t)− h · 1�2 + �v(t)− vss · 1�2dt



x, xn ∈ R, n ∈ Z

�x, y� =
�

xnyn

�x�2 =
��

x2
n

�1/2

xn → 0, n→ ±∞

�2, Hilbert space

The     norm.�2



If J is finite, then already, without
any control, the spacing is correct
far away:  

lim
n→±∞

|qn+1(0)− qn(0)− h| = 0=⇒

J =

� ∞

0
�(U−1 − I)q(t)− h · 1�22 + . . . dt < ∞



For every ε > 0, infinitely many vehicles have

spacing error < ε.



The formation control problem is surely 
easier if only a few vehicles are out of whack.

Conclusion: Optimal control for N large is not 
captured by N = infinity in    .�2



Melzer and Kuo claim
 
“that the infinite object theory accurately
describes the properties of the typical
vehicle controller in a long finite string.” 

And yet ...



They then show by example that
vehicle 5 in a string of 9 behaves
like the middle of the infinite string.

But 9 is not large, and “most” vehicles
are not in the middle.



Our thesis is that, for some 
problems, if you use     then N = 
infinity does not approximate the 
behaviour of large N.

�2



Introduction

An example

Conclusion



Actually, on the x-axis.

Example of serial pursuit

N kinematic points
only onboard sensors



say

N-1
0 N

q̇n = qn−1 − qn

q̇0 = 0



formation in the limit



N = ∞

What happens?

q(t) = eAtq(0)

q̇n = qn−1 − qn

q̇ = Aq, A = U − I



�2If the state space is     , the vehicles
rendezvous at the origin.

As if they had GPS! But they don’t.



In fact, the only equilibrium in
is the origin.

�2



x, xn ∈ R, n ∈ Z

�∞, Banach space

�x, y�, none

�x�∞ = supn |xn|

Let’s try for a better model of N large.



No inner product means no Cauchy-Schwarz.

No Fourier transform. (there is in a distributional sense)

The key     tools are not available.�2



Serial pursuit in �∞

Every point is a possible rendezvous point.



But, as it turns out, the points 
don’t necessarily converge.

An example ...



1

qn(0)

n

0 1



1

qn(0)

n

Define A = {n : qn(0) = 1}.



When does qn(t) converge as t → ∞?

It depends on what kind of set A is.



Diaconis and Stein, 1978

A ⊂ Z+

toss a coin n times

Sn is the number of heads

1 20

A

Z+

{Sn ∈ A} is an event



When does Pr(Sn ∈ A) converge as n→∞?

Tauberian theory

It depends on what kind of set A is.



Surprise!

qn(t) converges as t → ∞

Pr(Sn ∈ A) converges as n → ∞

iff

Thanks to Ronen Peretz



From this theory, we can get a q(0) ∈ �∞

for which q(t) does not converge.



qn(0)

n

q(t) doesn’t converge

something like this



But ...



1

qn(0)

n

n

q(t) doesn’t converge

q̇(t) converges to 0

q̇n(0) = qn−1(0)− qn(0)



Results
q̇ = Aq

AeAt → 0

Therefore

in B(�∞)

spectrum of A

�eAt� = 1

q(t) = eAtq(0)

Aq(t) → 0

A = U − I



Daleckii and Krein
Stability of Solutions of Differential
Equations in Banach Space 
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�2If the state space is     , the vehicles
rendezvous at the origin.
If the state space is     , the vehicles
may not converge.

Summary

�∞



Extension in the paper to

q̇n = (qn+1 − qn) + (qn−1 − qn)

q̇ = (U + U−1 − 2I)q

Partial results for masses

q̈ = . . .



There are lots of open questions in      .�∞

We had hoped for a more definitive treatment.

Finally



Thanks for your attention.


