Lectures on
Dynamical Systems

Francesco Bullo

UC Santa Barbara, Department of Mechanical Engineering
ME103 Dynamical Systems. Chapter Slides.

Francesco Bullo
http://motion.me.ucsb.edu/ME103-Fall2025/syllabus.html

Contents

5 The Transfer Function and Time Responses of Dynamical Systems
5.1 The transfer function and the impulse response . . . . . ... ... ... ... ......
5.2  First-order systems and theirresponses . . . . . . ... ... Lo oL
5.3 Second-order systems and theirresponses . . . . ... ... Lo oL
5.4 Higher-order systems and their step response . . . . . ... ... L L.
5.5 Appendix: Free and step response for second order systems via Laplace calculations . . .
5.6 Appendix: Underdamped systems with zeros in the left and right half plane . . . .. ..
5.7 Appendix: Routh-Hurwitz stability tests for low-order transfer functions . . . . ... ..

5.8 Exercises

Bibliography

12
16
32

39
40
42

65


http://motion.me.ucsb.edu/ME103-Fall2025/syllabus.html

Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 4, slide 2




Chapter 5

The Transfer Function and Time Responses of Dynamical Systems

In this chapter, we introduce the fundamental concepts and analytical tools used to study dynamical systems, focusing on the role
of the transfer function in relating inputs to outputs. We begin by showing how systems described by differential equations can
be analyzed with the Laplace transform, which expresses dynamics in the frequency domain. System behavior and stability are
determined by the poles of the transfer function in the complex plane, while the impulse response provides both the transfer function
and insight into responses to different inputs.

The chapter progresses to specific system orders, starting with first-order systems, which are defined by a single state variable and
characterized by their time constant 7. These systems exhibit stability with a real pole in the left half-plane, and their response to
impulses, steps, and ramps is derived using inverse Laplace transforms. We then consider second-order systems, which involve two
state variables and are exemplified by mass-spring-damper systems. These systems are described by parameters such as the natural
frequency w, and damping ratio ¢, which dictate their response types. The step response of underdamped systems is particularly
important for control system design, providing metrics like rise time and overshoot.

Higher-order systems are also discussed, with a focus on their step response and the influence of dominant poles on transient
behavior. The steady-state gain, determined by the transfer function at zero frequency, is a crucial aspect of these systems.

The chapter concludes with appendices on specific topics such as the behavior of underdamped systems with zeros in different
half-planes and the application of the Routh-Hurwitz stability criterion for assessing stability. This criterion provides a systematic
approach to ensure that all roots of a characteristic polynomial are in the left half-plane, confirming system stability.

3
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5.1 The transfer function and the impulse response

We consider a dynamical system with state y(¢) and input u(t) in the form:

dy Ay, du d"u
aoy(t) + al%(t) J= oo o= Q”W(t) = bou(t) + bl%(?ﬁ) +.- 4 bmdt—m(t) (5.1)

where
« y(t) is the output, or response,

« u(t) isthe input applied to the system,
e qap,...,ayand by, ..., b, are constant coefficients.

In this chapter we are mostly interested in the forced response where all initial conditions are zero. In this case, the response
depends only upon the input:

dy
dt
di

#j(()):o forj=0,1,....m—1.

(0)=0 fori =0,1,...,n—1,

d d
Since the initial conditions are zero, the derivative property (P2) states £ [%y(t)] = sY(s) and L [%u(t)} = sU(s). Taking the
Laplace transform of left and right hand side of (5.1), we obtain:

(ao +ais+---+ ans”>Y(s) = (bo +bis+---+ bmsm)U(s). (5.2)
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The transfer function of the control system is

Y bo +0b oo 4 by s™ L|output
G(s) = (s) _ bt bis+ -+ b _ [o.u put| 53)
U(S) ap +ais+---+a,s" E[mput] zero initial conditions
In other words, we have the multiplication formula
Y(s) = G(s)U(s) (5.4)
Note:
« This result is simple to remember: in the Laplace domain,
output = transfer function X input (5.5)

« If G(s) and U(s) are rational functions, then also Y (s) is a rational function.

« If u(t) is an exponential signal (as in the Laplace transform Tables 4.2 and 4.3) and the ODE is linear, then also y(t) is an
exponential signal.

« Here are some simple examples (where k is a constant):
(i) y(t) = ku(t) implies G(s) = k,

(ii) y(t) = ku(t) implies G(s) = ks, and
t
(iii) y(t) = k | wu(o)do implies G(s) = %
0
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Remarks 5.1. Here are some comments and extensions.

(i) Systems of the form (5.1) are said to be linear, because the input and state appear linearly, and time-invariant, because the coefficients
are assumed constant, that is, time invariant.

(ii) The transfer function G(s) is equivalent to the ODE model (5.1), in the sense that G(s) contains the same information as the ODE
model, i.e., the coefficients ay, ... ,a, and by, . .., by,.

(iii) Many different physical systems may have the same transfer function. Therefore, it makes sense to define and study canonical
systems, e.g., first-order, second-order, etc.



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 5, slide 7

Stable and marginally stable dynamical systems

A linear time-invariant system with a transfer function G(s) is

« stable when all poles of G(s) are in the strict left half plane,

« unstable when at least one pole of G(s) lies in the strict right half plane,

« marginally stable when

— all poles of G(s) are in the strict half plane or on the imaginary axis,

— the poles of G(s) on the imaginary axis (if any) are not repeated.

(a) Stable system: All poles lie in the left
half of the complex plane. This ensures
each system mode decays exponentially
over time, resulting in bounded output for
any bounded input.

X
K
\Y

X

(b) Marginally stable system: Each pole lies
in the left half plane or on the imaginary
axis. No poles on the imaginary axis are
repeated. As illustrated in Exercise E5.2,
there exist marginally stable systems and
bounded inputs such that the output re-
sponse is unbounded.

X
\Y

X

(c) Marginally unstable system: A repeated
pole exists on the imaginary axis and ev-
ery other pole lies in the left half plane.
Although all poles are in the left half plane
or on the axis, the repeated pole causes
unbounded responses.

X
Vv

X

(d) Unstable system: At least one pole lies
in the right half plane. This leads to expo-
nentially growing system modes, making
the output unbounded even for bounded
inputs.
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Canonical transfer functions and canonical inputs

In this and the next chapter we study the responses of canonical systems (i.e., canonical transfer functions) to canonical inputs.

transfer function: canonical form impulse response, step response, |frequency response
and ramp response (i.e., response to a sinusoidal input)
1

first order: Section 5.2 Chapter 6

Ts+1

w2

second order: : Section 5.3 Chapter 6

52 + 2Cwns + w?
higher order: no typical form Section 5.4 Chapter 6

Table 5.1: Transfer functions for canonical systems. Their responses to canonical inputs are discussed in this chapter and the next.



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 5, slide 9

Responses to canonical inputs: impulse, step, and ramp

Given a transfer function G(s), we wish to compute how the system responds to canonical inputs. Specifically, we consider:
impulse response: the response Yimpuise(t) from zero initial condition when the input u(t) = 6(¢) is a unit impulse,

step response: the response ys.p(t) from zero initial condition when the input u(t) = 1(t) is a unit step, and

ramp response: the response yramp(t) from zero initial condition when the input u(t) =t - 1(t) is a unit ramp.

These canonical input have a very simple physical intuition: in a mechanical example, the impulse corresponds to a hammer hitting
a nail, the step corresponds to a constant force applied to a vehicle (like in the car velocity system), and the ramp corresponds to a
growing signal with constant (like a thermometer in a tank that is warming up).

From the Laplace transform Table 4.2 recall that £[§(¢)] = 1, L[1(¢)] = 1, and L[t] = & so that, from Y (s) = G(s)U(s),

}/impulse<5> - E[yimpulse(t)] — G(S) (56)
1
Ystep<$) = 'C[ystEP(t)] - EG(S) (57)
1
Yramp(s) = C[yramp(t)] = ?G(S) (5.8)
o(t) / ta(T)dT = 1(t) 1(t) / t1(7)d7 = t1(t) t1(t)
f 'zf '
unit irlnpulse unit step unit ramp

Figure 5.1: Unit impulse, unit step, and unit ramp functions
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The impulse response

Therefore, the impulse response is

1/impulse(s) — E[yimpulse(t)] — G(S) (5°9)

This simple equation has a surprising implication. Taking the inverse Laplace transform of both left and right hand side we obtain:
yimpulse<t) = E_l[G(S)] = g(t) (5.10)

where, following our convention, we use g(t) denote the function of time whose Laplace transform is G(s).

We have learned:
(i) the Laplace transform of the impulse response is the transfer function,

(ii) to learn the transfer function of an unknown system, (1) apply an impulse and (2) take the Laplace transform of the response

(iii) the impulse response contains all information about the input/output control system

Note: the following representations are all equivalent:
(i) two vectors of coefficients ay, ..., a, and by, ..., by,

(ii) the differential equation (5.1),

b+ bis+ o+ bys™

(iii) the transfer function G(s) = , and
ag+ais+ -+ aps”

(iv) the impulse response Yimpuise(t) = LG (5)]
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5.1.1 Detour: The impulse response in vehicle dynamics and audio system analysis

Remark 5.2 (The impulse response in acoustics). In the field of acoustics and audio engineering, measuring the impulse response
of a room (like a concert hall or a living room) or an audio system (like a speaker or a microphone) is very useful. Measuring impulse
response is the first step towards optimizing them for audio quality and thereby designing audio-related products and technologies.

In the context of acoustics, the impulse response is the sound received at a specific location B in response to a brief large-magnitude
input signal at location A.

Sound Quality Assessment: By analyzing the impulse response, engineers can determine the reverberation characteristics of a room.
This helps in assessing how sound is reflected and absorbed, affecting the quality of audio heard in the space.

Speaker and Microphone Design: Understanding the impulse response of speakers and microphones allows designers to optimize their
products for clarity, frequency response, and distortion characteristics.

Audio Mixing and Mastering: In music production, the impulse response of different spaces (like concert halls, studios, etc.) can be
used to digitally simulate how music would sound in those environments.

Noise Reduction and Echo Cancellation: In telecommunications, the impulse response of devices and environments helps in developing
algorithms for noise reduction and echo cancellation.
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5.2 First-order systems and their responses

In this and the next section we study examples of canonical transfer functions and their responses. We start with the canonical form
of the transfer function of first order systems.

We recall from Section 2.1.1 that a first-order system is a dynamical system in which one variable is required and sufficient to
describe the storage of position (linear or angular), velocity (or momentum), energy, mass, etc. As illustrated in Figure 5.2, examples
of first order systems include:

(i) the linear growth/decay model (1.1),
(ii) the car velocity system (2.4),
(iii) the RC circuit (2.43) (and any electric circuit where energy storage is one capacitor or one inductor),
(iv) the thermal dynamics (3.4) of a thermometer (or of any single body with uniform temperature), and
(v) the height dynamics (3.15) of a water tank.

Figure 5.2: lllustrations of first order systems from earlier and later chapters.
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We revisit and slightly expand the discussion on unforced first-order systems in Section 2.1.1. Given a time constant 7 > 0, the
canonical form of a first order system is

Ty(t) +y(t) = u(t) (5.11)

where, as usual, u(t) and y(t) are the input and output of the system. The transfer function is

Y (s) 1
Gfirst-order(s) — U(S) — 5l (5°12)
A Figure 5.3: The transfer function (5.12) of a first order system has a single real pole at s = —1/7.
Since 7 > 0 is always positive, the pole is always on the strict left half plane.
When the time constant 7 increases, the pole s = —1/7 moves towards the imaginary axis and the system
% > response (both free and forced) becomes slower.

Via the inverse Laplace transform methods, we compute the impulse, step, and ramp response of a first-order system to be:

! 1
) — r—1 _ a7
ylmpulse(t) L ST+ 1] Te (5.13)
1
—_— _]' JE— — . —t/T
Ystep(t) = L Sor T 1)] l—e (5.14)
1
—_pr-1y_ - 4 o —t/T
) — L E (37+1)] t—7(l—e¥) (5.15)

These calculations are left to Exercise E4.4.
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Impulse, step and ramp responses of first-order systems

1 import numpy as np; import matplotlib.pyplot as plt; import control as ctrl

2 plt.rcParams.update ({"text.usetex”: True, "font.family”: "serif”, "font.serif”: ... Impulse, Step7 and ramp response Of 1st Order System

["Computer Modern Roman"], "font.size": 16 })

3 2.0 T
4 # Define a range of time constants and time range for the simulation - T 10

5 time_constants = [10, 8, 5, 3, 2, 1, 0.5] —_ =

6 t = np.linspace(@, 25, 1000)

’ 1.5 — 7=5 H
8 # Define your preferred color vector ©

9 colors = ['#752de0"', '#a43e00', '#d35000', '#ff6100', '#ff8800', '#ffafee’', '#ffcceo'] 12} — 7=3

10 % _

1 # Initialize the figure for impulse, step, and ramp responses o ].O T= |
12 fig, axs = plt.subplots(3, 1, figsize=(10, 10)) % < —_— T =

13 o~ 5

14 # Loop through each time constant and plot the impulse, step, and ramp responses v T 0.5
15 for idx, tau in enumerate(time_constants): 05' ’
16 # Define the transfer function of the first-order system

17 num = [1]

18 den = [tau, 1]

19 system = ctrl.TransferFunction(num, den) 00

20

21 # Compute and plot the impulse response

22 t_impulse, y_impulse = ctrl.impulse_response(system, T=t) 10- ________

23 axs[0].plot(t_impulse, y_impulse, label=f'$\\tau = {tau}$', color=colors[idx]) . -
2 |
25 # Compute and plot the step response 08_7

26 t_step, y_step = ctrl.step_response(system, T=t) N

27 axs[1].plot(t_step, y_step, label=f'$\\tau = {tau}$', color=colors[idx1]) / —_— 10

2 @ A

29 # Compute and plot the ramp response j=| 0.6 2 = 7
30 ramp_input = t 8 —_— =5

31 t_ramp, y_ramp = ctrl.forced_response(system, T=t, U=ramp_input) %

32 axs[2].plot(t_ramp, y_ramp, label=f'$\\tau = {tau}$', color=colors[idx]) m 04 *

# Add labels, legends, grid, and set xlim for all subplots
33 for ax in axs:

w g
=]
o
:
S T T TR T R
[l
w
I

36 ax.legend(fontsize=14); ax.grid(True); ax.set_x1im(@, 25); ax.set_ylabel('Response’)

37 axs[0].set_x1im(@, 5); axs[0@].set_xticklabels([]); axs[1].set_xticklabels([]); 0.5

38 00‘[ |

39 # Add arrow with text ¥

40 arrow_color = '#0055A4"

41 text_color = arrow_color 1

. st __ ), -

43 axs[@].text(@.5, ©0.5, "increasing $\\tau$"”, ha="center”, va="center”, rotation=45, - =
size=15, color=text_color, bbox=dict(boxstyle="larrow,pad=0.3", fc="none", ... —— = ,—“‘
ec=arrow_color, lw=2, alpha=0.5)) 20-7 _ ==

44 axs[1].text(2.5, 0.75, "increasing $\\tau$”, ha="center”, va="center”, rotation=-45, 5 ,——”

size=15, color=text_color, bbox=dict(boxstyle="rarrow,pad=0.3", fc="none",
ec=arrow_color, lw=2, alpha=0.5))

45 axs[2].text(15, 12, "increasing $\\tau$”, ha="center”, va="center"”, rotation=-45,
size=15, color=text_color, bbox=dict(boxstyle="rarrow,pad=0.3", fc="none",
ec=arrow_color, 1lw=2, alpha=0.5))

Response
—_
o
|

_.
=8
t
S T T B T R
I
W\
\
\
\
\
\

47 # Plot unit step and unit ramp in gray
48 axs[1].plot(t, np.ones_like(t), label='Unit Step', color='gray', linestyle='--")

49 axs[2].plot(t, t, label='Unit Ramp', color='gray', linestyle='--"') /
50

51 axs[0].set_title(r'Impulse, step, and ramp response of 1st order system');

52 # axs[1].set_title(r'Step response of 1st order system, for varying time constant $\tau$');

53 # axs[2].set_title(r'Ramp response of 1st order system, for varying time constant ... 0 5 10 15 20 25
$\taus$'); axs[2].set_xlabel('time $t$')

55 # Adjust layout and save the plot to a PDF file

o Plt.tight-layout(; plt.savefig(lstorder ~responses pdf’, bboxinches='tight') Figure 5.4: Canonical responses of the first order dynamics (5.11), when the input is a
Listing 5.1: Python script generating Figure 5.4. This script relies upon the Python Control unit impulse, a unit step, and a unit ramp.
Systems Library (Fuller et al., 2021). Available at X i i .
Istorder-responses.py @ For increasing time constant 7, the system response become slower for all three inputs

and, for the ramp response, the difference between input and output (tracking error)
becomes larger.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2025/handouts/1storder-responses.py
http://motion.me.ucsb.edu/ME103-Fall2025/handouts/1storder-responses.py

Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 5, slide 16

5.3 Second-order systems and their responses

We recall from Section 2.1.2 that a second-order system is a dynamical system in which two variables are required and sufficient to
describe the storage of position (linear or angular), velocity (or momentum), energy, mass, etc. As illustrated in Figure 5.5, example
of second order systems include:

(i) the position of car on a road and the forced mass-spring-damper system (2.12),

(ii) the angular position of a rotating system (2.23),

(iii) the RLC circuit (2.44) (and any electric circuit where energy is stored in two elements, capacitors or inductors as they might be),
(iv) the linearized pendulum about either the down or up position (3.25) and (3.26), and

(v) the water height dynamics for two connected tanks.

Figure 5.5: lllustrations of second order systems from earlier chapters and from the later chapters on control systems.
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5.3.1 Transfer function of a mass-spring-damper systems

b |—> T Figure 5.6: Generalizing equation (2.12), a mass-spring-damper system with parameters

7
/ 1 m > 0,b> 0, and k > 0, subject to a force f(¢).
/ k

m —f

%—\m— In our discussion, the mass and the spring coefficient are always positive, but we

g do allow the damper to be present (b > 0) or not (b = 0).

Consider a forced mass spring damper system:
mi(t) + bi(t) + kx(t) = f(t). (5.16)
Taking the Laplace transform (at zero initial conditions) we obtain
(ms* +bs + k)X (s) = F(s) (5.17)

and therefore the transfer function is
X(s) 1
F(s) ms2+bs+k

(5.18)

Recall the definition of natural frequency w, = \/k/m.



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025).

Chapter 5, slide 18

e

~
In class assignment
Recall m > 0 and k£ > 0, whereas b > 0.
Where may the two poles be in the complex plane?
How many qualitatively different cases do there exist?
When is a system fast or slow?
\_ _J
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5.3.2 Canonical form of second-order systems with canonical parameters (wy, ()

Before computing the poles of a generic second order system it is convenient to define a canonical form with canonical parameters

(like the time constant 7 > 0 for first order systems).

The canonical form of a second order system is

§i() + 2Cwng(t) + wpy(t) = wyu(t) (5.19)
with corresponding transfer function
Y(s) w?
G'secon -order = = - 5.20
drorder(5) U(s) 82 + 2Cwns + w? (5.20)

where, as usual, u(t) and y(t) are the input and output of the system, and where the canonical parameters are:
e wy > 0 is the natural frequency of the system, indicating how fast the system oscillates in the absence of damping; and

« ( >0 isthe damping ratio, a dimensionless measure of damping in the system.

Remark 5.3 (The canonical form and the mass-spring-damper system). We compare the canonical form of a second order
system with the mass-spring-damper system. The natural frequency w, and damping ratio ( can be computed as functions of mass m,
spring stiffness k and damping coefficient b by matching the denominators of (5.20) and (5.18) (divided by m), that is,

1
—(ms*+bs+ k) = s+ 2(wns + w? (5.21)
m

k (5.22)

and

e
Y
I
[\
5@

— G =
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5.3.3 Classification of second-order systems, as a function of the pole placement

We are now ready to compute the two poles of the second-order system in canonical form (5.20), which we report for convenience:

2
L 5.23
$2 + 2Cwns + w? (5.23)

G1second—order (3) -

The poles are

_ 2 2 4.2
poles of Gsecond-order(S) = 2Qun £ \/24C wn — A = —Wh (C ++/(% — 1)

Depending upon the damping ratio (, the poles are purely imaginary, complex conjugate, real equal, or real distinct, see Figure 5.7.
When 0 < ¢ < 1, we write

complex conjugate poles of Gsecond-order(S) = —Cwn + iwy ,

where the damped natural frequency is  wq = wny/1 — (2
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A A A A A
1 i > > % %% % 2]
........ =1
(@) ¢ =0.0 = two poles = Fiw, (b)¢(=0.2 (©¢=05 d) (=08 ()¢ =1.0 = twopoles=—w, (f)¢{=11 (g ¢=15
Case I: undamped system Case II: underdamped system Case II: underdamped system Case II: underdamped system Case llI: critically-damped system Case IV: overdamped system Case IV: overdamped system

Figure 5.7: Poles of a second order system as a function of the damping ratio (, at fixed natural frequency w,. The dashed semicircle has radius w;,.
At ¢ = 0, the two poles are purely imaginary and equal to fiw,,.

As ( increases from 0 to 1, the two complex conjugate poles move strictly inside the left half plane, sliding along the semicircle.

When 0 < ¢ < 1, the two complex conjugate poles have real part —Cw, and imaginary part £iwy.

At ¢ = 1, the two poles are coincident at the real value —w,,.

For ¢ > 1, the two poles split: one moves left towards —oo (the fast pole) and one moves right towards the imaginary axis (the slow dominant pole).
Image generated by 2ndorder-poles.py @



http://motion.me.ucsb.edu/ME103-Fall2025/handouts/2ndorder-poles.py
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poles location

free response of & + 2(w,t + w2z = 0

n

damping poles of transfer function (5.23) and (dashed line = with initial conditions z(0) = 1 and
ratio corresponding functions of time circle of radius wy) £(0) =0
two poles = +iw, 1
Case I: .
undamped sin(wnt) , cos(wnt)
system (=0 sinusoidal waves
two poles = —w,(Fiw,+/1 — (2 1
e "¢t sin(wqt) ,
e "¢ cos(wqt) 1
Case ll: >
underdamped where wg = way/1—¢
system 0 < (<1 |damped sinusoidal waves
Case llI: two poles = —w, * 1
critically- ot ot ~05
damped ¢ » IS 1o
system (=1 exponential decay (with transient) '
1 1.0
two poles = —w,((£+/(? — 1) 05 -
slow pole: e~@n(C=V & -1t x—x— s | 0.0
Case IV: ]
. awn(CH/¢2-1)t -0
overdamped fast pole: ‘e o
system ¢(>1 exponential decay '

Table 5.2: Classification of a second order system into 4 classes: undamped, underdamped, critically-damped, and overdamped.

For 0 < ¢ < 1 (Case Il), the damped frequency is wq = w,+/1 — (2. Note wy < wy, so the presence of damping diminishes the frequency of oscillations.

In the overdamped case (Case V), the pole close to the imaginary axis is the slow pole, whereas the pole moving towards —oc is the fast pole.
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Poles of an underdamped system in the complex plane

A

— +iwn

-
-

X—: """"""""""" - +iwg = +iwny/1 — C2

.

— __iU)n

Figure 5.8: Poles of an underdamped second-order system, defined by a natural frequency w, and a damping ratio 0 < ¢ < 1.

Note the damped natural frequency wy and the damping angle 5(().
To verify that the complex conjugate poles of Gecond-order(S) move on the circle of radius wy, it suffices to show that |—(w, & iwy| = wh.

Image generated by 2ndorder-pole-beta.py @ .


http://motion.me.ucsb.edu/ME103-Fall2025/handouts/2ndorder-pole-beta.py
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Case I: Undamped systems. When ¢ = 0, the system is undamped and exhibits persistent oscillatory behavior.
Case I: Underdamped systems. When 0 < ( < 1, the system is underdamped and exhibits damped oscillatory behavior.

Case lll: Critically-damped systems. When ( = 1, the system is critically damped and returns to equilibrium as quickly as
possible without oscillating.

Case IV: Overdamped systems. When ( > 1, the system is overdamped and returns to equilibrium without oscillating, but
more slowly than in the critically damped case.

Regarding the natural frequency: this parameter determines the speed of the response in each of the four cases.
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Remark 5.4 (The canonical form and the mass-spring-damper system: continued). For a mass-spring-damper system, the
characteristic equation is ms> 4+ bs + k = 0 and its solutions are =L —4mk W

. Therefore, the two roots are equal and real when b*> = 4mpk.
We define the critical damping parameter as bitical = 2V mk. Then

« the system is underdamped forb < beitical = 2v/mk,

o the system is critically damped for b = bejitical = 2v/mk, and

« the system is overdamped forb > beitical = 2v/mk.

« It is now clear why ( is called the damping ratio: for mass-spring-dampers systems, C is indeed a ratio:
b b

‘= beritical B 2/mk’
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5.3.4 Step response of an underdamped system

For an underdamped second-order system with damping ratio 0 < { < 1, and arbitrary natural frequency w,, the step response is

y(t) = 1 — e Swnt <cos(wdt) + L sin(wdt)) (5.24)

V-G

where wqy = wy/1 — (? is the damped natural frequency. (We refer to Appendix 5.5 for inverse Laplace transform calculations.)

1.40 1.40
Tpeak
1.25 f=--------mmmmm : 1.25
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Figure 5.9: Step response of an underdamped second order system from zero initial position and zero initial velocity, for unit natural frequency and varying

damping ratios (. Image generated by @
The step response shows how different values of ( affect key characteristics such as rise time, peak time, percent overshoot, and settling time. (i) A low damping
ratio ¢ = .4 leads to fast response times, but also high overshoot and prolonged oscillations before settling. (ii) A high damping ratio ( = .8 provides a smooth

slower response with minimal overshoot, but also slow reaction times.


http://motion.me.ucsb.edu/ME103-Fall2025/handouts/2ndorder-underdamped-stepresponse.py
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Time domain specifications as functions of natural frequency and damping ratio

o The rise time Tyise 0%-100% (respectively, Tiise 10%-00%) is the time required for the response to rise from 0% to 100% (respectively,
from 10% to 90%) of the final value. Some calculations and approximation show:

7 — arccos(() 1.8
Trise 0%-100% = and Trise 10%-90% ~ —.
rise,0%-100% wn\/l—ic’? 9 rise,10%-90% wn

« The peak time Tpeak is the time it takes for the response to reach the maximum overshoot value (this is the first peak in the
oscillatory response, at which the overshoot is maximum). Some calculations show:

/i

wny/1 — 2

« The seftling time Tyeniing is the time it takes for the response to remain within a certain range (typically 1% or 5%) of the
steady-state value. For the 1% ad 5% criteria, approximate formulas are:

Theak = (5.25)

! 3

Tsettling 1% ~ CT and Tsettling5% ~ CT (5'26)
n n

On a related note, the time constant of the underdamped system is

1

T = ——
Cwn

(5.27)

« The percent overshoot Mpercent is the maximum amount the system response overshoots its final value, divided by its final value.

Some calculations show:
C

Mpercent = ei Vi-¢2 (5.28)

It is useful to verify that the values of Tiise, Tpeak, Tsettling and Mpercent in Figure 5.9 are correct, for values of w = 1 and ¢ € {0.4,0.8}.
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5.3.5 wimpulse;step,.and ramp responses of sec

plt rcParams update(f"text u

pif",

nd-order svetamc

49

["Computer Modern Roman”], "font.size": 16 3})

# Define the parameters of the system
natural_frequency = 1.0 # Natural frequency, omega_n
damping_ratios = [0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 3.0] # Damping ratios, zeta

# Define time range for the simulation

= np.linspace(@, 12, 1000); ramp_input = t # Unit ramp input

colors = ['#752d00', '#a43e0@0', '#d35000', '#ffe6100', '#ff8800', '#ffafee', '#ffccoo']

# Initialize the figure for impulse, step, and ramp response
fig, axs = plt.subplots(3, 1, figsize=(10, 10))

# Loop through each damping ratio and plot impulse, step, and ramp responses
for idx, zeta in enumerate(damping_ratios):

# Define the transfer function of the second-order system

num = [natural_frequency**2]; den = [1, 2 % zeta * natural_frequency,
natural_frequency**2]

system = ctrl.TransferFunction(num, den)

# Compute and plot the impulse response

t_impulse, y_impulse = ctrl.impulse_response(system, T=t)

line_style = '--' if idx == 4 else '-'

axs[0].plot(t_impulse, y_impulse, line_style, label=f'$\\zeta$ = {zeta}',
color=colors[idx])

# Compute and plot the step response
t_step, y_step = ctrl.step_response(system, T=t)
axs[1].plot(t_step, y_step, line_style, label=f'$\\zeta$ = {zeta}', color=colors[idx])

# Compute and plot the ramp response
t_ramp, y_ramp = ctrl.forced_response(system, T=t, U=ramp_input)
axs[2].plot(t_ramp, y_ramp, line_style, label=f'$\\zeta = {zeta}$', color=colors[idx])

# Add labels, legends, grid, and set xlim for all subplots
for ax in axs:

ax.legend(loc="lower right', fontsize=14); ax.grid(True); ax.set_xlim(@, 25);

# Set plot properties

axs[0].set_x1im(@, 12); axs[@].set_ylim(-1.1, 1.1); axs[@].set_ylabel('Impulse response')
axs[0].set_title('Impulse, step, and ramp response of 2nd order system')
axs[1].set_x1lim(@, 12); axs[1].set_ylim(-0.1, 2.1); axs[1].set_ylabel('Step response')
axs[2].set_x1im(@, 12); axs[2].set_ylim(@, 12); axs[2].set_xlabel('time $t$'); .

axs[2].set_ylabel ('Ramp response')

# Add arrow with text
arrow_color = '#0055A4"
text_color = arrow_color # Set text color same as arrow color

axs[0].text(1, 0.5, "increasing $\\zeta$", ha="center”, va="center”, rotation=-45

size=15, color=text_color, bbox=dict(boxstyle="rarrow,pad=0.3", fc="none",
ec=arrow_color, lw=2, alpha=0.5))

axs[1].text(2, 0.75, "increasing $\\zeta$", ha="center”, va="center”, rotation=-45

size=15, color=text_color, bbox=dict(boxstyle="rarrow,pad=0.3", fc="none",
ec=arrow_color, lw=2, alpha=0.5))

axs[2].text(7, 5, "increasing $\\zeta$”, ha="center"”, va="center”, rotation=-45

size=15, color=text_color, bbox=dict(boxstyle="rarrow,pad=0.3", fc="none",
ec=arrow_color, lw=2, alpha=0.5))

# Save the plot to a PDF file
plt.tight_layout(); plt.savefig('2ndorder-responses.pdf', bbox_inches="'tight")

Listing 5.2: Python script generating Figure 5.10. This script relies upon the Python Control

Systems Library (Fuller et al., 2021). Available at
2ndorder-responses.py

Impulse, step, and ramp response of 2nd order system

1.0
[}
% 0.5 — (=00
2 — (=02
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2 ool — (=04
kA — (=08
=
2 | - (=10
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~1.01 | | | | | ¢
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— =00
— =02
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— (=08
cees (=10
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10.01
%
5
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I
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g
<
951
0.0
0

time ¢

Figure 5.10: Impulse, step, and ramp responses of the 2nd order dynamics (5.19).
From the step response plots, we note: (i) At ( = 0.4, the response is fast and the
overshoot is 25.4%. Smaller damping ratios lead to large overshoot. (ii) At ( = 0.8, the
overshoot is only 1.4% (but the response is slower than at ( = 0.4). Larger damping
ratios (i.e., ( > 1) lead to slow responses.


https://python.org
https://python-control.org
https://python-control.org
http://motion.me.ucsb.edu/ME103-Fall2025/handouts/2ndorder-responses.py
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5.3.6 Free response of an underdamped system

In the undamped and underdamped regime, when 0 < ( < 1, consider
&+ 2Cwnd + Wiz =0

with positive initial position z(0) = xy > 0 and zero initial velocity #(0) = 0. Via the inverse Laplace transform calculations in
Appendix 5.5, the free response of an underdamped system

<
i@

where the damped frequency is wg = wnv/1 — (2. Using trigonometric equalities, we can rewrite the solution as

z(t) = zge Swnt (Cos(wdt) + sin(wdt)) (5.29)

z(t) = —— " © COS (wdt + arctan —) (5.30)
V1—¢C? V1—¢C?
exponentially-d;;aying envelope
The expression (5.30) is useful because the precise expression of the exponentially-decaying envelope is now clear.
Lo

As for first order systems, after time equal to 5 - 7, the free response is guaranteed to be below 1% of the initial value



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025).

Chapter 5, slide 30
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Figure 5.11: Free response of an underdamped second order system from initial position o > 0 and zero initial velocity.
Zo

Note: after time equal to 5 - 7 = 5/(Cwy,), the solution is guaranteed to be below 1% of the initial value

Note: the the exponentially-decaying envelope starts at +

Zo
Vi-¢

67

Note however: for 0 < ¢ < 1, the factor \/ﬁ is always greater than 1 and approximately 2.3, 7.1 and 22.4 at ( = .9, .99, .999, respectively.
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Figure 5.12: lllustrations of the free response of undamped and un-
derdamped second-order systems.

Left panels: location of the two poles and semicircle of radius w,, we
let w, = 1.

Right panels: the free response from zero initial velocity (solid blue

line) and the exponentially-decaying envelope (dashed gray lines):
Lo _
+—2 et

-0
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5.4 Higher-order systems and their step response

In this section we consider higher-order systems of the form

Y(s) bo+bisH+ -+ bys™

Gls) = U(s) ag+ais+---+a,s"

(5.31)

Assume (G(s) has distinct real poles —py, ..., —p,,, meaning that the denominator of G(s) can be factored as (s+p1)(s+p2) ... (s+
pn). We assume the poles are in the strict left half plane, that is, all p; are strictly positive.

In class assignment

Why do we assume that the poles are in the left half plane?
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For a stable transfer function G(s),
(i) if the input is a unit step, then the steady-state output (the output after all decaying signals have decayed) is a step of
magnitude G(0):
W) =1(t) = Yuesdyaatelt) = G(O)1(D) (5.32)

(i) G(0) is the steady-state gain (or DC gain) since it is the amplification (or attenuation) of the input signal at the output.
Note: G(0) = 1 for the canonical forms of first and second-order systems.

We now verify these statements. When u(t) = 1(¢) and U(s) = 1, the partial fraction expansion of Y(s) = G(s) - < is

r T
Y(s)=—-+ 5.33
(s) =~ ; - (5.33)
for appropriate residues r, 1, ..., 7,. Therefore, the output is the sum of a step function and n exponentially decaying terms:
y(t) =r+ Z r; e Pit (5.34)
i=1

We are particularly interested in the behavior for large times ¢, when the exponentially decaying terms are below 1% of their
initial value. To study this asymptotic behavior, we compute r using the single-pole residue formula:

r = sY(s) = G(0) (5.35)

s=0 S

(An alternative equivalent approach to computing the behavior for large times is given by the final value theorem in Section 4.4.)
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In systems with multiple poles, one or a few dominant poles might primarily determine the system’s transient response. The
dominant poles are the ones closest to the imaginary axis (i.e., with the smallest real parts) which decay more slowly:
« if the dominant pole is a single real pole, the system’s response resembles that of a first-order system, characterized by a
single exponential decay, and

« if the dominant poles are a pair of complex conjugate poles, the response resembles that of a second-order system,
featuring oscillatory behavior with a decay rate governed by the real part of the dominant poles.
This approximation is accurate when the dominant pole(s) are significantly slower (e.g., 5x slower) than the remaining poles.
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Step response of higher-order system vs first-order system Step response of higher-order system vs second-order system
1.2 1.2 1
1.0 1 1.0
Pole diagram Pole diagram
0.8 X | 08 | |
0.6 1 X X | dominant pole 0.6 1 | |
§<____§_><_____>§ i dominapt fjoles
‘ ‘ L5
0.4 1 X i 0.4 1 et
0.2 —— First Order System (Pole: [-1]) 0.2 1 —— Second Order System (Poles: [(-142j), (-1-2j)])
—— Higher Order System (Poles: [-1, (-5+5j), (-5-5j), -7, -9]) —— Higher Order System (Poles: [(-142j), (-1-2j), -5, -7, -9])
0.0 ; ; ; ; ; ; 0.0 ; ; ; ; ; ;
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
time ¢ time ¢
(a) one dominant pole (b) complex conjugate poles

Figure 5.13: Step responses of higher-order systems with either a single dominant pole or a pair of dominant complex conjugate poles.

In both cases, the dominant pole approximation has numerator set to have the same DC gain as the original system (unit DC gain in these examples).
Note that the gap is 5, that is, the multiplicative difference between the real part of the dominant pole and the real part of the other poles.

Note that the approximation is perhaps acceptable, but not great. Image generated by higherorder-comparison.py @ .


http://motion.me.ucsb.edu/ME103-Fall2025/handouts/higherorder-comparison.py
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5.5 Appendix: Free and step response for second order systems via Laplace calculations

In this appendix we report some useful calculations that explain some of the formulas and plots presented earlier.
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5.5.1 Step response for underdamped system

We consider an underdamped second-order system with zero initial conditions (x(0) = #(0) = 0) subject to a step input:
i+ 2Cwny + wiy = wil(t) (5.36)

with natural frequency w, and damping ratio (. Since U(s) = 1/s, we compute

w2

= L 5.37
5(s% + 2wn(s + w3) (5.37)

Y(s)

Since 5% + 2wn(s + w? = (s + wn()? + w3 for wy = wny/1 — ¢2, we now expand this rational function in a partial fraction expansion
using the terms corresponding to unit step and damped sine and cosine waves:

0 wWq s+ Cwn
Y(s) =—+ + 5.38
(5) S B(s+wné)2+w§ 7(s+wnC)2+w§ (5-38)
To compute «, we can use the residue’s formula:
a=sY(s) = 1. (5.39)
5=0

Using the numerators matching method, we can compute the coefficients  and v and obtain

y(t) = 1 — e St (cos(wdt) + _ 5 Sin(wdt)) (5.40)
V1—¢C?

As this response is equal to the one given in equation (5.24).
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5.5.2 Free response for underdamped system

For 0 < ( < 1, we consider
&+ 2Cwnd + wlz =0

with initial position z(0) and initial velocity #(0). We take the Laplace transform to obtain:

<32X(s) — sx(0) — x(O)) + 2Cwn (SX(S) — x(O)) +w?X(s) = 0. (5.41)

From here we compute X (s) as follows
(s + 2¢wn)z(0) + 2(0)

X(s) = 542
() $2 + 2¢wns + w? (542)
Since the system is underdamped, we define the damped frequency by wq = wn+/1 — (? and we note
% + 2wns + w2 = (5 + Cwn)? + (wny/1 = ¢)? by definition (s + Cwn)?® + wji (5.43)
With this denominator, recalling rows (7) and (8) of Table 4.2, we compute the partial fraction expansion:
Cwnz(0) + 2(0) Wy 5 + Cwh
X(s) = : + 2(0) - 5.44
= rcarra O Gy 549
so that the inverse Laplace transform is immediate:
nt(0) +2(0) oy _
x(t) = Cwn(0) +2(0) e St gin(wgt) + 2(0) - e cos(wqt) (5.45)
oy
When £(0) = 0, we simplify this expression to
x(t) = x(0 eCw"t(coswt —|—#sinwt). 5.46

This solution is shown in Figure 5.12, for varying values of the damping ratio (.
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5.6 Appendix: Underdamped systems with zeros in the left and right half plane

Step responses of underdamped second-order systems with different numerators

2.0
() =
——=- 1o zero: §)= —5———
! s24+ 8s+1
— zero at Origin: G2(S) = m
+1
1.5 4 —— left half-pl CGy(s) =
eft half-plane zero: G3(s) oy

—s+1
524+ .85+1

right half-plane zero: G4(s) =

response

—0.5 T

time ¢

Figure 5.14: Step responses ¥ (t), . .., y4(t), of underdamped second-order systems with different numerators: y;(t) = £ '[G;(s)/s].

We leave it to the reader to explain why at each instant of time t* such that y,(t*) = 0, we have y; (t*) = y3(t*) = ya(t*). (Hint: think about the correctness
and implications of the equality y»(t) = Lu;(t).)

Image generated by 2ndorder-underdamped-threestep.py @ .


http://motion.me.ucsb.edu/ME103-Fall2025/handouts/2ndorder-underdamped-threestep.py
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5.7 Appendix: Routh-Hurwitz stability tests for low-order transfer functions

The Routh-Hurwitz stability criterion provides a method to determine the stability of a transfer function G(s) by examining the signs
and values of the coefficients of the denominator of G(s), that is, its characteristic polynomial. We refer for example to (DiStefano
et al., 1997) for a complete treatment' and here we focus on low-order transfer functions.

The criterion (which ensures that all poles of G(s) are in the left-half plane) is summarized for first, second, and third-order
polynomials as follows:

(i) A first-order polynomial
P(s) = ays + ay,
has a zero with strictly negative real part if ¢y > 0 and a; > 0.

(ii) A second-order polynomial
P(S) = CL282 + a18 + ap

has zeros with strictly negative real part if ayp > 0, a; > 0, and ag > 0.

(iii) A third-order polynomial
P(s) = a3s® + azs® + ais + ag

has zeros with strictly negative real part if ag > 0, a; > 0, ay > 0, ag > 0, and

asay — agag > 0. (5.47)

For example, consider the polynomial 53 + 5s* 4 6s + 1. Clearly, every coefficient is positive and additionally: asa; — azag =
5-6—1-1> 0 so that the Routh-Hurwitz criterion states that the solutions of s® 4+ 5s? + 65 + 1 = 0 have strictly negative real part.
Indeed, the following Python code numerically computes the roots to be -3.2469796 -1.55495813 -0.19806226.

1 # Python code to compute numerically the roots of a polynomial
2 import numpy as np
3 # Define the polynomial coefficients: x*3 + 5x*2 + 6x + 1

See also https://en.wikipedia.org/wiki/RouthaASHurwitz_stability_criterion


https://python.org
https://en.wikipedia.org/wiki/Routh–Hurwitz_stability_criterion
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coeffs = [1, 5, 6, 1]
# Calculate the roots
roots = np.roots(coeffs)
print("Roots:", roots)

N o g A
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5.8 Exercises

Section 5.1: The transfer function and the impulse response

E5.1

From poles to transfer function and differential equation. The poles of a transfer function G(s) are drawn in Figure 5.15.

A Figure 5.15: Complex plane with poles of a transfer function
The poles are at (—2 £1i) and —1.

(i) Under the additional assumption that G(0) = 1/5, compute the transfer function G(s).
(i) Compute the damping ratio ¢ and natural frequency w, for the two complex poles of G(s).
(iii) Let X(s) = G(s)U(s) and write the differential equation associated to G(s), governing z(t) as a function of u(t).
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E5.2 Marginally stable systems. Find an example of a marginally stable systems and a bounded input signal with the property that the system’s output response is
unbounded. Verify that the output response is unbounded.

Answer: We consider the integrator, which is a marginally stable system: G(s) = 1/s, and the step input so that U(s) =1/s.

Then the output is:

which corresponds in the time domain to:
y(t) =t.

This is unbounded, even though the input is bounded (a step input). Thus, the system has an unbounded output response to a bounded input. v



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 5, slide 44

Section 5.2: First-order systems and their responses

E5.3 Thermometer transfer function and ramp response in a warming tank. Consider a thermometer with temperature 0(¢t) immersed in a water tank with
temperature O,k (t). Let ¢ and r denote the thermal capacity of the thermometer and the tank-thermometer thermal resistance, respectively.

thermometer

Tank

(i) Derive the governing equation for the system.
(if) Take the Laplace transform of the equation you found in part (i), assuming zero initial conditions.
(ili) Compute the transfer function from Oni(s) = L[Oank(t)] to ©O(s) = L[O(1)].
(iv) Is this a first-order or a second-order system? If it is first order, compute the time constant. Otherwise, if it is a second-order system, compute the natural
frequency and the damping ratio.
(v) Compute the step response of this system in the time domain.
(vi) Finally, assume ok (t) = t is the unit ramp function. Compute the asymptotic value esteady-state = im0 (), where the error e(t) := (t) — Ogank(t).
] . 1 T 1 72
Hint: In exercise E6.1, we computed ———— = —— + - + ——.
s2(sT+1) s s2 sT+1
Answer:
(i) Fourier's Law of Heat Conduction gives us q(t) = 1(6(t) — rank(t)), and the temperature of the thermometer is governed by the equation cd(t) = —q(t).
Combining these gives the dynamics
. 1
0(t) = — (Ghank(t) = 0(1))
(ii) Taking the Laplace transform gives

S@(S) = ;(Gtank(s) - @(8))



Lectures on Dynamical Systems, ed. 2025 (This version: September 21, 2025). Chapter 5, slide 45

(iii) The transfer function is found to be
O(s) 1
Ounk(s)  ers+1

G(s) =

(iv) This is a first-order system. The time constantis 7 =cr .

(v) To compute the step response, we need to compute the inverse Laplace transform

o) = £ [0(s) - £l )] = £ { ! 1] .

crs—l—l‘s

The partial fraction expansion yields
-1 1
_|_

1
8+5

—_
®w | =

so that, taking the inverse Laplace transform, we obtain
9(t) = 1— et/
(vi) For a first-order system with a unit ramp input, the magnitude of the steady-state error is equal to the time constant. Based on how we have defined the error,
we have €steady-state = —CT" .

Alternatively, from the hint, it is clear that 6(t) = —7 + t + 72 e~*/7. Subtracting the ramp ¢ and waiting until the decaying exponential decays, we obtain

€steady-state — —7 — —CT".
v
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E5.4 First-order system subject to sinusoidal input. Consider a stable first-order system with time constant 7.
(i) Write the dynamics for this system subject to a sinusoidal input u(t) = sin(wt).
(i) Apply the Laplace transform and compute X (s).
(iti)  Write the partial fraction decomposition of X (s) assuming zero initial condition z(0) = 0 (do not yet compute the coefficients).
(iv) Write an expression for z(t) corresponding to the partial fraction expansion of X (s) (do not yet compute the coefficients).
(v) Compute the coefficients for the partial fraction expansion and write an explicit expression for z(t).

Answer:

(i) With sinusoidal input, the system dynamics are

TE = —z + sin(wt). (5.48)

(i) Applying the Laplace transform (with z(0) = 0) gives
w

X(s)=-X —-—. 5.49
rsX(s) = —X(9) + oy (5.49)
Rearranging:
w
X = . 5.50
() (82 + w?)(1s + 1) (5.50)
(iii) The partial fraction decomposition has the form
w s vy
X = . 5.51
() a82—|-w2+/882+w2+7'5+1 (5.51)
(iv) Using known inverse Laplace transforms,
-1 w o -1 S _ -1 1 _ ot
L [32 n wz} = sin(wt), L [52 n w2] = cos(wt), L [75—1—1] —e T,
we have
z(t) = asin(wt) + B cos(wt) +ye . (5.52)
(v) To determine «, 3,7, start with
w w s
_ +5 il (5.53)

(s2 4+ w?)(rs+1) Y2y w2 s2+w2+73+1'
Multiply through by (s? + w?)(7s + 1):

w=aw(rs+ 1) + Bs(rs + 1) + 7(s> + w?). (5.54)
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Comparing coefficients of like powers of s:

2. 0=pB1+7, (5.55)
st: 0=oawr+p, (5.56)
¥ w=aw+ i (5.57)
From the first two:
v = —pr, 8 = —auwr, (5.58)
S0
v = awt?. (5.59)
Substituting into the constant term equation:
w = ow + aw’r?, (5.60)
1= a(l+w?r?), (5.61)
1
= . 5.62
R (562)
Then )
wT wT
_ L 5.63
P 1+ w?r?’ T T W (5.63)
Therefore 2
w 1 wT S wT 1
X = . — . . . 5.64
(s) 1122 #1w? 1122 #4w?  11a22 7541 (5.64)
Inverting term by term:
x(t) = 1o (sin(wt) — wr cos(wt) + wr? e_t/T). (5.65)
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Section 5.3: Second-order systems and their responses

E5.5 Step and free response of a critically-damped second-order system. Consider a critically damped second-order system in canonical form.

(i) Compute the unit step response y(t) analytically.
(i) Compute the free response for the same system with initial conditions y(0) = yo and 3(0) = vo.
(iii)  Write Python code based on sympy that computes the same responses from G(s) and the input, and verifies both the step response and the free response.
y p p P p resp p
Answer:
(i) For damping ratio ¢ = 1, the system has transfer function
2
w
G =" 5.66
(5) 82 + 2w, 8 + w2 (5.66)
With a unit step input U(s) = %, the output in the Laplace domain is
2
w
Y = a 5.67
(s) s(s + wn)? (5.67)
The partial fraction decomposition gives
2 1 1
Wn _ _ W (5.68)
s(s+wn)? s s+wn, (s+wn)?
The inverse Laplace transform yields
y(t) =1 —e 't —w te !, (5.69)
Therefore, for t > 0, the step response is
y(t) =1 — (1 + wpt) et (5.70)
(if) The free response is obtained from the homogeneous equation
§i(t) + 2way(t) + wiy(t) = 0. (5.71)
The characteristic equation has a repeated root s = —wy, so the general solution is
y(t) = (A + Bt)e . (5.72)
Applying y(0) = yo and g(0) = vo:
A=1yy, B—whA=v9 = B =uwy+wno- (5.73)
Therefore, for t > 0, the free response is
y(t) = (yo + (vo + wayo)t) e (5.74)
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(iii) Python code to compute and verify both responses:

import sympy as sp

# symbols
s, t, omega_n, y0, v0 = sp.symbols('s t omega_n y@ v@', real=True,

# transfer function and step input
G_s = omega_n#**2 / (s**2 + 2xomega_n*s + omega_nx*x2)
U_s = 1/s

# step response

Y_s_step = sp.simplify(G_s * U_s)

y_t_step = sp.inverse_laplace_transform(Y_s_step, s, t)
y_t_step_simplified = sp.simplify(y_t_step)

y_t_step_target = 1 - (1 + omega_nx*xt)xsp.exp(-omega_n*t)
check_step = sp.simplify(y_t_step_simplified - y_t_step_target)

# free response

Y_s_free = (sxy@ + v0 + 2%*omega_n*yQ) / (s + omega_n)*%2

y_t_free = sp.inverse_laplace_transform(Y_s_free, s, t)
y_t_free_simplified = sp.simplify(y_t_free)

y_t_free_target = (y@ + (v0 + omega_n*y@d)*t) x sp.exp(-omega_nxt)
check_free = sp.simplify(y_t_free_simplified - y_t_free_target)

# Output both verifications
y_t_step_simplified, check_step, y_t_free_simplified, check_free

positive=True)
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E5.6 From complex conjugate poles to canonical parameters and functions of time. Consider a function of time z(¢) with Laplace transform X (s). The rational
function X (s) has two poles drawn in Figure 5.16.

iv2 ~il.41

—iv2 &~ —i1.41

%

v

X

-3

Figure 5.16: Complex plane with two complex conjugate poles at —3 %+ iv/2.
Recall that 519 = —w, (C + /(2 — 1) and that the poles belong to a semicircle of radius w,.

(i) Compute the damping ratio ¢, natural frequency wy, damped natural frequency wy, and time constant 7 for these poles.

(i) What are the two functions of time f1(¢) and f2(t) associated to the two poles? Substitute in the values of ¢ and wy,.
(iii) Assume that z(t) = af1(t) + S f2(t) and that (0) = 0 and #(0) = 10. Write a formula for z(t).
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E5.7 Pendulum-tuned mass damper. A pendulum tuned mass damper is a device used in tall structures to reduce vibrations caused by seismic activity or wind. The
simplified system in Figure 5.17 consists of a pendulum of mass m and length /¢ attached to a structural beam that moves horizontally. The horizontal displacement of
the beam is denoted by u, the horizontal displacement of the pendulum mass relative to the beam is denoted by z, and the acceleration due to gravity is g.

structuggl beam —al(V}

Figure 5.17: Pendulum-tuned mass damper suspended from a structural beam.

The goal is to derive a simplified model of the pendulum’s horizontal motion and to characterize its input—output behavior.
(i) Show that the equation of horizontal motion for the pendulum is
T+ gtanf = —ii. (5.75)
(if) Use the small-angle approximation to eliminate  from the equation.

(iii) Compute the transfer function from u to z.

(iv) Determine the impulse response x(t) of the pendulum.
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E5.8 Transfer function, step response, and final value of a mass-spring-damper plus extra damper. Consider a mass-spring-damper system (with parameters m, b;
and k) connected to an additional damper (with parameter b), as illustrated in Figure 5.18. Let z(t) be the position of the right-most point connected to the additional
damper. At t = 0, a unit-step input is applied to position z(t). Assume the initial conditions are x(0) = #(0) = z(0) = 0.

by & .
m I
— 00— bs

k

NN

Figure 5.18: A mass-spring-damper system with extra damper

Note: Does this final value behavior of this mechanical system makes physical sense to you?
Answer:

(i) The equation of motion is
md 4+ b1@ +ba(t — 2) + kx =0

so that
ma + (by + b2)& + kx = byz

(i) We compute the Laplace transform with zero initial conditions:
(ms® + (b1 + ba)s + k) X (s) = basZ(s)
so that

X(s) bas
Z(s) ms?+ (b +b)s+k

(iii) We now apply a unit step Z(s) = % to compute
ba

- ms2 4+ (by +bo)s+ k

and substitute in the parameter values:

5 5
# T S 1 10s+50 (5+5)2+52
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(iv) The inverse Laplace transform of X (s) is precisely (no need to perform the partial fraction expansion in this case):

x(t) = e sin(5¢)

(v) Since x(t) is a damped sinusoidal wave, lim z(¢t) =0.
t——+00

(vi) Itis immediate to see that, from the Final Value Theorem,

. . . b28
t—li-&-moox(t) a ;l—r{(l) SX(S) o il—{% ms2 + (bl + bg)s +k -
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E5.9 Oscillatory response of an aircraft wing to turbine-induced vibrations (DiStefano et al., 1997). The structural integrity of a wing is critical in the design of
turbine-driven jet aircraft. A source of failure on certain aircraft is the oscillatory nature of the vertical position of some jet turbines, as illustrated in Figure 5.19. As a

" " L f(t) = acos(wt)
¢

Air’c raft Win m

Fuse ,72

Ergi NN

(a) Aircraft schematic showing turbine and wing structure. (b) Spring-mass model representing the wing.

Figure 5.19: Modeling the wing oscillations caused by turbine-induced vibrations.

simple model, we ignore aerodynamic forces and consider only a sinusoidal excitation generated by the turbine:
f(t) = acos(wt)

We describe the aircraft wing as a spring-mass system (no damper), subject to the force f(t), obtaining;:
mi + kx = f(t).

Here x is the position of the wing tip, m is the equivalent mass of the wing, and k is the spring constant related to the stiffness of the wing. In what follows, we design
k such that the vibration amplitude is below a threshold.

(i) Write the Laplace transform of f(t), given by F(s).

(i) Assuming zero initial velocity and position, find the Laplace transform of z(t) in terms of a, w, m, and k.

(iii) Perform a partial fraction expansion for X (s): first set up the expansion and then solve for the coefficients.

(iv) Compute z(t) via the inverse Laplace transform of X (s).

(v)  Now, let us consider a model airplane, whose mass m = 1 kg. Let a = 25 N, and w = 10 rad/s. Assuming we don’t want the wing to oscillate by more than 2 m,

what is the largest permissible value of k?

Hint: For the purpose of identifying the maximum value of (), assume the difference of two cosines at different angles is bounded above by the number 2.
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E5.10 Transfer function of DC motor. In this exercise, we compute the transfer function of the DC motor in Section 2.5. We recall the governing equations (2.46):
IO (t) + 0 (t) = Frorqueicond () (5.76a)
£ cand(®) + ricona(8) = tsowet) ~ FucoiIm() (5.76b)
and refer to Section 2.5 for the definition of all terms.
Let wy = O be the shaft angular velocity. Use the following notation: Vioyurce () = L[Usource (t)], Qm(s) = Llwm(t)], and Leond(s) = Llicond(t)]-

) Take the Laplace transforms of the two equations, assuming zero initial conditions and using only the shaft angular velocity (and not the shaft angle).
) Compute the transfer function from the voltage source Viource(s) to the angular velocity Qp, ().

(iii) What is the order of this transfer function?
)

Explain why the system is underdamped for large values of kyelocity and Ktorque-
Answer:

(i) We compute

(SIm = b)Qm(S) = ktorquelcond (S) (5-77a)
(56 + T)Icond (5) = ‘/source(s) - kvelocitme(S) (5-77b)
(i) We eliminate I.ond(s) to obtain
ktor ue
(SIm + b)Qm(S) = ol _E , (‘/;ource(s) - kvelocitme(S)) (5~78)
- (SE + T)(Slm + b)Qm(S) = ktorque‘/source(s) - ktorquekvelocitme(s) (5~79)
Qm(S) ktorque

fr— —
‘/source(s) (56 + r)(SIm + b) + ktorquekvelocity

(5.80)

This is a second-order system.

Looking at the formula for the damping ratio, the larger are kiorquekvelocity, the smaller is the damping ratio .
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E5.11

Two-compartment chemical reactor with reaction and mixing. Consider a two-tank chemical reactor with volumes v; and vs. Let ¢1(t) and ca(t) be the
concentrations of a certain chemical substance in tanks 1 and 2. Liquid flows at a constant rate g from tank 1 to tank 2 and at the same rate from tank 2 to tank 1. Each
tank is perfectly mixed, and the substance undergoes a first-order decay with rate constants ki, ko > 0. The input u(t) is the injection concentration entering tank 1
through an additional inflow at rate ¢y, and the output is y(t) = ca(t). In summary, the dynamics are

V1€ = —qc1 + qea — krvier + ginu(t), (5.81a)
vty = —qc2 + g1 — kavace (5.81b)

(i) Show that for zero input u(t) = 0 and no decay k1 = ko = 0, the total amount of chemical substance in both tanks is constant.

(i) Find all equilibrium points (c7, ¢5) for constant u(t) = ug.

(iii) Derive the transfer function G(s) = Y (s)/U(s).
(iv) Check the stability by locating the poles of G(s) and write them explicitly.
Answer:

(i) Forwu(t) =0and k; = ka2 = 0, summing the two equations gives
v1€1 + v2C2 = —qcy + qea — qes +qep = 0. (5.82)
Therefore

d
E(Ulcl + ’UQCQ) =0, (5.83)

which means the total amount of chemical substance v1¢; + v9co is constant in time.
(i) Foru(t) =wugand ¢; = é3 =0,

0 = —qc] + qc5 — kivic] + ginuo, (5.84)
0 = —qcb + qcf — kavacs. '
Solving,
o= (q + kav2)ginuo o= q ginUo (5.85)
Y (g ko) (g +kova) — @2 P (g + kron) (g + kova) — ¢ .
(iii) With zero initial conditions, the Laplace-domain equations are
(V18 + q + k1v1)C1(8) — ¢Ca(s) = qnU(s), (5.86)
—qC1(s) + (vas + q + kav2)Ca(s) = 0.
From the second equation,
k
Cr(s) = 28T AT Rav2 oy ) (5.87)

q
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Substitution into the first equation gives
(v1s + q + k1v1) (v2s + g + ko2 ) Ca(s) — ¢*Ca(s) = qinqU(s). (5.88)

Therefore
Y(s) ing
G(s) = = . 5.89
( ) U(S) (1}18—|—q+k‘11)1) (U28+q+k2’02) — q2 ( )

(iv) The poles solve
(vls +q+ klvl) (vgs +q+ k:gvg) — q2 =0. (5.90)

Expanding yields the quadratic as? + bs + ¢ = 0 with

a=vve, b=wv1(q+ kove) 4+ va(q+ k1v1), ¢=(q+ k1v1)(q+ kove) — ¢ (5.91)

The three coefficients are positive, so by the Routh-Hurwitz criterion for a second-order polynomial in Appendix 5.7, both roots have negative real parts.
Therefore, G(s) has all poles in the open left-half plane, and the equilibrium is asymptotically stable.
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Section 5.4: Higher-order systems and their step response

E5.12 Transfer function of suspension system. Consider the suspension system described in Section 2.2 and Figure 2.9. Recall that the equations of motion for the
system were found to be:

Mmsds + b (xs - i:us) + ks (:L's - :Eus) =
MusTus + b (ius - xs) + ks (-Tus - xs) + kw(-rus - T‘(t)) =0

where x4(t) is the vertical position of the sprung mass, x,s(t) the vertical position of the sprung mass, and r(t) is the height of the road surface. Assume that the initial
positions and velocities of both masses are equal to zero: 25(0) = x,5(0) = @5(0) = Zys(0) =0

Define the Laplace transforms: Xs(s) = Lzus(t)], Xs(s) = Llxs(t)] and R(s) = L[r(t)].

(i) Using the properties of Laplace transforms, find the Laplace transforms of the two equations.
(i) Use the two equations to eliminate the intermediate variable X ;s(s) to obtain an expression for X;(s) in terms of R(s).

Answer:

(i) Applying the Laplace transform yields

mes>Xs(s) + bsXs(s) — bsXys(s) 4 ks Xs(s) — ks Xus(s) =
mUSSQXus(s) + b5 Xys(s) — bsXs(s) + ks Xus(s) — ks Xs(s) + kwXus(s) — kwR(s)

Grouping like terms, we get
(mss® + bs + ks) Xs(s) — (bs + ko) Xus(s) = 0
(MusS® + bs + ks + ku) Xus(s) — (bs + ks) Xs(s) — kwR(s) = 0
(i) We solve for Xs(s) in the first equation, ans substitute this into the second equation to obtain

(mgs? 4 bs + k)

2
us b ks kw
(Mmuss® + bs + ks + k) (s 1 k)

Xs(s) — (bs + ks)Xs(s) — kwR(s) = 0.

Solving for X;(s) in terms of R(s) yields

oo (b5 + k)
X, =
(5) (myss? + bs + ks + ky)(mss? + bs + ks) — (bs + ks)? )
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E5.13 Transfer function of building system. Recall the dynamics of the building system (without air conditioner) studied in Section 3.1:

1

0, = 0y — 0 Oext — 0
an 7"12( 2 1) + rl,ext( ! 1)
. 1 1
oy = 7(91 — 92) + 7(93 — 92)
12 Tr23
. 1
6303 = 7(92 — (93)
23

Note that we changed notation: we let 6;(¢) denote the temperature in room i and ©;(s) = L[0;(t)] be its Laplace transform. Similarly, we let Oext(s) = L[Oext(t)]-

We aim to compute the transfer function of the building system (without air conditioner) from the external temperature to the temperature in room 3. Assume all
resistances and all thermal capacities are equal. Let 712 = 793 =71 ext =7 and ¢y = c2 = c3 = c.

(i) Take the Laplace transforms of the three equations, assuming zero initial conditions.

) Explain, in words, how to find the overall transfer function from O (s) to ©3(s).

) Compute the transfer function from Oy (s) to ©3(s). You may use Matlab or Python for this if you wish, but be sure to include your code if you choose to do so.
(iv) What is the order of this transfer function?

) Using the Routh-Hurwitz criterion in Appendix 5.7, verify that the system is stable.
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E5.14 Transfer function of a (spring-mass)’-damper system. Consider the system composed of two masses, two springs and a damper in Figure 5.20. As usual, let
Xi(s) = Llz1(8)], Xo(s) = L[z2(t)], and Y (s) = L]y(?)]-

7 ,—l>£lf1 ,—l>.§l§'2 .
m 0 ™ EDl

k1 ko

Figure 5.20: A system of two masses interconnected by springs and a damper

Derive the equations of motion for this system.
Take the Laplace transforms of the equations you derived in part (i), assuming zero initial conditions.

)
)
(iii) Compute the transfer function from Y'(s) to X (s).
)  What is the order of this transfer function?

Answer:
(i) Using free-body diagrams, the equations of motion for this system are

mix1 + (k‘l aF kg)l‘l = koxo
maoZo + bg + koxo = kox1 + by .

(ii) Taking the Laplace transforms of the two equations yields
(m15% + k1 + ko) X1(s) = kaXo(s)
(mas? + bs 4 ko) Xa(s) = kaXi(s) + bsY (s) .
(iii)  Solving the first equation for X(s), substituting into the second equation, and solving for the transfer function G(s) = X1(s)/Y (s) yields

k’gbs
(ma2s? + bs + ko) (mys? + k1 + k) — k2

G(s) =

(iv) The order of this transfer function is 4 .
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E5.15 Transfer function of a suspended mass-spring?-damper system. Consider the suspended mass-spring-damper system shown in Figure 5.21. The positions x and
y are measured from the initial equilibrium position. Let the force f(¢) be the input to the system and let the displacement x(t) be the output.
Assume zero initial conditions and ignore the force of gravity on the mass.

72

k1

y ko

J] ™m
. L)

Figure 5.21: Suspended mass-spring-damper system with forcing input f(t). Ignore gravity.

(i) Write down the equations of motion for the system.
(ii) Compute the Laplace transform of the equations of motion

(iii)  Obtain the input-to-output transfer function of the system. Your expression should be the ratio of two polynomials. Be sure to fully expand both the numerator
and denominator polynomials.

Answer:

(i) The equations of motion for the system are:
mi + kix + ka(z — y) = f(t), (5.92)
ka(z —y) = by. (5.93)
(if) The Laplace transforms (at zero initial condition) of both equation are:
(ms® + k1 + k2) X (s) = koY (s) + F(s), (5.94)
kaX(s) = (k2 + bs) Y (s). (5.95)
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(iii) The input is f(¢) and the output is z(t). Therefore, we want a transfer function from F'(s) to X (s). We can solve equation (5.95) for Y (s) and substitute into
equation (5.94) to obtain

(K + bs) (ms® + k1 + ko) X (s) = k53X (s) + (ko + bs) F(s) (5.96)
Finally, we solve for the transfer function X (s)/F(s):

X(s) ko + bs
F(s)  mbs3 + mkos? + (k1 + ko)bs + kiks’

(5.97)
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E5.16 A slender beam discretized into n rotary segments: from base torque to tip angle. A slender beam is modeled as n rigid segments joined by torsional springs of
stiffness k and rotary dampers of coefficient b. Each segment has moment of inertia j about its joint axis. Let 6;(t) denote the small angular displacement of segment 4
fori € {1,...,n}. The base is fixed, 0y (t) = 0. A torque input u(t) is applied at the base joint onto segment 1. The tip is free, with no spring or damper to ground at

Figure 5.22: Discretized slender beam: each interconnection between two rotatory segment is
slender beam I described by a torsional spring of stiffness k£ and a rotary damper of coefficient b.

ST LRI

NN

segment n. The goal is to obtain and study the transfer function from base torque to tip angle:

On(s)

=)

where ©;(s) = L[0;(t)] and U(s) = L[u(t)].
Hint: You might find the following shorthand convenient. Define the operator K (0;) = k + b0y, which represents the combined effect of each segments’ spring and
damper (in other words, K represents the mechanical impedance of the spring—damper element). For any time-dependent quantity ¢(t),

K(00)(6(t)) = ko(t) + bo(t),
and, in the Laplace domain (with zero initial conditions),
K(s) =k+bs so that LIK(8)(o(t))] = K(s)®(s).
Hint: This model is called a nearest-neighbor chain (discrete Laplacian) with a fixed base and a free tip, i.e., Dirichlet boundary condition at i = 0 and Neumann
boundary condition at ¢ = n. This model corresponds to a torsional rod (or a lumped torsional spring—damper chain), not to a full Euler-Bernoulli bending-beam.

(i) Time domain modeling For n > 3, write ODEs regulating the angular displacement of each segment. Specifically, write the equation for the base segment i = 1,
the recursive equations for the intermediate segments i € {2,...,n — 1}, and the equation for the tip segment i = n.

(ii) Laplace domain modeling Compute the Laplace transform at zero initial conditions and show:

js*01(s) = —K(5)(201(s) — Oa(s)) + U(s), (5.98a)
7520;(s) = —K(s)(20i(s) — ©;_1(s) — ©;41(s)),  forie {2,...,n—1} (5.98b)
j5°On(s) = —K(5)(On(s) — On_1(s)). (5.98¢)
(Note that these are n equations in n + 1 variables ©1(s), ..., 0,(s) and U(s), and that it is possible to obtain an expression for G,,(s) = %"fgs)). This requires

recursive computations and Chebyshev polynomials. We do not pursue this approach here.)
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(iiiy  Compact matrix form (optional). Stack z(t) = (61(t),01(t), .. .,0n(t),0,(t))T. Write the state equations i(t) = Az(t) + Bu(t) and the output y(t) = 0,,(t) =
Cx(t). Write the transfer function G,(s) = C(sI — A)~! B and identify the tridiagonal stiffness and damping structures inside A.

Answer:

(i) The torques from the springs and dampers on segment i due to joint (i — 1,7) are k(6;_1(t) — 0;(t)) and b(6;_1(t) — 6;(t)), and analogously for joint (i, + 1).
Summing torques on the base segment 1 gives

§01(t) = —k(201() — 02(t)) — b(201(t) — O2(t)) + u(t). (5.99)

For each intermediate segment i € {2,...,n — 1},
j91<t) = —k(29i(t) — Qi_l(t) — 9i+1(t)) — 5(291(75) — éi_l(t) — éi+1(t)). (5.100)

For the free tip segment, ) . .

§0n(t) = —k(On(t) — 0n—1(t)) — b(6,(t) — On_1(2)). (5.101)

Adopting the shorthand for the operator K, we get:
301 (t) = —K(9y) (201(t) — 02(t)) + u(t), (5.102a)
§0:(t) = —K(0r) (20;(t) — 0;—1(t) — 0;11(1)),  fori€ {2,...,n—1}, (5.102b)
0 (t) = =K (04) (0n(t) — On-1(2)). (5.102¢)

(i) The equations (5.98) are an immediate consequence of the time-domain equations (5.102).

(iii)  In matrix formulations, we define

M =jI, (5.103)
as the n x n diagonal mass matrix,
(26 —k 0 ... O] (20 —b 0 ... 0]
-k 2k -k ... O -b 26 —b ... O
Kei=|0 -k 26 . |, Du=[0 —b 2 . |, (5.104)
Do —k Do b
10 ... 0 —k k| |0 ... 0 —=b D]

as the n x n tridiagonal stiffness and damping matrices for a chain of n rotational degrees of freedom with the base fixed and the tip free.

With these definitions, the state equations are

Bt = |_ 0 o o Dm] o(t) + [ o bf] u(t),  y(t) = () = Ca(t), (5.105)
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Im()\)

where by € R" is the input force vector, and

selects the angular displacement ,, of the last joint. The transfer function from u to y is

and its poles are illustrated in Figure 5.23.

Poles of n = 50 segment beam model

C=100,...,0,1,0]

(5.106)

Gn(s)=C(sI — A~ 'B (5.107)
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Figure 5.23: Complex plane with poles of the transfer function
for a slender beam discretized into n = 50 segments. Each
segment has moment of inertia j = 1.0, each spring has stiff-
ness k = 1.0, and each rotary damper has damping coefficient
b selected in a range of values. The inset shows a zoom near
the origin, confirming that all poles lie strictly in the open left
half-plane (for all values of b).
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