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-coordination of robotic networks-

Research challenges

Adaptive/reliable robust, predictable behavior
Interactions who knows what, when, why, how,

dynamically changing, no omniscient leader
Uncertainty imprecise information, unknown environment,

events, evolving tasks
Performance autonomous, efficient, trade-offs

Self-triggered control as a tool for addressing challenges
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-Self-triggered- control

Given desired task,

information
design−−−−→ agent plans executions−−−−−−→ performance

What is necessary information to achieve desired performance level?

Answer allows for self-triggered strategies: what info, how up-to-date, to
achieve task within specified performance level

Benefits
incorporates uncertainty at the design and planning stage
handles asynchronous executions of plans
energy savings in communication/sensing
more computation and decision making
less exposure to detection by adversaries
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-optimal deployment- of robotic sensor networks

Objective: optimal task allocation and space partitioning
optimal placement and tuning of sensors

Why?

servicing
resource allocation
environmental monitoring
data collection
force protection
surveillance

CENTROIDAL VORONOI TESSELLATIONS 649

Fig.2.2 A top-viewphotograph,usinga polarizing�lter,of theterritoriesof themale Tilapia
mossambica;eachisa pitduginthesandbyitsoccupant.The boundariesoftheterritories,
therimsofthepits,forma patternofpolygons.The breedingmalesare theblack�sh,which
range in sizefrom about 15cm to 20cm. The gray �share thefemales,juveniles,and
nonbreedingmales.The �shwitha conspicuousspotinitstail,intheupper-rightcorner,
isa Cichlasomamaculicauda.Photographand captionreprinted from G. W. Barlow,
HexagonalTerritories, Animal Behavior,Volume 22,1974,by permissionofAcademic
Press,London.

As anexampleofsynchronoussettlingforwhich theterritoriescanbevisualized,
considerthemouthbreeder�sh(Tilapiamossambica).Territorialmalesofthisspecies
excavatebreedingpitsinsandybottomsby spittingsandaway fromthepitcenters
towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Jorge Cortés (UCSD) Self-triggered deployment June 24, 2011 4 / 23



Outline

1 motivation

2 deployment
aggregate objective optimization
Voronoi partition
centroid algorithm

3 self-triggered deployment
guaranteed Voronoi diagrams
self-triggered centroid algorithm
convergence analysis

Jorge Cortés (UCSD) Self-triggered deployment June 24, 2011 5 / 23



Expected-value multicenter function

Objective: Given sensors/nodes/robots/sites (p1, . . . , pn) moving in
environment S achieve optimal coverage

φ : Rd → R≥0 density

agent performance decreases with distance

minimize H(p1, . . . , pn) = Eφ

[
min

i∈{1,...,n}
‖q − pi‖2

]
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Voronoi partitions

Let (p1, . . . , pn) ∈ Sn denote the positions of n points

The Voronoi partition V(P ) = {V1, . . . , Vn} generated by (p1, . . . , pn)

Vi = {q ∈ S| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}
= S ∩j HP(pi, pj) where HP(pi, pj) is half plane (pi, pj)

3 generators 5 generators 50 generators
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Optimal configurations of H

Alternative expression in terms of Voronoi partition,

H(p1, . . . , pn) =
n∑

i=1

∫
Vi

‖q − pi‖2
2φ(q)dq

H as a function of agent positions and partition,

H(p1, . . . , pn,W1, . . . ,Wn) =
n∑

i=1

∫
Wi

f(‖q − pi‖2)φ(q)dq

For fixed positions, Voronoi partition is optimal

For fixed partition, centroid configurations are optimal
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centroid algorithm
[Cortes, Martinez, Karatas, Bullo, 04]

At each round, agents synchronously execute:
transmit position and receive neighbors’ positions;

compute centroid of own cell

Between communication rounds, each robot moves toward center

initial configuration gradient descent final configuration

Properties: provably correct, adaptive, distributed over Voronoi graph
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geometric-center algorithm
[Cortes, Martinez, Karatas, Bullo, 04]

At each round, agents synchronously execute:
transmit position and receive neighbors’ positions;

compute notion of geometric center of own cell

Between communication rounds, each robot moves toward center

initial configuration gradient descent final configuration

Properties: provably correct, adaptive, distributed over Voronoi graph
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Trading computation for communication/sensing

Balance cost of up-to-date information with limited resources
what can agents do with outdated information about each other?

Agents have uncertainty regions on other agents
how up-to-date information must be to positively
contribute to task
when information must be updated

Each agent i stores Di = ((pi
1, r

i
1), . . . , (p

i
n, ri

n)),
pi

j : last known location of agent j

ri
j : maximum distance traveled by agent j since last info

pi
i = pi and ri

i = 0

Agents move at max speed vmax
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Guaranteed Voronoi diagram
[Sember and Evans, 08]

Guaranteed Voronoi diagram gV(D1, . . . , Dn) = {gV1, . . . , gVn} of S
generated by D1, . . . , Dn ⊂ S,

gVi = {q ∈ S | max
x∈Di

‖q − x‖2 ≤ min
y∈Dj

‖q − y‖2 for all j 6= i}

gVi contains points guaranteed to be closer to any point in Di than to any
other point in Dj , j 6= i

In general, for pi ∈ Di, gVi ⊂ Vi

For Di = Bri
(xi), ∂gVi union of hyper-

bolic arms,

{q ∈ S | ‖q − xi‖2 + ri = ‖q − xj‖2 − rj}
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Dual guaranteed Voronoi diagram

Dual guaranteed Voronoi diagram dgV(D1, . . . , Dn) = {dgV1, . . . ,dgVn}
of S generated by D1, . . . , Dn ⊂ S,

dgVi = {q ∈ S | min
x∈Di

‖q − x‖2 ≤ max
y∈Dj

‖q − y‖2 for all j 6= i}

Points outside dgVi are guaranteed to be closer to any point of Dj than to any
point of Di

In general, for pi ∈ Di, Vi ⊂ dgVi

For Di = Bri
(xi), ∂dgVi is union of hy-

perbolic arms,

{q ∈ S | ‖q − xi‖2 − ri = ‖q − xj‖2 + rj}
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When is motion good?

With outdated info, agent i cannot calculate cntr(Vi)

Proposition

Let L ⊂ V ⊂ U . Then, for any density function φ,

‖ cntr(V )− cntr(L)‖2 ≤ bound(L,U) = 2 cr(U)
(
1− mass(L)

mass(U)

)

Agent i moves from pi to p′i making sure that

‖p′i − CgVi‖2 ≥ boundi = bound(gVi,dgVi)

≥ ‖CVi − CgVi‖2

As time elapses without new info, bound grows
pi

p′

i

CgVi

CVi
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one-step-ahead update decision policy

Agent i ∈ {1, . . . , n} performs:
1: set D = Di

2: compute L = gVi(D) and U = dgVi(D) --guaranteed cells

3: compute q = CL and r = bound(L,U)
4: if r ≥ max {‖q − pi‖2, ε} then
5: update Di --get fresh info

6: else
7: set Di

j = (pi
j , r

i
j + vmax∆t), j 6= i --increase uncertainty

8: set Di
i = (tbb(pi, vmax, q, r), 0) --new position

9: end if

Agents can also autonomously schedule updates in the future via
multiple-steps-ahead update decision policy
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How to update the agent memory?

Brute-force update mechanism: agent acquires up-to-date information about
the location of everybody else in the network – costly, not scalable

Alternative update mechanism: keep track only of a subset of agents, Ai,
and update via Voronoi cell computation
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Voronoi cell computation
[Cortes, Martinez, Karatas, Bullo, 04]

At ` ∈ Z≥0, agent i ∈ {1, . . . , n} performs:
1: initialize Ri = mink∈{1,...,n}\{i} ‖pi − pi

k‖2 + vmaxτ
i
k

2: detect pj within Ri, set W (pi, Ri) = BRi(pi) ∩
(
∩j:‖pi−pj‖≤Ri

Hpipj

)
3: while Ri < 2 maxq∈W (pi,Ri) ‖pi − q‖ do
4: set Ri := 2Ri

5: detect all pj radius Ri, recompute W (pi, Ri)
6: end while
7: set Vi = W (pi, Ri), Ai = Ni ∪ {i} and Di

j = (pj , 0) for j ∈ Ni

Lemma

Info on agents in Ai is enough to compute, at each timestep between updates,
exact guaranteed Voronoi cell
upper bound of dual guaranteed Voronoi cell

Proof is nice consequence of geometric properties of guaranteed diagrams
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self-triggered centroid algorithm

self-triggered centroid algorithm combines
motion law: motion control law

update policy: one-step-ahead update decision policy or
multiple-steps-ahead update decision policy

up-to-date information: Voronoi cell computation

Proposition

H is monotonically nonincreasing

Essentially, because algorithm guarantees each agent gets closer to centroid

What about asymptotic behavior?
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Convergence guarantees

self-triggered centroid algorithm is not amenable to standard
discrete-time stability analysis because

fstca = fmotion ◦ finf is discontinuous

finf “decide/acquire-up-to-date-information”
fmotion “move-and-update-uncertainty”

Our strategy
1 construct set-valued map T whose trajectories include the ones of fstca

2 make sure T has the right “continuity” properties (T closed)
3 analyze with set-valued discrete-time stability analysis
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Embedding the trajectories of fstca

Motion & uncertainty update: continuous M : (S×R≥0)
n2 → (S×R≥0)

n2

Mi(D) =
(
(pi

1, r
i
1 + vmax∆t| diam(S), . . . ,

(tbb(pi
i, vmax, CgVi(πAi(Di)), bound(πAi(Di))), 0), . . . , (pi

n, ri
n + vmax∆t| diam(S)

)

Acquire up-to-date information: closed U : (S × R≥0)
n2

⇒ (S × R≥0)
n2

U(D) is Cartesian product whose ith component can be

Di i does not get up-to-date information
((p′1, r

′
1), . . . , (p

′
n, r′n)) i gets up-to-date information

with (p′j , r
′
j) = (pj

j , 0) for j ∈ {i} ∪ Ni and (p′j , r
′
j) = (pi

j , r
i
j) otherwise

Set-valued map T = U ◦M : (S × R≥0)
n2

⇒ (S × R≥0)
n2

has properties
1 if γ = {D(t`)} evolution of fstca, γ′ = {D′(t`) = finf(D(t`))} evolution of T

2 T is closed
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Establishing correctness

Proposition

For ε ∈ [0, diam(S)), network evolving under self-triggered centroid

algorithm from any initial configuration in Sn converges the set of centroidal
Voronoi configurations, while monotonically optimizing H

Proof sketch: for γ′ = finf(γ),
use weak positively T -invariance of Ω(γ′) to show

Ω(γ′) ⊆ {D ∈ (S × R≥0)
n2

| ‖pi
i − CgVi(πAi(Di))‖2 ≤ bound(πAi(Di))}

boundi < max{‖pi
i − CgVi

‖2, ε} on γ′ and continuity imply on Ω(γ′)

bound(πAi(Di)) ≤ max{‖pi
i − CgVi(πAi(Di))‖2, ε}

combine facts to show Ω(γ′) ⊆ {D ∈ (S × R≥0)
n2 | pi

i = CVi}
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Communication cost and performance
density is sum of two Gaussians
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Average communication cost and time to convergence
density is sum of two Gaussians, 20 executions, random initial conditions
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Conclusions

Self-triggered optimal deployment of robotic sensor networks
self-triggered centroid algorithm

correct, adaptive, distributed, uncertainty
same convergence guarantees as synchronous algorithm with perfect
information at all times
extensions to asynchronous executions and dynamically changing vmax

Towards self-triggered coordination

applications to other collective tasks: servicing,
routing, detection, queuing
analytical characterization of trade-offs
broadly applicable mathematical tools
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