Self-triggered coordination of robotic networks for optimal deployment

Jorge Cortés

Mechanical and Aerospace Engineering University of California, San Diego http://tintoretto.ucsd.edu/jorge

2011 Santa Barbara Control Workshop: Decision, Dynamics and Control in Multiagent Systems

> University of California, Santa Barbara June 24, 2011

Joint work with Cameron Nowzari

-coordination of robotic networks-

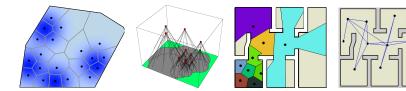
Research challenges

Adaptive/reliable Interactions

Uncertainty

Performance

robust, predictable behavior who knows what, when, why, how, dynamically changing, no omniscient leader imprecise information, unknown environment, events, evolving tasks autonomous, efficient, trade-offs



Self-triggered control as a tool for addressing challenges

Jorge Cortés (UCSD)

Given desired task,

 $\begin{array}{c} \text{information} \xrightarrow{\text{design}} \text{ agent plans} \xrightarrow{\text{executions}} \text{ performance} \\ \text{What is necessary information to achieve desired performance level?} \end{array}$

Answer allows for **self-triggered strategies**: what info, how up-to-date, to achieve task within specified performance level

Benefits

- incorporates **uncertainty** at the design and planning stage
- handles asynchronous executions of plans
- energy savings in communication/sensing
- more computation and decision making
- less exposure to detection by adversaries

-optimal deployment- of robotic sensor networks

Objective: optimal task allocation and space partitioning optimal placement and tuning of sensors

Why?

- servicing
- resource allocation
- environmental monitoring
- data collection
- force protection
- surveillance

Outline

1 motivation

deployment

• aggregate objective optimization

- Voronoi partition
- centroid algorithm

3 self-triggered deployment

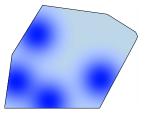
- guaranteed Voronoi diagrams
- self-triggered centroid algorithm
- convergence analysis

Expected-value multicenter function

Objective: Given sensors/nodes/robots/sites (p_1, \ldots, p_n) moving in environment S achieve **optimal coverage**

 $\phi \colon \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ density

agent performance decreases with distance



minimize
$$\mathcal{H}(p_1,\ldots,p_n) = E_{\phi} \left[\min_{i \in \{1,\ldots,n\}} \|q - p_i\|^2 \right]$$

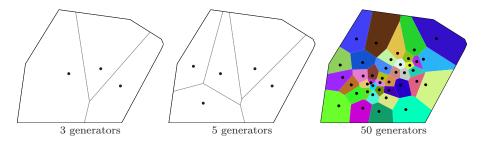
Voronoi partitions

Let $(p_1, \ldots, p_n) \in S^n$ denote the positions of n points

The Voronoi partition $\mathcal{V}(P) = \{V_1, \ldots, V_n\}$ generated by (p_1, \ldots, p_n)

$$V_i = \{ q \in S | \|q - p_i\| \le \|q - p_j\|, \forall j \neq i \}$$

= $S \cap_j \mathcal{HP}(p_i, p_j)$ where $\mathcal{HP}(p_i, p_j)$ is half plane (p_i, p_j)



Optimal configurations of \mathcal{H}

Alternative expression in terms of Voronoi partition,

$$\mathcal{H}(p_1, \dots, p_n) = \sum_{i=1}^n \int_{V_i} \|q - p_i\|_2^2 \phi(q) dq$$

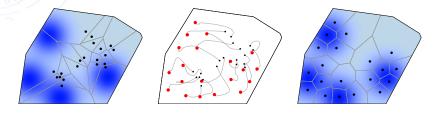
 ${\mathcal H}$ as a function of agent positions and partition,

$$\mathcal{H}(p_1,\ldots,p_n,W_1,\ldots,W_n) = \sum_{i=1}^n \int_{W_i} f(\|q-p_i\|_2)\phi(q)dq$$

For fixed positions, Voronoi partition is optimal For fixed partition, centroid configurations are optimal At each round, agents synchronously execute:

- transmit position and receive neighbors' positions;
- compute centroid of own cell

Between communication rounds, each robot moves toward center



initial configuration

gradient descent

final configuration

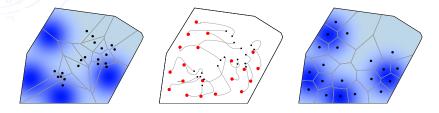
Properties: provably correct, adaptive, distributed over Voronoi graph

geometric-center algorithm [Cortes, Martinez, Karatas, Bullo, 04]

At each round, agents synchronously execute:

- transmit position and receive neighbors' positions;
- compute notion of geometric center of own cell

Between communication rounds, each robot moves toward center



initial configuration

 $\operatorname{gradient}$ descent

final configuration

Properties: provably correct, adaptive, distributed over Voronoi graph

Trading computation for communication/sensing

Balance cost of up-to-date information with limited resources what can agents do with outdated information about each other?

Agents have uncertainty regions on other agents

- how up-to-date information must be to positively contribute to task
- when information must be updated

Each agent *i* stores $\mathcal{D}^i = ((p_1^i, r_1^i), \dots, (p_n^i, r_n^i)),$

- p_j^i : last known location of agent j
- r_j^i : maximum distance traveled by agent j since last info
- $p_i^i = p_i$ and $r_i^i = 0$

Agents move at max speed $v_{\rm max}$

Guaranteed Voronoi diagram

[Sember and Evans, 08]

Guaranteed Voronoi diagram $g\mathcal{V}(D_1,\ldots,D_n) = \{gV_1,\ldots,gV_n\}$ of S generated by $D_1,\ldots,D_n \subset S$,

$$gV_i = \{q \in S \mid \max_{x \in D_i} ||q - x||_2 \le \min_{y \in D_j} ||q - y||_2 \text{ for all } j \ne i\}$$

 gV_i contains points guaranteed to be closer to any point in D_i than to any other point in D_j , $j \neq i$

In general, for $p_i \in D_i$, $gV_i \subset V_i$

For $D_i = \overline{B}_{r_i}(x_i)$, $\partial g V_i$ union of hyperbolic arms,

$$\{q \in S \mid ||q - x_i||_2 + r_i = ||q - x_j||_2 - r_j\}$$

Dual guaranteed Voronoi diagram

Dual guaranteed Voronoi diagram $dg\mathcal{V}(D_1,\ldots,D_n) = \{dgV_1,\ldots,dgV_n\}$ of S generated by $D_1,\ldots,D_n \subset S$,

$$dgV_i = \{q \in S \mid \min_{x \in D_i} ||q - x||_2 \le \max_{y \in D_j} ||q - y||_2 \text{ for all } j \ne i\}$$

Points outside dgV_i are guaranteed to be closer to any point of D_j than to any point of D_i

In general, for $p_i \in D_i$, $V_i \subset \mathrm{dg} V_i$

For $D_i = \overline{B}_{r_i}(x_i)$, $\partial \mathrm{dg} V_i$ is union of hyperbolic arms,

$$\{q \in S \mid ||q - x_i||_2 - r_i = ||q - x_j||_2 + r_j\}$$

When is motion good?

With outdated info, agent i cannot calculate $cntr(V_i)$

Proposition

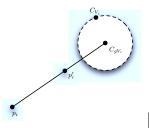
Let $L \subset V \subset U$. Then, for any density function ϕ ,

$$\|\operatorname{\mathsf{cntr}}(V)-\operatorname{\mathsf{cntr}}(L)\|_2\leq { t bound}(L,U)=2\operatorname{\mathsf{cr}}(U)\Big(1-rac{{\mathsf{mass}}(L)}{{\mathsf{mass}}(U)}\Big)$$

Agent *i* moves from p_i to p'_i making sure that

$$\begin{aligned} \|p'_i - C_{gV_i}\|_2 &\geq \texttt{bound}_i = \texttt{bound}(gV_i, dgV_i) \\ &\geq \|C_{V_i} - C_{gV_i}\|_2 \end{aligned}$$

As time elapses without new info, bound grows



one-step-ahead update decision policy

Agent $i \in \{1, \ldots, n\}$ performs:1: set $D = \mathcal{D}^i$ 2: compute $L = gV_i(D)$ and $U = dgV_i(D)$ 3: compute $q = C_L$ and r = bound(L, U)4: if $r \ge \max\{||q - p_i||_2, \epsilon\}$ then5: update \mathcal{D}^i 6: else7: set $\mathcal{D}^i_j = (p^i_j, r^i_j + v_{\max}\Delta t), j \ne i$ 8: set $\mathcal{D}^i_i = (tbb(p_i, v_{\max}, q, r), 0)$ 9: end if

Agents can also autonomously schedule updates in the future via multiple-steps-ahead update decision policy

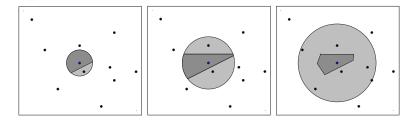
one-step-ahead update decision policy

Agent
$$i \in \{1, \ldots, n\}$$
 performs:1: set $D = \mathcal{D}^i$ 2: compute $L = gV_i(D)$ and $U = dgV_i(D)$ 3: compute $q = C_L$ and $r = bound(L, U)$ 4: if $r \ge \max\{||q - p_i||_2, \epsilon\}$ then5: update \mathcal{D}^i 6: else7: set $\mathcal{D}^i_j = (p^i_j, r^i_j + v_{\max}\Delta t), j \ne i$ 8: set $\mathcal{D}^i_i = (tbb(p_i, v_{\max}, q, r), 0)$ 9: end if

Agents can also autonomously schedule updates in the future via multiple-steps-ahead update decision policy

Brute-force update mechanism: agent acquires up-to-date information about the location of everybody else in the network – costly, not scalable

Alternative update mechanism: keep track only of a subset of agents, \mathcal{A}^i , and update via Voronoi cell computation



Voronoi cell computation

[Cortes, Martinez, Karatas, Bullo, 04]

At
$$\ell \in \mathbb{Z}_{\geq 0}$$
, agent $i \in \{1, ..., n\}$ performs:
1: initialize $R_i = \min_{k \in \{1, ..., n\} \setminus \{i\}} \|p_i - p_k^i\|_2 + v_{\max}\tau_k^i$
2: detect p_j within R_i , set $W(p_i, R_i) = \overline{B}_{R_i}(p_i) \cap \left(\bigcap_{j: \|p_i - p_j\| \leq R_i} H_{p_i p_j} \right)$
3: while $R_i < 2 \max_{q \in W(p_i, R_i)} \|p_i - q\|$ do
4: set $R_i := 2R_i$
5: detect all p_j radius R_i , recompute $W(p_i, R_i)$
6: end while
7: set $V_i = W(p_i, R_i)$, $\mathcal{A}^i = \mathcal{N}_i \cup \{i\}$ and $\mathcal{D}_j^i = (p_j, 0)$ for $j \in \mathcal{N}_i$

Lemma

Info on agents in \mathcal{A}^i is enough to compute, at each timestep between updates,

- exact guaranteed Voronoi cell
- upper bound of dual guaranteed Voronoi cell

Proof is nice consequence of geometric properties of guaranteed diagrams

self-triggered centroid algorithm

self-triggered centroid algorithm combines

- motion law: motion control law
- update policy: one-step-ahead update decision policy or multiple-steps-ahead update decision policy
- up-to-date information: Voronoi cell computation

Proposition

 ${\cal H}$ is monotonically nonincreasing

Essentially, because algorithm guarantees each agent gets closer to centroid

What about asymptotic behavior?

self-triggered centroid algorithm is not amenable to standard discrete-time stability analysis because

 $f_{\text{stca}} = f_{\text{motion}} \circ f_{\text{inf}}$ is discontinuous

"decide/acquire-up-to-date-information" fmotion "move-and-update-uncertainty"

Our strategy

finf

- construct set-valued map T whose trajectories include the ones of f_{stca}
- 2 make sure T has the **right "continuity"** properties (T closed)
- analyze with set-valued discrete-time stability analysis

Embedding the trajectories of $f_{\sf stca}$

Motion & uncertainty update: continuous $\mathcal{M}: (S \times \mathbb{R}_{\geq 0})^{n^2} \to (S \times \mathbb{R}_{\geq 0})^{n^2}$

 $\mathcal{M}_{i}(\mathcal{D}) = \left((p_{1}^{i}, r_{1}^{i} + v_{\max} \Delta t_{|\operatorname{diam}(S)}, \dots, (tbb(p_{i}^{i}, v_{\max}, C_{gV_{i}}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i})), \operatorname{bound}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i}))), 0), \dots, (p_{n}^{i}, r_{n}^{i} + v_{\max} \Delta t_{|\operatorname{diam}(S)}) \right)$

Embedding the trajectories of f_{stca}

Motion & uncertainty update: continuous $\mathcal{M}: (S \times \mathbb{R}_{\geq 0})^{n^2} \to (S \times \mathbb{R}_{\geq 0})^{n^2}$

$$\mathcal{M}_{i}(\mathcal{D}) = \left(\left(p_{1}^{i}, r_{1}^{i} + v_{\max} \Delta t_{\mid \mathsf{diam}(S)}, \dots, \right) \right)$$

(tbb $(p_{i}^{i}, v_{\max}, C_{gV_{i}}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i})), \mathsf{bound}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i}))), 0), \dots, (p_{n}^{i}, r_{n}^{i} + v_{\max} \Delta t_{\mid \mathsf{diam}(S)})$

Acquire up-to-date information: closed $\mathcal{U}: (S \times \mathbb{R}_{\geq 0})^{n^2} \rightrightarrows (S \times \mathbb{R}_{\geq 0})^{n^2}$ $\mathcal{U}(\mathcal{D})$ is Cartesian product whose *i*th component can be

> \mathcal{D}^i *i* does not get up-to-date information $((p'_1, r'_1), \dots, (p'_n, r'_n))$ *i* gets up-to-date information

with $(p'_j, r'_j) = (p^j_j, 0)$ for $j \in \{i\} \cup \mathcal{N}_i$ and $(p'_j, r'_j) = (p^i_j, r^i_j)$ otherwise

Embedding the trajectories of $f_{\sf stca}$

Motion & uncertainty update: continuous $\mathcal{M}: (S \times \mathbb{R}_{\geq 0})^{n^2} \to (S \times \mathbb{R}_{\geq 0})^{n^2}$

$$\mathcal{M}_{i}(\mathcal{D}) = \left(\left(p_{1}^{i}, r_{1}^{i} + v_{\max} \Delta t_{\mid \mathsf{diam}(S)}, \dots, \right) \right)$$

(tbb $(p_{i}^{i}, v_{\max}, C_{\mathsf{g}V_{i}}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i})), \mathsf{bound}(\pi_{\mathcal{A}^{i}}(\mathcal{D}^{i}))), 0), \dots, (p_{n}^{i}, r_{n}^{i} + v_{\max} \Delta t_{\mid \mathsf{diam}(S)})$

Acquire up-to-date information: closed $\mathcal{U}: (S \times \mathbb{R}_{\geq 0})^{n^2} \rightrightarrows (S \times \mathbb{R}_{\geq 0})^{n^2}$ $\mathcal{U}(\mathcal{D})$ is Cartesian product whose *i*th component can be

> \mathcal{D}^i *i* does not get up-to-date information $((p'_1, r'_1), \dots, (p'_n, r'_n))$ *i* gets up-to-date information

with $(p'_j, r'_j) = (p^j_j, 0)$ for $j \in \{i\} \cup \mathcal{N}_i$ and $(p'_j, r'_j) = (p^i_j, r^i_j)$ otherwise

Set-valued map $T = \mathcal{U} \circ \mathcal{M} : (S \times \mathbb{R}_{\geq 0})^{n^2} \rightrightarrows (S \times \mathbb{R}_{\geq 0})^{n^2}$ has properties

- if $\gamma = \{\mathcal{D}(t_\ell)\}$ evolution of $f_{\mathsf{stca}}, \gamma' = \{\mathcal{D}'(t_\ell) = f_{\mathsf{inf}}(\mathcal{D}(t_\ell))\}$ evolution of T
- \bigcirc T is closed

Establishing correctness

Proposition

For $\epsilon \in [0, \operatorname{diam}(S))$, network evolving under self-triggered centroid algorithm from any initial configuration in S^n converges the set of centroidal Voronoi configurations, while monotonically optimizing \mathcal{H}

Establishing correctness

Proposition

For $\epsilon \in [0, \operatorname{diam}(S))$, network evolving under self-triggered centroid algorithm from any initial configuration in S^n converges the set of centroidal Voronoi configurations, while monotonically optimizing \mathcal{H}

Proof sketch: for $\gamma' = f_{inf}(\gamma)$,

• use weak positively T-invariance of $\Omega(\gamma')$ to show

$$\Omega(\gamma') \subseteq \{\mathcal{D} \in (S \times \mathbb{R}_{\geq 0})^{n^2} \mid \|p_i^i - C_{\mathrm{g}V_i}(\pi_{\mathcal{A}^i}(\mathcal{D}^i))\|_2 \leq \mathtt{bound}(\pi_{\mathcal{A}^i}(\mathcal{D}^i))\}$$

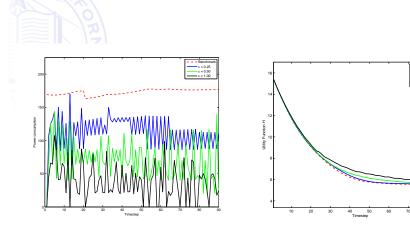
• $bound_i < max\{\|p_i^i - C_{gV_i}\|_2, \epsilon\}$ on γ' and continuity imply on $\Omega(\gamma')$

$$\operatorname{bound}(\pi_{\mathcal{A}^i}(\mathcal{D}^i)) \leq \max\{\|p_i^i - C_{gV_i}(\pi_{\mathcal{A}^i}(\mathcal{D}^i))\|_2, \epsilon\}$$

• combine facts to show $\Omega(\gamma') \subseteq \{\mathcal{D} \in (S \times \mathbb{R}_{\geq 0})^{n^2} \mid p_i^i = C_{V_i}\}$

Communication cost and performance

density is sum of two Gaussians



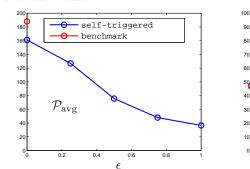
80

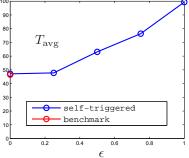
- - Benchm

c = 0.25

c = 0.50

Average communication cost and time to convergence density is sum of two Gaussians, 20 executions, random initial conditions





Conclusions

Self-triggered optimal deployment of robotic sensor networks

- self-triggered centroid algorithm
- correct, adaptive, distributed, uncertainty
- same convergence guarantees as synchronous algorithm with perfect information at all times
- \bullet extensions to asynchronous executions and dynamically changing v_{\max}

Towards self-triggered coordination

- applications to other collective tasks: servicing, routing, detection, queuing
- analytical characterization of trade-offs
- broadly applicable mathematical tools

