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Distributed parameter systems 
Distributed parameter systems integrate dynamical processes in 
which spatial variations play an integral role in their evolution 

–  Examples include: structural systems, propagation of pollutants 
in air, water distribution networks, transportation networks, the 
power grid, smart buildings. 



The direct problem (forward simulation) 
Forward simulation requires a 
mathematical model, which is an 
abstraction of the system, for example: 

–  Partial differential equation (PDE) 
–  Ordinary differential equation 

(ODE) 
–  Finite element model (FEM) 
–  Finite difference model 
–  Computational code 

Simulation numerically represents the 
evolution of the state of the system, and 
requires the usually unknown: 

–  Numerical parameters of the model 
–  Initial conditions (initialization) 
–  Boundary conditions 
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The inverse modeling problem 
Inverse modelling characterizes the 
process of determining the numerical 
parameters of the model.  

–  System identification  
 (in control theory) 

–  Learning (in machine learning) 

In general it requires: 
–  To have a predefined 

mathematical model 
(abstraction) 

–  Experimental data 

Challenges include: 
–  Modelling errors 
–  Measurement characteristics 

(noisy, sparse, etc.) 
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The data assimilation problem 

physical world 

distributed parameters 
system abstraction 

model simulations 

Data fusion is sometimes used to 
characterize the process of integrating  
sensor data into the mathematical model 
to find the evolution of the state of the 
system over time. It is sometimes called: 

–  Data assimilation (in the physical 
sciences) 

–  State estimation (in control theory) 
–  Inference (in machine learning) 

For online systems implementation, it 
requires: 

–  Streaming sensor data 
–  Real time computation 

Specific to cyberphysical systems: 
–  Coupling between the physical 

processes and the computational 
processes 

–  Need to run faster than physics for 
nowcast (and forecast) 

sensor data information 



1.  Traffic information systems at the age of web 2.0 

2.  Mobile Millennium 

3.  Inverse modeling and data assimiliation 
1.  A short introduction to traffic modeling 
2.  The Moskowitz Hamilton-Jacobi equation 
3.  Internal boundary conditions using the inf-morphism property 
4.  Data assimilation in a privacy aware environment 

4.  Beyond Mobile Millennium 
1.  Air 
2.  Earthquakes 
3.  Water 

Outline 



511.org             2010 (UC Berkeley) 



“Classical” source of traffic information 
Dedicated traffic monitoring infrastructure: 

–  Self inductive loops 
–  Wireless pavement sensors 
–  FasTrak, EZ-pass transponders 
–  Cameras 
–  Radars 
–  License plate readers 

Issues of today’s dedicated infrastructure 
–  Installation costs 
–  Maintenance costs 
–  Reliability 
–  Coverage 
–  Privacy intrusion 



Web 2.0 on wheels 
Emergence of the mobile internet 

–  Internet accesses from mobile 
devices skyrocketing  

–  Mobile devices outnumber  
 PCs by 5:1 

–  1. 5 million devices/day (Nokia)   
–  Redefining the mobile market:  

Google, Apple, Nokia, Microsoft, 
Intel, IBM, etc. 

–  Open source computing: 
Symbian Foundation, Android, 
Linux 

Sensing and communication suite 
–  GSM, GPRS, WiFi, bluetooth, 

infrared 
–  GPS, accelerometer, light sensor, 

camera, microphone 
Smartphones and Web 2.0 

–  Context awareness 
–  Sensing based user generated 

content 
9 
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device 
subscriptions  

worldwide in 2007 

[Courtesy J. Shen, Nokia Research Center Palo Alto] 



1.  Traffic information systems at the age of web 2.0 

2.  Mobile Millennium 

3.  Inverse modeling and data assimiliation 
1.  A short introduction to traffic modeling 
2.  The Moskowitz Hamilton-Jacobi equation 
3.  Internal boundary conditions using the inf-morphism property 
4.  Data assimilation in a privacy aware environment 

4.  Beyond Mobile Millennium 
1.  Air 
2.  Earthquakes 
3.  Water 

Outline 



Mobile Millennium today 
Current features of the system  

–  Initially, 5000 downloads of the FIRST Nokia traffic app worldwide 
–  Gathers about 60 million data points / day from dozen of sources 

(smartphones, taxis, fleets, static sensors, public feeds, etc.) 
–  Provides real-time nowcast (soon forecast) of highway and 

arterial traffic, provide routing and data fusion tools.  
–  Provides integration platform for any mobile data stream 



Millennium Stockholm online since March 2011 



Example of 500 vehicles in SF (taxis) 



Sensing 
–  Millions of mobile 

devices as new 
sources for data 

Communication  
–  Existing cell phone 

infrastructure to 
collect raw data 
and receive traffic 
information 

Data assimilation 
–  Real-time, online 

traffic estimation 
Privacy Management  

–  Encrypted 
transactions 

–  Client 
authentication 

–  Data 
anonymization  

A cyberphysical system for participatory sensing 

Data aggregation 

Data assimilation Data transmission 

Data generation, 
info distribution 

Mobile Millennium infrastructure 
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Definition of the Moskowitz function 

6 5 4 3 
2 1 

State of traffic can be described by the Moskowitz function M(t,x) 
–  Attribute consecutive labels n to the vehicles entering a 

section of the highway. 
–  The Moskowitz function is a continuous function satisfying M

(t,x)=n 
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Mathematical model: Hamilton-Jacobi PDE 
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The Moskowitz satisfies the following Hamilton Jacobi PDE 
–  It can be derived from the Lighthill Whitham Richards PDE 
–  The Hamiltonian of the Hamilton Jacobi PDE is the usual 

fundamental diagram known empirically, denoted 



Physical interpretation of the Moskowitz function 

M(t,x)=17 

t = 1 min  
x = 2.5 miles 

The Moskowitz function is the solution of the Hamilton Jacobi PDE 
–  Its value at location x and time t represents the label of the 

vehicle at that location and at that time 
–  For example vehicle 17 is at postmile 2.5 at time 1 minute.  



Physical interpretation of the level sets 
The Moskowitz function is the solution of the Hamilton Jacobi PDE 

–  Its value at location x and time t represents the label of the vehicle 
at that location and at that time 

–  The set of points such that M(t,x)=17 is the trajectory of vehicle 17 

t = 1 min  
x = 2.5 miles 

M(t,x)=17 



Solution of the forward problem 
The solution of the forward problem relies on the notion of viscosity 
solution or its extensions (Frankowska solutions).  

–  Solution of the forward problem (in gray) requires: 
–  Initial condition (in red) 
–  Boundary condition 1, inflow (in blue) 
–  Boundary condition 2, outflow (in green)  
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[In general] unavailable initial conditions 
Initial conditions: initial state of highway at 
start of experiment  

–  Can be measured with UAVs (DARPA) 
–  Could be measured with satellite (DLR) 

low orbit TerraSAR-X satellite 
–  15 mins latency 
–  Orbits around California once a day  
–  Provides 70% of vehicles (and 

speeds)  



[Some erroneous] boundary conditions 
Experimental boundary data:  

–  Cameras, loop detectors, radar, etc.  
–  Noisy 
–  Inconsistent (up to 40% mass loss) 
–  Missing data  



Lagrangian [internal] data of various types 
Variety of a available probe data:  

–  VTL data (Nokia) 
–  Full trajectory data 
–  Bread crumbs (trajectory subsets) 
–  Point-to-point 
–  Random samples 
–  Snail operations (police) 
–  Etc... 



Epigraphical characterization of the solution 

Let us consider the epigraphs  
of the boundary of the domain 

Idea: characterize the Moskowitz surface as the lower envelope of a  
capture basin 
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Construction of the solution to the HJB PDE 
Main concept used: the Capture Basin  

–  Consider a Differential inclusion 
–  Solutions of this differential inclusion are trajectories. 
–  The capture basin of a target within a constraint set is the set of 

initial positions from which one can reach the target while 
staying in the constraint set. 

constraint set 

target 

Initial position 

trajectory 
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Construction of the solution to the HJB PDE 

constraint set 
Capture basin 

Main concept used: the Capture Basin  
–  Consider a Differential inclusion 
–  Solutions of this differential inclusion are trajectories. 
–  The capture basin of a target within a constraint set is the set of 

initial positions from which one can reach the target while 
staying in the constraint set. 

–  It is called 

target 



Epigraphical characterization of the solution 

Let us consider the epigraphs  
of the boundary of the domain 
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Epigraphical characterization of the solution 
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Target 

Epigraphical characterization of the solution 

Let us consider the epigraphs  
of the boundary of the domain 



Construct an auxiliary dynamics 
Consider the following set valued dynamics  

Where the Fenchel transform of the Hamiltonian is given by: 



Target 

In the capture basin? 

Is it possible to capture the 
target from a given point? 

NO 



Target 

In the capture basin? 

Is it possible to capture the 
target from a given point? 

YES 



Capture basin has a lower envelope 



Viability solution (definition using capture basin) 



The inf-morphism property 

The union property for capture basins 

translates into an inf-morphism property 



Tangential property of the capture basin 
This defines a new class of solutions to the HJ PDE: 

The solution provided by this formula is a lower semicontinuous 
function. It is the solution to the HJ PDE considered before, in a 
weaker sense than the viscosity solution. This solution is called the 
Barron/Jensen-Frankowska (B/J-F) solution. 

B/J-F solutions require only the lower semicontinuity of the solution. 

In particular: whenever M is differentiable the tangential properties of 
the capture basin imply: 



Adding trajectories is equivalent to adding epigraphs 
Very often, drivers drive in violation of the LWR HJ PDE model  
(because of external disturbances not included in the model:  
accidents, distraction, excessive speed, etc.). This can be measured: 



Adding trajectories is equivalent to adding epigraphs 
Now one can continue  
adding targets in the  
Form of epigraphs: 



Adding trajectories is equivalent to adding epigraphs 
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adding targets in the  
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Comparing information 

What is measured by the 
outflow detector. 
Influence of the reading of the 
inflow detector on what the 
outflow detector should say  



Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Data assimilation using linear programming 



Data assimilation using linear programming 
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Data assimilation using linear programming 

Reading of our outflow 
sensor 

Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 



Data assimilation using linear programming 

Initial number of 
vehicles (to be 
estimated) 

Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 
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Comparing information 

Influence of the reading of the 
outflow detector on  what the 
inflow detector  should say  

What is measured by the inflow 
detector. 



Symmetric condition 
Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Data assimilation using linear programming 



Adding trajectories is equivalent to adding epigraphs 



Influence of the inflow 
measurement on the label of 
the trajectory 

Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Data assimilation using linear programming 



Label of vehicle i 
(to be estimated) 

Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Data assimilation using linear programming 



Similar condition between 
outflow and label 
estimated by the 
trajectory measurement 

Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Data assimilation using linear programming 



Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Similar conditions  

Data assimilation using linear programming 



Adding trajectories is equivalent to adding epigraphs 



Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Difference in possible 
labels of vehicle i and j 
(unknown) 

Data assimilation using linear programming 



Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 

Constraint on the label of 
vehicle i based on the fact 
that vehicle j has a 
measured trajectory 

Data assimilation using linear programming 



Initial condition unknown -Δ 
Left and right boundary conditions known 
Internal conditions known, but labels Mi unknown 
Grey: non linear analytical solution of the Hamilton Jacobi equation. Can be 

computed explicitly for piecewise affine functions, and semi-explicitly for 
general nonlinear functions 

Data assimilation using linear programming 
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Bounds on travel time (PeMS) 

Outflow loop 

Inflow loop 



Bounds on travel time (PeMS and phones) 

Outflow loop 

Inflow loop 



Validation of the data (video) 
Travel time predictions  

–  Can be done in real time at a 2% 
penetration rate of traffic 

–  Proved accurate against data from 
www.511.org, with higher degree of 
granularity 

Mobile Century Map 

511.org Map 
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Mobile Millennium system architecture 
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Mobile Millennium tomorrow: beyond traffic 
“e-Wellness” 

–  Noise levels inferred from traffic: moving beyond the “average 
number of vehicles / year” paradigm: hour by hour noise levels.  

Today: noise map (static) Tomorrow: hourly noise map 



Mobile Millennium tomorrow: beyond traffic 

Courtesy NASA/DHS 

“e-Wellness” 
–  Noise levels inferred from traffic: moving beyond the “average 

number of vehicles / year” paradigm: hour by hour noise levels.  
–  Emission levels inferred from traffic, using emission and 

atmospheric dispersion models. Next gen: sensor based.  

Today: pollution map Tomorrow: sensor  
based data 



The emergence of the human as a sensor 
Best known sensor for earthquakes: accelerometer 

–  USGS has dedicated array of embedded accelerometers  
–  Human is faster than USGS by posting on Twitter 
–  All smartphones have accelerometers, UCLA already 

succeeded in capturing a P-wave from a smartphone (CENS) 
–  Information could be enhanced by having additional 

accelerometer information available. 

UC Berkeley iShake app  
and shake table testing procedure 

USGS shakemap 
(from static USGS sensors) 



Mobile Millennium tomorrow: beyond traffic 
“e-Wellness” 

–  Noise levels inferred from traffic: moving beyond the “average 
number of vehicles / year” paradigm: hour by hour noise levels.  

–  Emission levels inferred from traffic, using emission and 
atmospheric dispersion models. Next gen: sensor based.  

–  iShake, measuring earthquakes using cellphones while they 
charge or are at rest  

Already tested on the 140 most famous earthquakes on the UC Berkeley, UCSD and UCD shaketables   



Closing the loop on the phone 
Floating sensor network 

–  Summer 2011: deployment of 100 floating / submersible units in 
the San Francisco Bay / Sacramento Delta 

–  All units include GSM (soon: Android), GPS, linux gumstix, 
Zigbee, water quality sensor platform 

–  Interfaced with static sensor infrastructure in the Delta 
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Putting water online (Google maps of water) 
Inverse modeling, data assimilation, inference, estimation 

–  Real-time, online (with streaming data) 
–  Running two dimensional shallow water models (LBNL REALM) 
–  Using Ensemble Kalman Filtering, statistical inference methods 
–  Running on 500 nodes of the Magellan / NERSC cluster at LBNL 
–  Will be live in a few months 
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Prototype experiment: Mobile Century 
Experimental proof of concept: the Mobile Century field test 

–  February 8th 2008 
–  I80, Union City, CA 
–  Field test, 100 cars 
–  165 Berkeley students drivers 
–  10 hours deployment,  
–  About 10 miles 
–  2% - 5% penetration rate 



Mobile Century validation video data collection 
Video data:  

–  Vehicles counts  
–  Travel time validation 



A glimpse of Mobile Century (February 8th, 2008) 
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Data flow in the Mobile Millennium system 



Google Maps vs. model driven estimation 

Google Maps Mobile Millennium 

Friday, March 20th, 2009 
–  1:30pm (Friday afternoon congestion) 
–  Acceleration: 1 frame = 30 seconds of physical time 
–  Movies are synchronized 



Google Maps vs. model driven estimation 



Data assimilation / inverse modeling 
How to incorporate Lagrangian (trajectory based) and Eulerian (control 
volume based) measurements in a flow model. 



Granularity of the data (GPS data) 
Physical model and data assimilation enable state estimation 

–  Works even with low penetration rate 
–  Interpolation will just not do the job 



Flow reconstruction (inverse modeling) 
Physical model and data assimilation enable state estimation 

–  Works even with low penetration rate 
–  Interpolation will just not do the job 
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Flow reconstruction (inverse modeling) 
Physical model and data assimilation enable state estimation 

–  Works even with low penetration rate 
–  Interpolation will just not do the job 
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