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Chapter 6

Frequency Response, Resonances, and Beats in Dynamical Systems

3



Lectures on Dynamical Systems, ed. 2024 (This version: November 21, 2024). Chapter 6, slide 4

6.1 Introduction
The frequency response of a dynamical system describes how the system reacts to sinusoidal inputs of varying frequencies. This
concept is central to systems engineering, control theory, and signal processing. Plotting the magnitude and angular frequency
response helps engineers analyze and design systems subject to oscillatory or periodic inputs.

In mechanical structures like bridges and buildings, frequency response analysis is essential for assessing structural integrity
against environmental forces like wind or seismic activities, helping to prevent destructive resonance phenomena.

Similarly, in rotating machinery such as turbines and engines, the frequency response helps identify critical speeds to avoid
resonance, which can cause excessive vibrations, mechanical failures, and reduced efficiency. The frequency response also aids in
understanding complex phenomena like beats, where interacting oscillations create new vibration patterns.

These videos are strongly recommended:
• resonance in tuning forks,
• beating in tuning forks,
• explanations and useful animations on understanding vibration and resonance (20 min), including a discussion of vibrations in
multiple degree of freedom mechanical systems,

• more information about interference beats, for music and guitar lovers.

For further references, see
• the role of aerodynamic flutter in the 1940 Tacoma bridge collapse (less than 1 minute); read about it at wikipedia:Tacoma
Narrows Bridge, and

• synchronizing oscillators and metronomes.

https://youtu.be/5H8aRCyEGnU
https://youtu.be/V8W4Djz6jnY
https://www.youtube.com/watch?v=vLaFAKnaRJU
https://www.animations.physics.unsw.edu.au/jw/beats.htm
https://www.youtube.com/shorts/Tb4Ck0WygEs
https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
https://www.youtube.com/shorts/wR1PxzjZE9Q
https://youtu.be/T58lGKREubo
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6.2 The frequency response and the resonance phenomenon

We consider the problem illustrated in Figure 6.1 below, where a linear time-invariant system with transfer function G(s) is subject
to a sinusoidal input with unit magnitude and frequency ω > 0.

Figure 6.1: System subject to a unit-magnitude sinusoidal input: The main result is that, if the input is a sine wave, so is the output!
While the frequency of the output steady state oscillation is the same as the frequency of the input, the magnitude and phase of the output are determined by
the frequency response.
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6.2.1 The frequency response formula

The main result of this chapter can be stated in one equation.

The steady state response of a stable linear system to a unit-magnitude sinusoidal input satisfies

u(t) = sin(ωt) =⇒ ysteady-state(t) =
∣∣G(iω)

∣∣ sin(ωt+ arg
(
G(iω)

))
(6.1)

where

• given a complex number z, |z| is its magnitude and arg(z) is its argument or angle,

• ysteady-state(t) is the steady state solution of the system, that is, the solution after all exponentially decaying signals have
vanished,

• the function G(iω) is called the frequency response (also know as sinusoidal transfer function) and is equal to the transfer
function G(s) evaluated at s = iω, that is, evaluated on the imaginary axis.

The correctness of equation (6.1) is studied in Appendix 6.4 via inverse Laplace transforms and partial fraction expansions.
The frequency response of the system is a complex number. Given a sinusoidal input at frequency ω,

(i) the magnitude frequency response
∣∣G(iω)

∣∣ determines the amplification (or attenuation) of the output sinusoidal signal as
compared with the input; and

(ii) the angular frequency response arg
(
G(iω)

)
determines the phase shift of the output sinusoidal signal as compared with the

input.
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6.2.2 First-order systems

Recall from Section 5.3 that the transfer function of a first-order system τ ẏ + y = u is

Y (s)

U(s)
= Gfirst-order(s) =

1

τs+ 1
. (6.2)

Hence, the frequency response function of a first-order system is

Gfirst-order(iω) =
1

iτω + 1
. (6.3)

The magnitude frequency response is: ∣∣Gfirst-order(iω)
∣∣ = 1√

τ 2ω2 + 1
(6.4)

and the angular frequency response is
arg

(
Gfirst-order(iω)

)
= − arctan(τω) (6.5)

In summary, the steady-state response of a first-order system to a unit-magnitude sinusoidal input u(t) = sin(ωt) is

ysteady-state(t) =
1√

τ 2ω2 + 1
sin

(
ωt− arctan(τω)

)
. (6.6)

(i) For low frequencies ω ≪ 1
τ , we have

√
τ 2ω2 + 1 ≈ 1 and the output amplitude closely approximates the unit input amplitude

in the steady-state response; and

(ii) for high frequencies ω ≫ 1
τ , we have

√
τ 2ω2 + 1 ≈ τω and the output amplitude is attenuated, approaching approximately

1/(τω) (meaning that the amplitude decreases as 1/ω).

We plot the magnitude frequency response of a first-order system in Figure 6.2.
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Figure 6.2: The magnitude frequency response
∣∣Gfirst-order(iω)

∣∣ of
a first-order system, as in equation (6.4).
On the horizontal axis, the variable is the frequency ω of the
sinusoidal input.
Python code available at frequencyresponse-firstorder.py
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Figure 6.3: The forced response (blue solid line) of a first order system subject to a unit-magnitude sinusoidal forcing (gray dashed lines) for three values of the
frequency ω = 0.2, 1.0, 5.0 and τ = 1.
As ω increases, the magnitude of the response decreases and the phase delay increases.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/frequencyresponse-firstorder.py
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/frequencyresponse-firstorder.py
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6.2.3 Second-order systems and the resonance phenomenon

Recall from Section 5.4 that the transfer function of a second-order system ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = ω2

nu(t) is

Gsecond-order(s) =
Y (s)

U(s)
=

ω2
n

s2 + 2ζωns+ ω2
n
. (6.7)

We now introduce the input frequency ω (also called driving frequency). Note: In the frequency response of second order systems
(especially, underdamped systems) there are two relevant frequencies: ω is the frequency of the input sinusoid and ωn is the natural
frequency of the system. We now compute the frequency response:

Gsecond-order(iω) =
ω2
n

(ω2
n − ω2) + i(2ζωnω)

=
1

(1− ω2/ω2
n) + i(2ζω/ωn)

(6.8)

and the magnitude frequency response:∣∣Gsecond-order(iω)
∣∣ = 1√

(1− (ω/ωn)2)2 + (2ζω/ωn)2
(6.9)

(i) For low frequencies ω ≪ ωn, we have
√
(1− (ω/ωn)2)2 + (2ζω/ωn)2 ≈ 1 and the output amplitude closely approximates the

unit input amplitude in the steady-state response;

(ii) for high frequencies ω ≫ ωn, we have
√
(1− (ω/ωn)2)2 + (2ζω/ωn)2 ≈ (ω/ωn)

2 and the output amplitude is attenuated,
approaching approximately 1/(ω/ωn)

2 (meaning that the amplitude decreases as 1/ω2); and

(iii) for ω = ωn, we have
√
(1− (ω/ωn)2)2 + (2ζω/ωn)2 = 2ζ and the output amplitude is 1/(2ζ).

We plot this magnitude frequency response in Figure 6.4.
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Figure 6.4: The magnitude frequency response of a second-order
system, as in equation (6.9).
On the horizontal axis, the variable is the frequency ratio ω/ωn,
where ω is the frequency of the sinusoidal input.
Python code available at frequencyresponse-secondorder.py

From equation (6.9) and Figure 6.4, we learn that

• when ζ > 1, the input magnitude is always attenuated,

• when 0 < ζ < 1, there is a range of input frequencies for which the input magnitude is amplified, and

• when 0 < ζ ≪ 1 (the lightly damped regime), the amplification can be very large. We call this amplification resonance.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/frequencyresponse-secondorder.py
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/frequencyresponse-secondorder.py
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We say that resonance happens when

(i) the input frequency is very close to the natural frequency ω/ωn ≈ 1, and

(ii) the second-order system is lightly damped, meaning that the damping ratio ζ is much smaller than 1.

Under these two conditions, the magnitude frequency response is very large: the input sinusoidal signal is efficiently amplified to
a potentially destructive effect. The physical reason for this efficient amplification is that the input signal adds energy to the system
during each oscillation cycle. Even a small periodic driving force can produce large amplitude oscillations due to the constructive
interference between external force and natural frequency.
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6.2.4 Bode plots

In engineering practice, it is convenient to draw the frequency response in logarithmic coordinates. Specifically, the Bode magnitude
plot of the frequency response adopts

(i) the ω horizontal axis is logarithmic, and

(ii) the magnitude |G(iω)| is plotted in decibels, that is, a value |G(iω)| is plotted at 20 log10 |G(iω)|.

The Bode phase plot is plotted on a logarithmic scale for ω and a linear scale for the angle arg
(
G(iω)

)
. Note that, for all frequencies

where G(iω) = 1, we have 20 log10 |G(iω)| = 20 log10(1) = 0.
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Figure 6.5: The Bode magnitude plot and Bode phase plot for a
first-order system, as in equation (6.4), with time constant τ = 1.
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6.2.5 Control System Design Software: The Python Control Systems Library

Programming notes

It is useful to compare popular tools for control system design and analysis, including both commercial and open-source
domains.

• Leading commercial tools include Matlab’s Control System Toolbox and Simulink, which are widely used for their
comprehensive features in control design, system simulation, and robust analysis capabilities.

• The Python Control Systems Library (python-control) is an open-source library designed for analyzing and designing
feedback control systems, see (Fuller et al., 2021). It offers functionality for modeling linear time-invariant (LTI) systems,
computing step responses, performing stability and frequency response / Bode analysis, and designing controllers using
techniques such as root locus and frequency-domain methods.

Its tight integration with Python ensures compatibility with other scientific libraries like NumPy and SciPy, making it a
strong choice for users who prefer open-source, Python-based workflows, although commercial tools might provide more
specialized features and enhanced usability for large-scale projects.

https://python-control.org
https://python.org
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6.3 Lightly damped systems and the beating phenomenon

By lightly damped system we mean a second-order system with very small damping ratio ζ ≪ 1.
In this section, we study beating, a phenomenon that arises when the driving frequency is close to the natural frequency of the

lightly damped system, often observed as the system approaches resonance.
To understand the behavior of a lightly-damped second order system, we study the forced response of the undamped second-order

system with ζ = 0 subject to a unit-magnitude sinusoidal input.

um clea
7 G(s) -

(eum
u(t) = sin not

(c) ??

um sum of

u(t) = sin
not 7 two

sinusoids

Figure 6.7: A sinusoidal input forcing an undamped second-order system, that is, an harmonic oscillator.
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6.3.1 A detour: Constructive and destructive interference of sinusoidal waves

We start by considering the sum of two sinusoidal waves with frequencies ω1 and ω2 such that ω1 ≈ ω2.
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Figure 6.8: This plot illustrates the phenomenon of constructive and destructive interference between two sine waves, sin(ω1t) and sin(ω2t), with close but
distinct frequencies (ω1 = 20π rad/s and ω2 = 20.2π rad/s). The sum of the two waves exhibits a beating pattern, where the amplitude alternates between high
(constructive interference) and low (destructive interference), creating the characteristic modulation observed in the combined signal.
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To better understand the beating phenomenon for two sinusoidal waves, we use the sum-to-product trigonometric formula:1

sinα + sin β = 2 sin
(α + β

2

)
cos

(α− β

2

)
(valid for each pair of angles α, β)

and show that the sum (the result of the interference) of two sinusoidal waves satisfies the following equality:

sin(ω1t) + sin(ω2t) = 2 cos
(ω1 − ω2

2
t
)

︸ ︷︷ ︸
slowly-varying beating amplitude

· sin
(ω1 + ω2

2
t
)

︸ ︷︷ ︸
ω1+ω2

2 ≈ ω1 ≈ ω2

(6.10)

When the two frequencies ω1 and ω2 are approximately equal, this expression shows the resulting wave (see the blue curve in
Figure 6.8) has

(i) amplitude that slowly varies with the beat frequency 1
2 |ω1 − ω2| ≪ (ω1 + ω2)/2, and

(ii) frequency equal to the average of the similar frequencies (ω1 + ω2)/2 ≈ ω1 ≈ ω2.

1More sum-to-product formulas are reviewed in Appendix 6.5
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6.3.2 The response of an harmonic oscillator to a sinusoidal input

At zero damping ζ = 0 and natural frequency ωn > 0, the transfer function (in canonical form) is

Gundamped(s) =
Y (s)

U(s)
=

ω2
n

s2 + ω2
n

(6.11)

and its two poles are purely imaginary so that the system is marginally stable (but not stable). Therefore, even when we study the
forced response from zero initial conditions, there will be non-vanishing terms due to the marginally stable system dynamics.

We now take u(t) = sin(ωt) at some input frequency ω, and compute the response in the Laplace domain:

Y (s) = Gundamped(s) · L[sin(ωt)] =
ω2
n

s2 + ω2
n
· ω

s2 + ω2
(6.12)

Using the inverse Laplace transform (see Exercise E6.2), one can verify that, for ω ̸= ωn, the forced response is the weighted sum of
two sinusoidal signals:

yforced(t) = L−1
[ ωω2

n

(ω2 + s2) (ω2
n + s2)

]
=

ωn

ω2 − ω2
n

(
ω sin (ωnt)− ωn sin (ωt)

)
(6.13)

In class assignment

Why are there two sinusoids in yforced(t)?
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6.3.3 Approximating the solution at approximately-equal frequencies

Next, it is important to study the case when input and natural frequencies are approximately equal:

ω ≈ ωn =⇒ ω + ωn ≈ 2ωn and |ω − ωn| ≪ ωn.

Using the trigonometric analysis in Appendix 6.5, the forced response yforced(t) in equation (6.13) can be approximated as:

yforced(t) =
ωn

ω2 − ω2
n

(
ω sin (ωnt)− ωn sin (ωt)

)
≈ ωn

ω − ωn
· sin

(ωn − ω

2
t
)

︸ ︷︷ ︸
large slowly-varying beating amplitude

· cos
(ωn + ω

2
t
)

(6.14)

where

•
ωn

ω − ωn
is a large amplitude proportional to 1/|ω − ωn|,

• sin
(ωn − ω

2
t
)

is a slow oscillatory enclosing envelope with beat frequency |ω − ωn|/2 ≪ ωn,

• cos
(ωn + ω

2
t
)

is a cosine wave at high frequency (ω + ωn)/2 ≈ ωn.

The response alternates between constructive and destructive interference, causing the amplitude of the oscillation to slowly rise
and fall periodically. In other words,

When input and natural frequency are approximately equal ω ≈ ωn, the response is an oscillation at the natural frequency ωn

with a large amplitude that rises and falls periodically with a slow beat frequency. This is called the beating phenomenon.
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Response of an undamped system to a sinusoidal forcing (ζ = 0)

0 50 100 150 200 250 300

Time

−20

−10

0

10

20

S
y
st

em
R

es
p

o
n

se

Response of a Undamped System to a Sinusoidal Input (ω/ωn = 0.01, ζ = 0.0)

System Response

Input Signal

(a) ω/ωn = 0.01
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(b) ω/ωn = 0.1
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(c) ω/ωn = 0.5
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(d) ω/ωn = 0.95 – beats
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(e) ω/ωn = 1.0 – resonance
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(f) ω/ωn = 1.025 – beats
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(g) ω/ωn = 1.5
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(h) ω/ωn = 3.0
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Figure 6.9: Forced response of an undamped second-order system (ζ = 0 and ωn = 1) to a unit-magnitude sinusoidal input, plotted for different values of the
ratio ω/ωn. Python code available at frequencyresponse-undamped.py
For ω ≈ ωn, the forced response consists of an oscillation at nearly the driving frequency ω, whose amplitude rises and falls periodically with a beat frequency
(1/2)|ω − ωn|.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/frequencyresponse-undamped.py
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Response of a lightly damped system to a sinusoidal forcing (ζ = 0.001)
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(a) ω/ωn = 0.01
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(b) ω/ωn = 0.1
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(c) ω/ωn = 0.5
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(d) ω/ωn = 0.95 – beats
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(e) ω/ωn = 1.0 – resonance
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(f) ω/ωn = 1.025 – beats
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(g) ω/ωn = 1.5
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(h) ω/ωn = 3.0
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Figure 6.10: Forced response of an lightly-damped second-order system (ζ = 0.001 and ωn = 1) to a unit-magnitude sinusoidal input, plotted for different values
of the ratio ω/ωn.
The lesson is that: for very small damping and short duration of time, the solution is very similar to that for the undamped solution.
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Response of a damped system to a sinusoidal forcing (ζ = 0.01)
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(a) ω/ωn = 0.01
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(b) ω/ωn = 0.1
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(c) ω/ωn = 0.5
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(d) ω/ωn = 0.95 – beats
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(e) ω/ωn = 1.0 – resonance
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(f) ω/ωn = 1.025 – beats
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(g) ω/ωn = 1.5
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(h) ω/ωn = 3.0
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Figure 6.11: Forced response of an lightly-damped second-order system (ζ = 0.01 and ωn = 1) to a unit-magnitude sinusoidal input, plotted for different values
of the ratio ω/ωn.
The lesson is that: as ζ increases, the beating phenomenon disappears.
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Comments on the beats phenomenon According to wikipedia:beats: “In acoustics, a beat is an interference pattern between two
sounds of slightly different frequencies, perceived as a periodic variation in volume.” Beats are often used to tune musical instruments
to the correct pitch by comparing the instrument’s frequency with a reference frequency.

In mechanical systems, beats can be observed when two oscillating components (like springs or pendulums) with similar but not
identical natural frequencies are coupled. Beats can be an indicator of potential resonance problems. For instance, in a machine with
rotating parts, the presence of a beat frequency might indicate a close match in the rotational frequencies, potentially leading to
resonance.

https://en.wikipedia.org/wiki/Beat_(acoustics)
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6.4 Appendix: Steady-state response of stable systems to sinusoidal inputs

As for the step response in Section 5.5, we consider only stable dynamical systems, that is, all poles of the transfer function are in the
(strict) left half plane. The formula (6.1) can be then derived in three steps.

Step 1: Computing the Laplace transform. Assuming G(s) has distinct stable poles −p1, . . . ,−pn, since s2 + ω2 = (s− iω)(s+ iω)

Y (s)
u(t)=sin(ωt)

= G(s)
ω

s2 + ω2

partial fraction expansion
=

r−
s− iω

+
r+

s+ iω
+

n∑
i=1

ri
s+ pi

(6.15)

where the residues r− and r+ may be complex. Since the poles −pi are stable, each term ri
s+pi

gives rise to an exponentially decaying
term. Therefore, the steady state response is

ysteady-state(t) = r− e+iωt+r+ e−iωt (6.16)

Step 2: Using the single-pole residue formula on both complex poles. From the residue formula (4.40), we compute

r− = (s− iω)G(s)
ω

s2 + ω2

∣∣∣
s=+iω

= G(s)
ω

s+ ω

∣∣∣
s=iω

=
1

2i
G(iω) =

1

2i
|G(iω)| eiϕ (ϕ = arg

(
G(iω)

)
)

r+ = (s+ iω)G(s)
ω

s2 + ω2

∣∣∣
s=−iω

= G(s)
ω

s− ω

∣∣∣
s=−iω

= − 1

2i
G(−iω)

(∗)
= − 1

2i
|G(iω)| e−iϕ, (6.17)

where the equality (∗) follows from the property G(s) = G(s) for any complex number s and rational function G.

Step 3: Using the inverse Euler formula. Plugging the expressions for r− and r+ into formula (6.16), we obtain

ysteady-state(t) = |G(iω)|e
i(ωt+ϕ)− e−i(ωt+ϕ)

2i
= |G(iω)| sin(ωt+ ϕ), (6.18)

where we used the inverse Euler formula sin(θ) = eiθ − e−iθ

2i from Figure 4.1.
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6.5 Appendix: Trigonometric explanation of the beating phenomenon

The sum-to-product formulas in trigonometry The sum-to-product formulas are trigonometric identities that transform the sum or
difference of trigonometric functions into a product of trigonometric functions. The four main formulas are:

sinα + sin β = 2 sin
(α + β

2

)
cos

(α− β

2

)
(6.19)

sinα− sin β = 2 cos
(α + β

2

)
sin

(α− β

2

)
, (6.20)

cosα + cos β = 2 cos
(α + β

2

)
cos

(α− β

2

)
, (6.21)

cosα− cos β = −2 sin
(α + β

2

)
sin

(α− β

2

)
. (6.22)

But the general concept holds even more generally.
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Approximate frequency response of an undamped system In this appendix, we study the expression
1

ω2 − ω2
n

(
ω sin(ωnt)− ωn sin(ωt)

)
and obtain an approximate equality when ω ≈ ωn. Summing and subtracting the sum-to-product formulas (6.19) and (6.20), we
obtain:

sinα = cos
(α + β

2

)
sin

(α− β

2

)
+ sin

(α + β

2

)
cos

(α− β

2

)
(6.23)

sin β = sin
(α + β

2

)
cos

(α− β

2

)
− cos

(α + β

2

)
sin

(α− β

2

)
(6.24)

We let α = ωnt, β = ωt and scale the two equations with appropriate coefficients to obtain:

ω sin(ωnt) = ω cos
(ωn + ω

2
t
)
sin

(ωn − ω

2
t
)
+ ω sin

(ωn + ω

2
t
)
cos

(ωn − ω

2
t
)
, (6.25)

ωn sin(ωt) = ωn sin
(ωn + ω

2
t
)
cos

(ωn − ω

2
t
)
− ωn cos

(ωn + ω

2
t
)
sin

(ωn − ω

2
t
)
. (6.26)

Next, we subtract the second equation from the first

ω sin(ωnt)− ωn sin(ωt) = (ω + ωn) cos
(ωn + ω

2
t
)
sin

(ωn − ω

2
t
)
+ (ω − ωn) sin

(ωn + ω

2
t
)
cos

(ωn − ω

2
t
)

(6.27)

and we scale the result to obtain

1

ω2 − ω2
n

(
ω sin(ωnt)− ωn sin(ωt)

)
=

1

ω − ωn
cos

(ωn + ω

2
t
)
sin

(ωn − ω

2
t
)
+

1

ω + ωn
sin

(ωn + ω

2
t
)
cos

(ωn − ω

2
t
)
. (6.28)

Finally, when ω ≈ ωn, we note
∣∣∣ 1

ω − ωn

∣∣∣ ≫ 1

ω + ωn
so that

1

ω2 − ω2
n

(
ω sin(ωnt)− ωn sin(ωt)

)
≈ 1

ω − ωn
sin

(ωn − ω

2
t
)
cos

(ωn + ω

2
t
)

(6.29)
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Physical interpretation of beating via phasors The phasor representation of a sinusoidal signal is a complex number that encodes the
amplitude and phase of the sinusoid. Specifically,

a sin(ωt+ θ) 7→ a eiθ︸︷︷︸
phasor representation

(6.30)

Phasors simplify the analysis of sinusoidal signals by expressing them as a constant magnitude and phase angle, ignoring the
explicit time dependence. A key property is the sum property for sinusoidal signals with equal frequency :

a sin(ωt+ θ) + b sin(ωt+ ϕ) 7→ a eiθ +b eiϕ︸ ︷︷ ︸
sum of the phasors in complex plane

(6.31)

Phasors

·

asio-
I
/

(a) definition of phasor

Phasors

·

asio-
I
/

(b) sum of two phasors (with
equal frequency)

Phasors

· asio

-I
#

(c) constructive

Phasors

· asio

-I
#

(d) destructive

Figure 6.12: Sum of phasors: constructive and destructive interference
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6.6 Historical notes, further reading, and online resources

A classic reference on vibrations is the famous textbook by Den Hartog (1956).
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6.7 Exercises

E6.1 Transfer function and frequency response of an RC circuit. In the diagram below of an RC circuit, let vinput(t) be the voltage at the input, r > 0 be a resistance
in Ohms, c > 0 be a capacitance in Farads, and voutput(t) be the voltage at the output.

r

i(t)
cvin vout

Figure E6.1: First-order RC circuit

(i) Find the governing equation of the circuit in terms of the variables vinput and voutput.

(ii) Compute the Laplace transform of the governing equation assuming voutput(0) = 0.

(iii) Obtain the input-to-output transfer function G(s) =
Voutput(s)
Vinput(s)

for the system.

(iv) Show that the pole of the system is stable.

(v) Compute the magnitude frequency response of the transfer function.

(vi) In applications where signal quality is crucial (e.g., telecommunications and music), circuits such as the above RC circuit are often employed. These circuits
serve as either high-pass filters (i.e., removing low-frequency noise) or low-pass filters (i.e., removing high-frequency noise). Is the above circuit a high-pass
filter or a low-pass filter? Explain your reasoning using the magnitude-frequency response of the transfer function.

Answer:

(i) Applying Kirchoff’s laws, the differential equation governing the system is given by

voutput(t) = vinput(t)− rc
dvoutput

dt

(ii) The Laplace transform is given by

L[voutput] = Vinput(s)− rc(sVoutput(s)− voutput(0))

=⇒ Voutput(s) = vinput(s)− srcVoutput(s)
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(iii) The input-to-output transfer function is found by rearranging the equation found in the solution of part (ii). It is as follows:

Voutput(s) = vinput(s)− srcVoutput(s)

=⇒ Voutput(s)(src+ 1) = vinput(s)

=⇒ G(s) =
Voutput(s)

vinput(s)
=

1

src+ 1

(iv) By inspecting the transfer function, we find a pole at s = −1/rc. Because r > 0, c > 0, then rc > 0 and this pole must be in the left half of the complex plane
and is therefore stable.

(v) The magnitude-frequency response is found by

|G(s)| = |G(iω)| =
∣∣∣∣ 1

iωrc+ 1

∣∣∣∣
=

1√
1 + (ωrc)2

(vi) By inspection of the magnitude-frequency response, as the frequency ω becomes larger (i.e., high-frequency) then |G(iω)| → 0. Therefore, this would eliminate
high-frequency noise indicating that the circuit behaves as a low-pass filter.

■
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E6.2 Sinusoidal forcing of an undamped second-order system. Given damping ratio ζ and natural frequency ωn, the canonical form of a second order system is

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = ω2

nu(t)

In this exercise, we set the damping ratio to zero: ζ = 0.

(i) Compute the transfer function G(s) = Y (s)/U(s).

(ii) Compute the poles of G(s).

(iii) Is the system stable, marginally stable, or unstable?

(iv) Assume the input is a unit-magnitued sinusoidal signal u(t) = sin(ωt) and use the partial fraction expansion to compute the forced response Y (s) from zero
initial conditions.
Hint: A correct answer needs to have the correct expansion, with all potential terms (even those that, in the end, have zero coefficient). There should be 4 terms
and 4 free coefficients.

(v) Compute the inverse Laplace transform of Y (s) to obtain y(t).

Answer:

(i) The undamped second order system is ÿ + ω2
ny = ω2

nu(t), so that

s2Y (s) + ω2
nY (s) = ω2

nU(s) =⇒ G(s) =
Y (s)

U(s)
=

ω2
n

s2 + ω2
n

(ii) We compute
s2 + ω2

n = 0 =⇒ s2 = −ω2
n

so that
s = ±

√
−ω2

n =⇒ s = ±iωn

(iii) The system is marginally stable, because the poles are on the imaginary axis and not repeated.
(iv) We compute

Y (s) = G(s) · L[sin(ωt)] = ωω2
n

(s2 + ω2
n)(s

2 + ω2)
(E6.1)

Therefore, we setup the partial fraction expansion:

ωω2
n

(s2 + ω2
n)(s

2 + ω2)
= A1

ωn

(s2 + ω2
n)

+A2
s

(s2 + ω2
n)

+ B1
ω

(s2 + ω2)
+B2

s

(s2 + ω2)
(E6.2)
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Next, we compute

ωω2
n = A1ωn(s

2 + ω2) +A2s(s
2 + ω2) +B1ω(s

2 + ω2
n) +B2s(s

2 + ω2
n) (E6.3)

= A1ωns
2 +A1ωnω

2 +A2s
3 +A2ω

2s+B1ωs
2 +B1ωω

2
n +B2s

3 +B2ω
2
ns (E6.4)

= (A2 +B2)s
3 + (A1ωn +B1ω)s

2 + (A2ω
2 +B2ω

2
n)s+A1ωnω

2 +B1ωω
2
n (E6.5)

We now setup 4 linear equations in 4 unknowns (A1, A2, B1, and B2):

A2 +B2 = 0 (E6.6)

A1ωn +B1ω = 0 (E6.7)

A2ω
2 +B2ω

2
n = 0 (E6.8)

A1ω
2
nω

2 +B1ωω
2
n = ωω2

n (E6.9)

After some calculations, we obtain

A1 =
ωωn

ω2 − ω2
n

, A2 = 0, B1 =
−ω2

n

ω2 − ω2
n

, B2 = 0,

and, finally:

Y (s) =
ωn

ω2 − ω2
n

( ωωn

s2 + ω2
n
− ωωn

s2 + ω2

)
(v) We are now ready to compute the inverse Laplace transform

y(t) = L−1[Y (s)] =
ωn

ω2 − ω2
n

(
ω sin(ωnt)− ωn sin(ωt)

)
■
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E6.3 Systems with two degrees of freedom: Beating in weakly-coupled identical harmonic oscillators. Consider two identical harmonic oscillators with mass m
and spring stiffness k interconnected by a spring with stiffness kc. (We assume the system has no dampers and no friction).

(i) Write the equations of motion for x1(t) and x2(t), possibly using a free body diagram.

(ii) Define the sum position xsum(t) = x1(t) + x2(t). Summing the equations of motion for x1(t) and x2(t), obtain a differential equation for xsum.
Define the difference position xdiff(t) = x1(t)− x2(t). Subtracting the equations for x2(t) from the equation for x1(t), obtain a differential equation for xdiff.

(iii) What is the natural frequency of the second order dynamics of xsum? What is the natural frequency of the second order dynamics of xdiff?

Next, assume x1(0) = 1, ẋ1(0) = 0 and x2(0) = ẋ2(0) = 0, that is, only the first mass is displaced and zero initial velocities.

(iv) What are corresponding initial conditions for xsum(0), ẋsum(0) and xdiff(0), ẋdiff(0)? Write the solutions for xsum(t) and xdiff(t).

Hint: Recall the solutions to the harmonic oscillator from Section 2.1.2.

(v) Write the solutions for x1(t) and x2(t).

Note: We have learned that
(1) in a mechanical system with two degrees of freedom there exist two natural frequencies,
(2) x1 and x2 are the sum and difference of sinusoidal functions, and
(3) when kc ≪ k, the two frequency satisfy ωsum ≈ ωdiff and the system exhibits the beating phenomenon.
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Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25
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1.00
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n
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Two identical harmonic oscillators connected by a weak spring (x1(0) = 1, x2(0) = ẋ1(0) = ẋ2(0) = 0)

x1(t)

x2(t)

Figure E6.2: Two identical harmonic oscillators coupled by a weak spring
(m = 1, k = 5, and kc = 0.25) display the beating phenomenon.
(1) From physics viewpoint, the potential energy in the initial displace-
ment of the first mass leaks into the second mass, in the sense that at
each time t∗ when x2(t

∗) = 1, energy conservation implies ẋ2(t
∗) = 0

and x1(t
∗) = ẋ1(t

∗) = 0.
(2) Even if the coupling between the two masses is weak, the cumulative
effect of the dynamics is not weak!
Python code available at ex-coupled-oscillators.py

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/ex-coupled-oscillators.py
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Answer:

(i) Using Newton’s law, we obtain

mẍ1 + kx1 = kc(x2 − x1) (E6.10)

mẍ2 + kx2 = kc(x1 − x2) (E6.11)

(ii) Summing the equations, we obtain

m(ẍ1 + ẍ2) + k(x1 + x2) = 0 =⇒ mẍsum + kxsum = 0 (E6.12)

Subtracting the second equation from the first, we obtain

m(ẍ1 − ẍ2) + k(x1 − x2) = 2kc(x2 − x1) =⇒ mẍdiff + (k + 2kc)xdiff = 0 (E6.13)

(iii) The natural frequency for xsum is ωsum =
√

k/m.
The natural frequency for xdiff is ωdiff =

√
(k + 2kc)/m.

(iv) The initial conditions are xsum(0) = 1, ẋsum(0) = 0 and xdiff(0) = 1, ẋdiff(0) = 0.

Given these initial conditions, recall from Section 2.1.3 that the harmonic oscillator ÿ + ωny = 0 has a solution of the form y(t) = a sin(ωnt) + b cos(ωnt).
Since y(0) = 1 and ẏ(0) = 0, one can calculate that the solution is y(t) = cos(ωnt).

Since the two dynamics are simple harmonic oscillators, starting with a unit displacement and zero initial velocity, we have

xsum(t) = cos(ωsumt) and xdiff(t) = cos(ωdifft) (E6.14)

(v) Summing and subtracting:

x1(t) =
1

2

(
xsum(t) + xdiff(t)

)
=

1

2

(
cos(ωsumt) + cos(ωdifft)

)
(E6.15)

x2(t) =
1

2

(
xsum(t)− xdiff(t)

)
=

1

2

(
cos(ωsumt)− cos(ωdifft)

)
(E6.16)

■
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E6.4 High-pass and low-pass filters. Consider a first-order system with the following transfer function:

G(s) =
τs

τs+ 1

with time constant τ > 0.

(i) Write a formula for the magnitude frequency response |G(iω)| and the angular frequency response arg(G(iω)).

(ii) Use your answer from part (i) to write down the steady-state response of the system yss(t) to a unit-magnitude sinusoidal input u = sin(ωt).

(iii) Use your answer from part (ii) to determine

(a) the approximate steady-state response of the system to a low-frequency input ω ≪ 1/τ , and
(b) the approximate steady-state response of the system to a high-frequency input ω ≫ 1/τ .

(iv) A low-pass filter is a system that preserves low-frequency sinusoidal inputs and attenuates high-frequency sinusoidal inputs. A high-pass filter preserves
high-frequency sinusoidal inputs and attenuates low-frequency sinusoidal inputs. Comparing your results in this exercise and the results from Section 6.2.2,
identify which transfer function (G(s) = 1

τs+1 and G(s) = τs
τs+1 ) represents a low-pass filter and which represents a high-pass filter.
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E6.5 Mass-spring-damper system connected to a moving point. In this exercise we study a second-order transfer function that does not match the canonical form
because it has a polynomial of first order in the numerator. This polynomial has a root, called a zero of the transfer function.

Given positive parametersm, b, k, consider the following mass-spring-damper system with position x(t) connected to a moving point y(t):

(i) Derive the equation of motion for the system.

(ii) Take the Laplace transform of the equation you derived in part (i), assuming zero initial conditions.

(iii) Write down the transfer function G(s) from Y (s) to X(s).

(iv) Compute the magnitude frequency response |G(iω)|.
(v) Plot the magnitude frequency response using Python or your software of choice. Use the parameter values m = 1, b = 0.5, and k = 1.

(vi) Where (i.e., for what value of ω) does the resonant peak occur, approximately? What is the approximate value of the magnitude frequency response at this peak?

(vii) Where (i.e., for what value(s) of ω) does the value of the magnitude frequency response equal 1?

(viii) What happens to the value of the magnitude frequency response as ω gets very large? Provide a physical interpretation of what this means for our system.

https://python.org
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E6.6 The undamped vibration absorber. During operation, mechanical systems are often subjected to vibrations (think of your car engine when you turn it on). Often,
these vibrations can pose a potential problem for performance, and as such it can be desirable to eliminate them. Although it is desirable to mitigate vibrations, the
process of doing so is non-trivial. One potential solution to address the problem of vibrations in mechanical systems is the dynamic vibration absorber designed by
Frahn in 1909.

Consider a main massM connected to a wall with spring stiffnessK and subject to an oscillatory force P0 sin(ωt). To dampen the undesirable oscillations, we
attach to the mass M a second smaller massm with a spring with stiffness k. (For clarity, the two springs do not need to have the same stiffness: K ̸= k.)

(i) Compute the equations of motion for the system.

(ii) We claim that one solution to the dynamical system is of the form

x1(t) = a1 sin(ωt) and x2(t) = a2 sin(ωt) (E6.17)

for some frequency ω and constant amplitudes a1 and a2. Substitute the solution in equations (E6.17) into the differential equation found in part (i) and obtain
an algebraic equation for (a1, a2) and the system parameters.

(iii) Show that, when the forcing frequency ω =
√

k/m, the large mass M will not vibrate because a1 = 0.
In other words, the small oscillator (m, k) vibrates in such a manner that its spring force onM is equal and opposite to P0 sin(ωt) at all times.

(iv) Compute the initial conditions for x1(0), ẋ1(0), x2(0), and ẋ2(0) such that x1(t) = 0, and x2(t) = a2 sin(ωt) is a solution to the differential equation in part (i).
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