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Distributed parameter systems

Distributed parameter systems integrate dynamical processes in
which spatial variations play an integral role in their evolution
— Examples include: structural systems, propagation of pollutants

in air, water distribution networks, transportation networks, the
power grid, smart buildings.




The direct problem (forward simulation)

Forward simulation requires a
mathematical model, which is an __— "
abstraction of the system, for example: K:

— Partial differential equation (PDE) ==L

model simulations }

o)
/

— Ordinary differential equation =TT
(ODE) Lo [LoTf 1 o]
— Finite element model (FEM) e =

— Finite difference model
— Computational code

Simulation numerically represents the distributed parameters
evolution of the state of the system, and SyStemakstigeen
requires the usually unknown:

— Numerical parameters of the model
— Initial conditions (initialization)
— Boundary conditions
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The inverse modeling problem

Inverse modelling characterizes the
process of determining the numerical
parameters of the model.

— System identification
(in control theory)
— Learning (in machine learning)

In general it requires:

— To have a predefined
mathematical model
(abstraction)

— Experimental data

Challenges include:
— Modelling errors

— Measurement characteristics
(noisy, sparse, etc.)
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The data assimilation problem

Data fusion is sometimes used to
characterize the process of integrating

sensor data into the mathematical model r{“ N

to find the evolution of the state of the
system over time. It is sometimes called:

— Data assimilation (in the physical
sciences) |

— State estimation (in control theory)
— Inference (in machine learning)

For online systems implementation, it
requires:

— Streaming sensor data
— Real time computation
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distributed parameters
system abstraction

sensor data

Specific to cyberphysical systems: \
— Coupling between the physical

processes and the computational
processes

— Need to run faster than physics for
nowcast (and forecast)
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“Classical” source of traffic information

Dedicated traffic monitoring infrastructure:
— Self inductive loops
— Wireless pavement sensors
— FasTrak, EZ-pass transponders
— Cameras
— Radars
— License plate readers

Issues of today’s dedicated infrastructure
— Installation costs
— Maintenance costs
— Reliability
— Coverage
— Privacy intrusion




Web 2.0 on wheels

Emergence of the mobile internet

— Internet accesses from mobile
devices skyrocketing

— Mobile devices outnumber
PCs by 5:1
— 1. 5 million devices/day (Nokia)

— Redefining the mobile market:
Google, Apple, Nokia, Microsoft,
Intel, IBM, etc.

— Open source computing:
Symbian Foundation, Android,

Linux t 3.3 billion mobile
Sensing and communication suite 3 bition]" e S
— GSM, GPRS, WiFi, bluetooth, subscriptions
infrared .worldwide.in.2007..........B.K...

— GPS, accelerometer, light sensof, *!'*"
camera, microphone

Smartphones and Web 2.0 1 billion [l el e R
— Context awareness I I
— Sensin? based user generated e mmE I
conten 2% 92%%2%9%%22%3%%% %

[Courtesy J. Shen, Nokia Research Center Palo Alto]
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Mobile Millennium today

Current features of the system

— Initially, 5000 downloads of the FIRST Nokia traffic app worldwide

— Gathers about 60 million data points / day from dozen of sources
(smartphones, taxis, fleets, static sensors, public feeds, etc.)

— Provides real-time nowcast (soon forecast) of highway and
arterial traffic, provide routing and data fusion tools.

— Provides mtegratlon platform for any mobile data stream
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Example of 500 vehicles in SF (taxis)

]

One day of Yellow Cab data: 2010-03-29 04:00:02.0

Mobile Millennium

AR D ALl No1A
2 _C %
2 N 7.
Q (4
B A0 | )’\ | H
o y O1F
&7 |
o ;s
. N7
<. )

http:/itraffic.berkeley.edu




Mobile Millennium infrastructure

Sensing

— Millions of mobile
devices as new
sources for data

Communication

— Existing cell phone
infrastructure to
collect raw data
and receive traffic
information

Data assimilation

— Real-time, online
traffic estimation

Privacy Management

— Encrypted
transactions

— Client
authentication

— Data
anonymization

A cyberphysical system for participatory sensing
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Definition of the Moskowitz function

State of traffic can be described by the Moskowitz function M(t,x)

— Attribute consecutive labels n to the vehicles entering a
section of the highway.

— '(I;he) Moskowitz function is a continuous function satisfying M
,X)=n




Mathematical model;: Hamilton-Jacobi PDE

The Moskowitz satisfies the following Hamilton Jacobi PDE
— It can be derived from the Lighthill Whitham Richards PDE

— The Hamiltonian of the Hamilton Jacobi PDE is the usual
fundamental diagram known empirically, denoted 1

OM(t,x) 0 (_ ()M(l‘@))

ot ox

Flow y(p) (veh/h)
2000

1000

o

50 100

Density p (veh/mile)



Physical interpretation of the Moskowitz function

The Moskowitz function is the solution of the Hamilton Jacobi PDE

— Its value at location x and time t represents the label of the
vehicle at that location and at that time

— For example vehicle 17 is at postmile 2.5 at time 1 minute.

X = 2.5 miles




Physical interpretation of the level sets

The Moskowitz function is the solution of the Hamilton Jacobi PDE
— Its value at location x and time t represents the label of the vehicle

at that location and at that time
— The set of points such that M(t,x)=17 is the trajectory of vehicle 17

M(t, ) l
' I
“
""" J
............ _
S . e L T, - |
N et T, -
~ 7 N e, -~ I
R U e -
“““ ~ M(t,x)=17 - T, 't
. \ L
““ ~ ..'. I
aov ~ Yo,
(4 ~ Y
~ i
~
~
ZC X I
o™ e
. o,
“““ 1
+* .
I t=1 min
X = 2.5 miles I



Solution of the forward problem

The solution of the forward problem relies on the notion of viscosity
solution or its extensions (Frankowska solutions).

— Solution of the forward problem (in gray) requires:
— Initial condition (in red)

— Boundary condition 1, inflow (in blue)

— Boundary condition 2, outflow (in green)

OM (oM
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M(t.€) = ~(t,§)
M(t, x) = 5(t, x)




Solution of the forward problem

The solution of the forward problem relies on the notion of viscosity
solution or its extensions (Frankowska solutions).

— Solution of the forward problem (in gray) requires:
— Initial condition (in red)

— Boundary condition 1, inflow (in blue)

— Boundary condition 2, outflow (in green)
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Solution of the forward problem

The solution of the forward problem relies on the notion of viscosity
solution or its extensions (Frankowska solutions).

— Solution of the forward problem (in gray) requires:
— Initial condition (in red)

— Boundary condition 1, inflow (in blue)

— Boundary condition 2, outflow (in green)
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Solution of the forward problem

The solution of the forward problem relies on the notion of viscosity
solution or its extensions (Frankowska solutions).

— Solution of the forward problem (in gray) requires:
— Initial condition (in red)

— Boundary condition 1, inflow (in blue)

— Boundary condition 2, outflow (in green)
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M(t, x) = B(t, x)




Initial conditions: initial state of highway at
start of experiment
— Can be measured with UAVs (DARPA)

— Could be measured with satellite (DLR)
low orbit TerraSAR-X satellite

— 15 mins latency
— Orbits around California once a day

— Provides 70% of vehicles (and
speeds)
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1 out of 1items returned
| id .|k Start Date | End Date | start Orbit | Sensor Mc

—+)1 || |2010-04-18T02:00:11.7... |2010-04-19T02:00:23.7 .. |76 |stipmap




[Some erroneous] boundary conditions

Experimental boundary data:
— Cameras, loop detectors, radar, etc.
— Noisy
— Inconsistent (up to 40% mass loss)
— Missing data




Lagrangian [internal] data of various types

Variety of a available probe data:
— VTL data (Nokia)
— Full trajectory data
— Bread crumbs (trajectory subsets)
— Point-to-point
— Random samples
— Snail operations (police)

— Etc...
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Epigraphical characterization of the solution

Idea: characterize the Moskowitz surface as the lower envelope of a
capture basin

M(t, x)
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Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion ©(t) € F(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.

<

trajectory

<X
Initial position

constraint set

—’




Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion ©(t) € F(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.
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Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion ©(t) € F(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.
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Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion ©(t) € F(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.

<

trajectory

<\ ()
Initial position

This point is not

in the capture basin X, trajectory

This point is in
the capture basin

constraint set
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Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion ©(t) € F(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.

<

trajectory

<\ ()
Initial position

This point is not

in the capture basin X, trajectory

This point is in
the capture basin

constraint set
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Construction of the solution to the HJB PDE

Main concept used: the Capture Basin
— Consider a Differential inclusion =(t) € F'(x(t))
— Solutions of this differential inclusion are trajectories.

— The capture basin of a target within a constraint set is the set of
initial positions from which one can reach the target while
staying in the constraint set.

— ltis called (:fa,pt A ( A C )

Capture basin

constraint set

—’




Epigraphical characterization of the solution

L)

Let us consider the epigraphs
of the boundary of the domain
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characterization of the solution
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characterization of the solution

Epigraph
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characterization of the solution
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a— C Target
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Construct an auxiliary dynamics

Consider the following set valued dynamics

(1) = -1
Fi=q 2'(t) = u(t) where u(t) € Dom(¢*)
LY (t) = —¢"(ult))

Where the Fenchel transform of the Hamiltonian is given by:
sup [p : u-}-fg‘}(p)] if ue [_,_,?.‘,,ri]
e*(u) =< peDom(w)
+00 otherwise




In the capture basin?

M(t, x)

Is it possible to capture the

target from a given point? 0
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In the capture basin?

C Target

M(t, )

Is it possible to capture the
target from a given point?

0
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Capture In has a lower envelope

M(t, 1)
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Viability solution (definition using capture basin)

[l

|

1l AL
[N v g 2l

Capt (K, C)

inf
(t,a:,y) ECaptF (K,C)

Yy



The inf-morphism property

The union property for capture basins Capt,. (1@ Uc,.) — U Captp(K,C;)
el el

translates into an inf-morphism property

Vt>0, ze X, Mc(t,x) = inf M, (¢, x)
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Tangential property of the capture basin

This defines a new class of solutions to the HJ PDE:

M(t,x) = inf Y
(t,z,y)eCapt . (K,C)

The solution provided by this formula is a lower semicontinuous
function. It is the solution to the HJ PDE considered before, in a
weaker sense than the viscosity solution. This solution is called the
Barron/Jensen-Frankowska (B/J-F) solution.

B/J-F solutions require only the lower semicontinuity of the solution.

In particular: whenever M is differentiable the tangential properties of
the capture basin imply:

= 0

V(t,r) € Dom(M,)\Dom(c)

JOM(t, ) | OM(t. )
ot ‘ O.xr



Adding trajectories is equivalent to adding epigraph

Very often, drivers drive in violation of the LWR HJ PDE model
(because of external disturbances not included in the model:
accidents, distraction, excessive speed, etc.). This can be measured:




Adding trajectories is equivalent to adding epigraph

Now one can continue
adding targets in the
Form of epigraphs:

M(t, x)
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Adding trajectories is equivalent to adding epigraphs\&
Now one can continue

adding targets in the
orm of epigraphs:

M(t, x)
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Comparing information

fa(t,x) What is measured by the
outflow detector.
Influence of the reading of the

M t o inflow detector on what the
( /9 J/) outflow detector should say




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known Condition on the

Internal conditions known, but labels M. unknown outflow due to the
inflow measurement

( () inf (g (. x) — fa(t.x)) = A
ERy




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known Reading of our outflow
Internal conditions known, but labels M. unknown sensor




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known

Internal conditions known, but labels M. unknown Initial number of

vehicles (to be
estimated)




Comparing information

fa(t,x) What is measured by the
outflow detector.
Influence of the reading of the

M t o inflow detector on what the
( /9 J/) outflow detector should say




Comparing information

fa(t,x) Influence of the reading of the
‘ outflow detector on what the
inflow detector should say

What is measured by the inflow
detector.




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known Symmetric condition
Internal conditions known, but labels M, unknown

([ (4) inf (g,(t,x) — fa(t.x)) = A

‘.:'»;_+_

(1) A > sup (—gga(t, &)+ f+(t,§))
teR
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Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown

Influence of the inflow
measurement on the label of
the trajectory

[ (2) i_l},f (g+(t.x) — fa(t.x))/=z A

tE S
(1) A > sup (—gg(t.€) +/f+(t.£))
teR 4
(iis) inf (GETE) >M viel

tt t!lllll tlnnx,




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known Label of vehicle i
Internal conditions known, but labels M, unknown (to be estimated)

[ (i) “i:%i (g+(t,x) — fa(t,x)) = A
(1) A > sup (—gp(t,&) + f+(t.8))
teR
(i) inf (g~(t,T;(t))) > M, Viel

tt t!lllll tlll(-lxz'




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown

tt t!lllll tlll(-lxz'

(iv) M, >

teR
< — e L

[ (3) inf (g4(t,x) — fa(t.x)) = A

teRy
(17) A= sup (—gp(t,€) + £+ (¢,
teR
(1i1) _ inf (g+(t,T3(t))) = M

sup (f+(t,&) — gu,;(t.£))

Similar condition between
outflow and label
estimated by the
trajectory measurement

Viel

Viel



Data assimilation using linear programming

Initial condition unknown -A

Left and right boundary conditions known

Internal conditions known, but labels M, unknown

([ (3)
(1)
(iii)
(iv)

. ‘ . - ) — ,- - >
Jnf (9v(6:30) = f3(t:20) 2 A

A > sup (—gp(t,&) + f,(t,€))
teRy L

inf_ (g+(t,Ti(t))) = M;

E t nn t!n axjg

I

M; > sup (f,(t,&) —gu,;(t.€))
teER | 1
inf, (95(t.7i(t))) = —A + M,

N/

RI ;A > sup (fa(t,x) — gu; (t.x))
t*—_+_

maxg

Similar conditions

Viel
Viel
Viel

Viel
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Data assimilation using linear programming

Initial condition unknown -A

Left and right boundary conditions known Difference in possible
Internal conditions known, but labels M, unknown labels of vehicle i and |
(unknown)

(i) inf (g4(t,x) — fa(t,x)) = A

tEI;{+ |
(i1) A= sup (—gp(t,€) + f1(2,€))
fE.j-.'+
(1) _inf (g~(t,7.(t))) > M; Yiel
tE.tmini -.t‘ma_\',z-
(iv)  M; > sup (fy(#.€) — gu,(t.€)) viel
: teRy 7 _
(v) inf (95(t,Zi(t))) = —A + M; Viel

tE tmin, »t, ax;

(vi) M- A (£3(t:X) = Gps (£:3) Viel

t
('l.’i'i) I‘j —M,; > sup (._g[lj (twfi(t)))

— e =
te .tmini stmax.i ]

\ viel, Yje I\{i)
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Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known Constraint on the label of

Internal conditions known, but labels M, unknown vehicle i based on the fact
that vehicle j has a

measured trajectory

[ (1) inf (gy(t,x) — fa(t.x)) = A
t(:[‘i_*_ |
(1) A > sup (—gg(t.€&) + f+(t,£))
tE.j..'_+_
(1) _inf (g~(t,T:(t))) > M; Viel
te :tnlini et‘ma_\z]
(iv)  M; > sup (fy(t,€) — gy, (t.€)) Viel
< tE:JJ_{_
(v) _inf (93(t,Ti(t))) = —A + M, Yiel
te tnunt tlnl\z
(vi) M; —A > sup (fz(t,x) — gu,; (t.x)) Viel
t(—j-._+_
(vit) M; —M,; > sup (—gu. (t,Ti(t)))
iE tnllll tmaxi] |
\ viel, Yje I\{i}




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown

Grey: non linear analytical solution of the Hamilton Jacobi equation. Can be
computed explicitly for piecewise affine functions, and semi-explicitly for
general nonlinear functions

([ (7) Jnf (gy(t,x) = fa(t,x)) 2 A
=
(1) A= sup (—gp(t.§) + f+(t,§))
fE}i+
(1i1) _inf ] (g~(t,Z;(t))) > M; viel
tE.tmini tllllx‘;
(iv) M; > sup (f(t,€) — gy, (t.€)) viel
< fER_{_ | L
('U) B inf ] (lg;j(l-.;l_.‘l‘(t )) ) > —A + 1\12 Viel
tE tllllllz 'tlll\lx. |
(l'l) Hz_ 2> sup (f;} (L, \)_gu (t \)) Viel
tE?q_
(vii) M; —M; > sup (—gu, (t,Ti(t)))
tE:?minf -?lllz\xi] "
\ viel, ¥je I\{i)




Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown

Grey: non linear analytical solution of the Hamilton Jacobi equation. Can be
computed explicitly for piecewise affine functions, and semi-explicitly for
general nonlinear functions

(@) if (gy(tx) = fa(t.x)) 2/ A
s
(i) [A> sup (—ga(t,€) + f(t,6))
fE:E._{,_
(i) _inf ](qa(t z;(t))) > M; Viel
tE.tmini- max;
(iv)  M; > sup (fy(t,€) — gu,;(t.€)) Viel
< fE?‘.'+
(v) _inf ] (g5(t.T;i(t))) > —A + M; Viel
tE tIHIHL tlll'l){i |
(vi) M; =A > sup (fz(t,x) — gu; (t,x)) Viel
tEE.q_
(vii) M; —M; > sup (—gu,; (t,7;:(t)))
“E:?min ?m \.\,-] "
\ viel, Vje I\{i}



Data assimilation using linear programming

Initial condition unknown -A
Left and right boundary conditions known
Internal conditions known, but labels M, unknown

Grey: non linear analytical solution of the Hamilton Jacobi equation. Can be
computed explicitly for piecewise affine functions, and semi-explicitly for
general nonlinear functions

[ (4) inf (g,(t.x) — fa(t,x)) > A
t(:p.+
(1) A > sup (—gp(t.&) + f,(t,€))
teER
(211) _inf t,x;(t))) > M; Viel
tE:tnxini tlnl\,]
(iv) M; > sup (fy(t,€) — gu;(t.5)) Viel
< tE:J_+_
(v) _inf (93(t,Ti(t))) > =A + M, Yiel
te tnunztlnlﬁ,—
(vi) M; =A > sup (fz(t,x) — gu; (t.x)) viel
- - teRy |
(vii) M; —M; >  sup (—gu,; (6, F:(1)))
te :tmini ~tmax,-]
. Viel, Vj¢& I\{I}



Bounds on travel time (PeMS)
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Bounds on travel time (PeMS and phones)

Outflow loop

Inflow loop
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Validation of the data (video)

Travel time predictions

— Can be done in real time at a 2%
penetration rate of traffic

— Proved accurate against data from
www.511.0org, with higher degree of
granularity
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Mobile Millennium system architecture
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Outline

1. Traffic information systems at the age of web 2.0

2. Mobile Millennium

3. Inverse modeling and data assimiliation
1. A short introduction to traffic modeling
2. The Moskowitz Hamilton-Jacobi equation
3. Internal boundary conditions using the inf-morphism property
4. Data assimilation in a privacy aware environment

4. Beyond Mobile Millennium
1. Air
2. Earthquakes
3. Water




Mobile Millennium tomorrow: beyond traffic

“e-Wellness”

— Noise levels inferred from traffic: moving beyond the “average
number of vehicles / year” paradigm: hour by hour noise levels.

Today: noise map (static) Tomorrow: hourly noise map




Mobile Millennium tomorrow: beyond traffic

“e-Wellness”

— Noise levels inferred from traffic: moving beyond the “average
number of vehicles / year” paradigm: hour by hour noise levels.

— Emission levels inferred from traffic, using emission and
atmospheric dispersion models. Next gen: sensor based.

Today: pollution map Tomorrow: sensor
" » based data

aaaaa

<

Courtesy NASA/DHS



The emergence of the human as a sensor

Best known sensor for earthquakes: accelerometer
— USGS has dedicated array of embedded accelerometers
— Human is faster than USGS by posting on Twitter

— All smartphones have accelerometers, UCLA already
succeeded in capturing a P-wave from a smartphone (CENS)

— Information could be enhanced by having additional
accelerometer information available.
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Mobile Millennium tomorrow: beyond traffic

“e-Wellness”

— Noise levels inferred from traffic: moving beyond the “average
number of vehicles / year” paradigm: hour by hour noise levels.

— Emission levels inferred from traffic, using emission and
atmospheric dispersion models. Next gen: sensor based.

— iShake, measuring earthquakes using cellphones while they
charge or are at rest

Already tested on the 140 most famous earthquakes on the UC Berkeley, UCSD and UCD shaketables



Closing the loop on the phone

Floating sensor network

— Summer 2011: deployment of 100 floatin? | submersible units in
the San Francisco Bay / Sacramento Delta

— All units include GSM (soon: Android), GPS, linux gumstix,
Zigbee, water quality sensor platform

— Interfaced with static sensor infrastructure in the Delta




Closing the loop on the phone

Floating sensor network

— Summer 2011: deployment of 100 floatin? | submersible units in
the San Francisco Bay / Sacramento Delta

— All units include GSM (soon: Android), GPS, linux gumstix,
Zigbee, water quality sensor platform

— Interfaced with static sensor infrastructure in the Delta




Putting water online (Google maps of water)

Inverse modeling, data assimilation, inference, estimation
— Real-time, online (with streaming data)

Eulerian

Running two dimensional shallow water models (LBNL REALM)
Using Ensemble Kalman Filtering, statistical inference methods
Running on 500 nodes of the Magellan / NERSC cluster at LBNL
Will be live in a few months

Eulerian and Lagrangian

Flow and salinity Flow and salinity
measurements measurements
US Geological _> Base station _> Inverse modeling
Survey Server
TCPIP Deployment TCPAP (UC Berkeley)
.......... site -
measurements I Flow and
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Real-time estimation of distributed
parameters systems: application to large
scale mfrastructure systems

Alexandre Bayen
Electrical Engineering and Computer Science
Civil and Environmental Engineering
UC Berkeley

http://traffic.berkeley.edu http://float.berkeley.edu



Prototype experiment: Mobile Century

Experimental proof of concept: the Mobile Century field test

February 8t 2008

180, Union City, CA

Field test, 100 cars

165 Berkeley students driver,
10 hours deployment,

About 10 miles

2% - 5% penetration rate
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Mobile Century validation video data collection
Video data:
— Vehicles counts

— Travel time validation
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A glimpse of Mobile Century (February 8", 2008)




A glimpse of Mobile Century (February gth
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Data flow in the Mobile Millennium system

DOT
Caltrans
Nokia
Traffic
Controllers
Education
Public
Decision
Makers
Research
TMC
MTC
Muni
Other data
consumers
(future)




Google Maps vs. model driven estimation

Friday, March 20t, 2009

1:30pm (Friday afternoon congestion)

Acceleration: 1 frame = 30 seconds of physical time

Movies are synchronized

Google Maps

T\ Richmond N

A\ Y
™ Pullman
: El Cerrito
—_Belvedere Kenslng(nnv‘: Live traffic change S|°:-
L Tiiden
1y L) Tiouss Y Regional Pk 2 24)="==Creek
: T ardsor \Albany Lafayette \ Brookiree

®
e Tiburon \ Sinda >
1y\+ Ivedere \Berk9|ey - Rheem [ os Pallos {650
Fort 28 o L Hille Valley ~ \

‘g
E)
MeDowel &\ seneiey o0t Donald Alamo
A / . Bluffs N
Eastport
ate \ 2 Moraga Alamo Oaks C
e rj ) em~as: Canyon.  valle Vista Los Trampas \

| Traffic [ [ more. ][ map | satelie
Waldon "5 Nl

S

~ Treasur oy Bridae . Regional anville
(Siand| Pt esi)y s \ % \(Redwood Widermess
Oakiand L %), Regionsl Park
Pre oo N \=0ak o
San (-fancisco pnion e A
il Bl ! SESE Alameda et - ‘Y“"
e v t E
D nnar|) San ﬁ e e s San Ramon
— | & Francisco =y N
J. \ Alameda Sy Aoy vieo
Sunset © Castro M ” A Chabot Brookshire
District );i—-) - 2\ Regional Park
AZ80 [veywood Y& AR
(, Bayview '\ Y&\ Chabot Pa

District \ 1880}

0 San|Leandro
x k Oakland ~ S
International
Da'y City ... . ot \ D N —_—

(‘\ Mobile) illennium

Mobile Millennium




Colma

Oceanwview

\

shn 7

Millbrad

Alameda-LUS
NAS

Can
-3

Francisco Bay

Metropolts,
Oakland

IntY Arpon

2

Lorenzo

Castro
Valley aan

Vallejo@

pan Jo Q0:

1CISC

Haywar

Fran:'sco

Conce

land

“South §
“rancis

-
R

=en 8o

) " Millbri




Data assimilation / inverse modeling

How to incorporate Lagrangian (trajectory based) and Eulerian (control
volume based) measurements in a flow model.
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Flow reconstruction (inverse modeling)

Physical model and data assimilation enable state estimation
— Works even with low penetration rate
— Interpolation will just not do the job
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Flow reconstruction (inverse modeling)

Physical model and data assimilation enable state estimation
— Works even with low penetration rate

— Interpolation will just not do the job
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