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Consensus / Synchronization

Consensus / Synchronization

deals with agreement about some
common behavior in a group

is relevant for all types of multi-agent
systems
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Output consensus/synchronization:

lim
t→∞

‖yi (t)− yj(t)‖ = 0
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Consensus / Synchronization
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Typical problem setups:

Consensus:
simple systems,
complex topologies.

Synchronization:
complex systems,
simple topologies.

Extend to problems with
high topological and system

complexity!
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Problem Setup
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Individual agents are nonlinear dynamical
systems

ẋk(t) = fk(xk(t), uk(t))

yk(t) = hk(xk(t))

Directed, time-varying graph
G(t) = {V, E(t),W (t)},
uniformly connected topology

nonidentical dynamics of individual agents
⇒ heterogeneous MAS

Very General Problem Setup

Output synchronization of heterogeneous, nonlinear MAS

Goal of the talk

1 Present necessary conditions for asymptotic synchronization

2 Show a synchronization procedure for classes of problems
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Example: Diffusively coupled scalar systems

ẏ1(t) = −y1(t) + u1(t)

ẏ2(t) = y2(t) + u2(t)

1 2

w21

w12

Diffusive couplings:

u1(t) = k1w12(y1(t)− y2(t)),

u2(t) = k2w21(y2(t)− y1(t)).

Find k1, k2 such that (y1 − y2) → 0 as t → ∞.

Observation: Independently of w12, w21, encoding the
interconnection topology, (y1 − y2) → 0 as t → ∞ if and only if
y1 → 0 and y2 → 0 as t → ∞ (e.g., k1 = 0, k2 = −2/w21).

Only trivial synchronization is possible!

Example: Diffusively coupled linear systems

ẋ1(t) =





0 0 0
1 −2 1
0 −2 0



 x1(t) +





1
0
−1



 u1(t),

y1(t) =
(

2 −1 1
)

x1(t)

ẋ2(t) =

(

0 1
0 −1

)

x2(t) +

(

1
0

)

u2(t),

y2(t) =
(

1 −1
)

x2(t)

1 2

w21

w12

Diffusive couplings:

u1(t) = −w12(y1(t)− y2(t)),

u2(t) = −w21(y2(t)− y1(t))

Observation: Non-trivial
synchronization occurs if
w12 ≥ 0, w21 ≥ 0, and
max(w12,w21) > 0. t
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What are structural properties that allow synchronization?



Output Synchronization among Non-Identical Systems

Subsystems

ẋk(t) = fk(xk(t), uk(t)),

yk(t) = hk(xk(t)),

with state xk(t) ∈ R
nk , input

uk(t) ∈ R
pk , and output yk(t) ∈ R

q.

kth Local Closed Loop

Subsystem

δk

uk yk

ζk

· · ·
ζNζ1

Controller
kth Local

kth

Couplings
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Output Synchronization among Non-Identical Systems

Subsystems

Local Controllers for Subsystems

żk(t) = φk(zk(t), yk(t), δk(t)),

uk(t) = αk(zk(t), yk(t), δk(t)),

ζk(t) = βk(zk(t), yk(t)),

with state zk(t) ∈ R
mk , inputs

yk(t) ∈ R
q and δk(t) ∈ R

r , and outputs
ζk(t) ∈ R

r and uk(t) ∈ R
pk .

kth Local Closed Loop

kth

δk

uk yk

ζk

· · ·
ζNζ1

kth Local
Controller

Subsystem

Couplings
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Output Synchronization among Non-Identical Systems

Subsystems

Local Controllers for Subsystems

Couplings

Diffusive couplings (≃ exchange of
relative information)

δk(t) =

N
∑

j=1

wkj(t)
(

ζk(t)− ζj(t)
)

kth Local Closed Loop

kth

δk

uk yk

ζk

· · ·
ζNζ1

kth Local
Controller

Subsystem

Couplings
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Output Synchronization among Non-Identical Systems

Subsystems

Local Controllers for Subsystems

Couplings

Control Objective

lim
t→∞

‖yi (t)− yj(t)‖ = 0,

lim
t→∞

‖ζi (t)− ζj(t)‖ = 0

for all i , j .

kth Local Closed Loop

Subsystem

δk

uk yk

ζk

· · ·
ζNζ1

kth Local
Controller

kth

Couplings

1 When do local controllers exist?
2 What are structural properties of the local controllers?
3 What are the dynamics of the synchronous outputs?
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Assumptions for Global Coupled System

Global System

ẋ∗(t) = f ∗(x∗(t), δ(t))

y(t) = h∗(x∗(t))

ζ(t) = β∗(x∗(t))











stacked subsystems + local controllers

δ(t) = ∆(t, ζ(t)) } couplings (= feedback)

Assumptions

Solutions x∗(t) exist for all positive times in some closed set X ∗.

Solutions x∗(t) eventually enter and remain in a bounded set
B∗ ⊂ X ∗.

Steady State of Global Coupled System

The set Ω∗ , ω(R× B∗) uniquely defines the steady state locus of the
global coupled system.

How does the steady state locus relate to synchronization?
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Synchronous Steady State

Theorem (Wieland and Allgöwer, 2010b)

Synchronization occurs asymptotically if and only if

Ω∗ ⊂ {x∗ ∈ X ∗|y1 = y2 = · · · ∧ ζ1 = ζ2 = · · · }

Synchronization occurs asymptotically if and only if
synchronization occurs identically in steady state.

Couplings use relative information, thus

∆(t, β∗(x∗)) ≡ 0 in steady state

Synchronization occurs asymptotically if and only if
the subsystems are decoupled and

identically synchronous in steady state.

Results characterize steady state locus of synchronizing systems.

What can be deduced about steady state dynamics?
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Implicit Internal Model Principle

Theorem (Wieland and Allgöwer, 2010b)

If the global coupled system is detectable and synchronization occurs
asymptotically, then there exists a virtual exosystem

ξ̇(t) = s(ξ(t)), η(t) = ĥ(ξ(t)) (VEx)

with state ξ(t) ∈ X̂ and output η(t) ∈ R
q characterizing the steady state

dynamics, and there exist maps πk : X̂ → R
nk , σk : X̂ → R

mk such that

∂πk(ξ)

∂ξ
s(ξ) = fk

(

πk(ξ), αk

(

σk(ξ), hk(πk(ξ)), 0
)

)

, (Impl/a)

∂σk(ξ)

∂ξ
s(ξ) = φk

(

σk(ξ), hk(πk(ξ)), 0
)

, (Impl/b)

ĥ(ξ) = hk(πk(ξ)) (Impl/c)

If in addition Ω∗ has the asymptotic phase property, then

lim
t→∞

(yk(t)− η(t)) = 0

along some solution of (VEx).
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Implicit Internal Model Principle

PDEs (Impl/a), (Impl/b) are an infinitesimal characterization of the
statement

“The graph of the map (xk , zk) =
(

πk(ξ), σk(ξ)) is an
invariant set for the local closed loop + (VEx);
the dynamics restricted to this set is given by (VEx).”

Condition (Impl/c) states

“When restricted to this invariant set, yk(t) = η(t).”

Synchronization implies that all local closed loops contain an
internal model of a common virtual exosystem

Invariance conditions are implicit in the sense that they depend on the
local controllers, i.e., the solution to the problem.

Can we get rid of dependency on controllers?
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Explicit Internal Model Principle

Theorem (Wieland and Allgöwer, 2010b)

If the global coupled system is detectable and synchronization occurs
asymptotically, then there exists a virtual exosystem (VEx) as before, and
there exist maps πk : X̂ → R

nk , λk : X̂ → R
pk such that

∂πk(ξ)

∂ξ
s(ξ) = fk

(

πk(ξ), λk(ξ)
)

(Expl/a)

ĥ(ξ) = hk(πk(ξ)) (Expl/b)

PDE (Expl/a) ⇒ The graph of the map xk = πk(ξ) is a controlled
invariant set for the subsystem + (VEx),
rendered invariant with the feedforward control uk(t) = λk(ξ(t))

Condition (Expl/b) is identical to condition (Impl/c)).

Solvability of (Expl/a), (Expl/b) is equivalent to existence of a local
controller that admits a solution of (Impl/a)–(Impl/c).
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Implicit Internal Model Principle

Local Closed Loop Systems

ẋ∗k (t) = A∗x∗k (t) + B∗

k δk(t)

yk(t) = C∗

k x
∗

k (t)

ζk(t) = P∗

k x
∗

k (t)











subsystems + local controllers

Theorem
If synchronization occurs asymptotically, then there exists a virtual

exosystem
ξ̇(t) = Sξ(t), η(t) = Rξ(t) (VEx)

with state ξ(t) ∈ R
ν and output η(t) ∈ R

q, and there exist matrices
Ψk ∈ R

(nk+mk )×ν such that

ΨkS = A∗

kΨk , (Impl/a)

R = C∗

k Ψk . (Impl/b)

In addition
lim
t→∞

(yk(t)− η(t)) = 0

along some solution of (VEx).



Explicit Internal Model Principle

Theorem
If synchronization occurs asymptotically, then there exists a virtual
exosystem (VEx) as before, and there exist matrices Πk ∈ R

nk×ν ,
Λk ∈ R

pk×ν such that

ΠkS = AkΠk + BkΛk , (Expl/a)

R = CkΠk . (Expl/b)

Condition (Expl/a) ⇒ The subspace of Rν × R
nk spanned by the

columns of
(

Iν ,Π
T
k

)T
is a controlled invariant subspace for (VEx) +

subsystem,
rendered invariant with the feedforward control uk(t) = Λkξ(t)

Condition (Expl/b) is identical to condition (Impl/b)).

Solvability of (Expl/a), (Expl/b) is equivalent to existence of a local
controller that admits a solution of (Impl/a), (Impl/b).

Discussion of Internal Model Principle

Synchronization vs. Output Regulation

Conditions (Expl/a), (Expl/b) correspond to the F.B.I.-Equations,
that are solvability conditions for the output regulation problem.

Synchronization is not Output Regulation!

Output Regulation: the exosystem is an autonomous system external

to the system to be controlled;

Synchronization: no autonomous exosystem exists, the virtual

exosystem only exists internal to the network.

Synchronization of non-identical systems requires

Feedforward control that ensures existence of an invariant set on
which the network is identically synchronous

Feedback control that renders this set attractive

The internal model conditions are existence conditions for the
feedforward part of the control.
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Questions Answered

1 When do local controllers exist?

A necessary condition is solvability of the explicit internal model

equations for some virtual exosystem.

2 What are structural properties of the local controllers?

They solve the implicit internal model equations. Thus they
contain a feedforward part that renders appropriate sets invariant
with dynamics corresponding to the virtual exosystem dynamics.

3 What are the dynamics of the synchronous outputs?

All possible synchronous outputs are given by outputs generated by
the virtual exosystem

How can we use this for
synchronization of non-identical exponentially stable oscillators?
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Synchronization of Non-Identical Oscillators

ẋk(t) = fk(xk(t))

δk(t) ζk(t)ζk(t)

uk(t) εkβk(ζk(t))

żk(t) = Szk(t) + δk(t)

ζk(t) = zk(t)

+ bkuk(t)

Basic idea: synchronize copies of virtual exosystem (≃ coupling
dynamics) and use synchronized signals to entrain oscillators.

Coupling dynamics used to compensate for non-identical dynamics
and to compensate for high topological complexity

Generic method to synchronize non-identical oscillators with
weak assumptions on subsystems and couplings
(≃ high system and topological complexity).
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Exponentially Stable Oscillators

Oscillators

ẋk(t) = f (xk(t)) + bkuk(t)

with state xk(t) ∈ R
nk and input

uk(t) ∈ R.

Γk

xk(0)

γk(ϕk(0))

xk(t)≈γk(ϕk(t))

0

0Properties of unforced systems

Periodic solution xk(t) = γk(ωkt) with frequency ωk and periodic
orbit Γk , γk(R).

Solutions xk(t) starting close to Γk satisfy
∥

∥

∥
xk(t)− γk

(

ωkt + θk
(

xk(0)
)

)
∥

∥

∥
≤ Me−µt

ϕk(t) = θk(xk(t)) ∈ S
1 is the asymptotic phase of xk(t) with

ϕ̇k(t) = ωk

(= phase of limiting solution γk
(

ωkt + ϕk(0)
)

= γk
(

ϕk(t)
)

)

What is phase synchronization?
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Phase Synchronization of Non-Identical Oscillators

Phase Synchronization

Synchronization of zero phase times:

lim
l→∞

‖ϕk(tl)‖ = 0

for all k , with time instants tl such
that ∃j : ϕj(tl) = 0.

Coupled oscillators admit perturbed
periodic solutions γ̂k(ω̂t) with some
common frequency ω̂.

Asymptotic phase relative to γ̂k(ω̂t):
ϕ̂k(t) = θ̂k(xk(t)) with

˙̂ϕk(t) = ω̂. 0 T̂
0

2π

ϕ1(t)

ϕ2(t)

Find solution to F.B.I. equations with
virtual exosystem ξ̇(t) = ω̂, ξ(t) ∈ S

1 and
unknown system output ϕ̂k(t) = θ̂k(xk(t))!
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Solution to the F.B.I. Equations

Entrainment by Small Harmonic Forcing

For ω̂ − ωk small enough, there exist εk (small enough) and ξ̂k ∈ S
1 such

that the control
uk(t) = εk cos(ω̂t + ξ̂k)

ensures convergence of xk(t) to a unique periodic solution γ̂k(ω̂t) with
frequency ω̂ for almost all xk(0) ∈ R

nk close enough to Γk .

F.B.I. equations are satisfied with virtual exosystem ξ̇(t) = ω̂, ξ(t) ∈ S
1,

and maps
πk(ξ) , γ̂k(ξ),

λk(ξ) , εk cos(ξ + ξ̂k).

Find local controllers that asymptotically synchronize and
generate the appropriate feedforward controls!
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Phase Synchronization by Entrainment and Consensus

Theorem (Wieland, 2010)

If ω̂ − ωk small enough, there exist εk (small enough) and ξ̂k ∈ S
1 such

that the local controllers

żk(t) =

(

0 −ω̂

ω̂ 0

)

zk(t) + δk(t)

uk(t) =
εk

‖zk(t)‖

(

cos(ξ̂k)zk,1(t) + sin(ξ̂k)zk,2(t)
)

ζk(t) = zk(t)

with zk(t), ζk(t) ∈ R
2 yield asymptotic synchronization over uniformly

connected topologies (≃ high topological complexity) for almost all initial
conditions xk(0) ∈ R

nk , zk(0) ∈ R
2.

Consensus type results can be used to show synchronization of
harmonic oscillators, i.e., (zi (t)− zj(t)) → 0.

Feedforward controls uk(t) ⇒ existence of invariant synchronous set.

Robustness of exp. stable limit cycles ⇒ attractivity of this set.
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Example

Subsystems

Different Van der Pol oscillators (varying in parameter µk):

ẋk(t) =

(

xk,2(t) + µk

(

xk,1(t)−
1
3x

3
k,1(t)

)

−xk,1(t)

)

+

(

0
1

)

uk(t)

k 1 2 3 4 5

µk 3.0 3.5 4.0 4.5 5.0
ωk 0.7092 6.599 0.6158 0.5764 0.5411
Tk 8.859 9.521 10.20 10.90 11.61
εk 0.5 0.5 0.5 0.5 0.5

ξ̂k 4.065 4.578 4.960 5.310 5.704

Parameter values for simulation.

Couplings

Graph contains exactly one link at each time instant and switches every
T = 2.5 units of time (seconds).

Dipl.-Ing. P. Wieland, 06/09/2010 21
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figs/vdposcsync.avi

19



t

z 1
(
t)

t0 t0+3T t0+6T t0+9T

0

t

z 2
(
t)

t0 t0+3T t0+6T t0+9T

0

t

x
1
(
t)

t0 t0+3T t0+6T t0+9T

0

t

x
2
(
t)

t0 t0+3T t0+6T t0+9T

0

Dipl.-Ing. P. Wieland, 06/09/2010 22

Summary

! !

" !

! #

"#

! $

" $

!%

"%

"!$ #& $

"#! #& $

"%! #& $
"%$ #& $

"#% #& $

"!% #& $

Key result: Internal Model Principle for

Synchronization

Presents a necessary condition for
output synchronization.

Links synchronization problems to
output regulation problems.

Suggests a control paradigm for output
synchronization of heterogenous MAS
using dynamic couplings.

Presented a new result for
synchronization of nonlinear oscillators
over uniformly connected
communication graphs.
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