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Chapter 5

The Transfer Function and Time Responses of Dynamical Systems

In this chapter we define the transfer function and use it to compute the response of canonical systems (first-order and second-order
systems) to canonical inputs (impulse, step, and ramp).
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5.1 The transfer function
We consider a dynamical system with state y(t) and input u(t) in the form:

a0y(t) + a1
dy

dt
(t) + · · ·+ an

dny

dtn
(t) = b0u(t) + b1

du

dt
(t) + · · ·+ bm

dmu

dtm
(t) (5.1)

where

• y(t) is the output , or response,

• u(t) is the input applied to the system,

• a0, . . . , an and b0, . . . , bm are constant coefficients.

In this chapter we are mostly interested in the forced response where all initial conditions are zero. In this case, the response
depends only upon the input:

diy

dti
(0) = 0 for i = 0, 1, . . . , n− 1,

dju

dtj
(0) = 0 for j = 0, 1, . . . ,m− 1.

Since the initial conditions are zero, the derivative property (P2) states L
[ d
dt
y(t)

]
= sY (s) and L

[ d
dt
u(t)

]
= sU(s). Taking the

Laplace transform of left and right hand side of (5.1), we obtain:
(
a0 + a1s+ · · ·+ ans

n
)
Y (s) =

(
b0 + b1s+ · · ·+ bms

m
)
U(s). (5.2)
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The transfer function of the control system is

G(s) =
Y (s)

U(s)
=

b0 + b1s+ · · ·+ bms
m

a0 + a1s+ · · ·+ ansn
=

L[output]
L[input]

∣∣∣
zero initial conditions

(5.3)

In other words, we have the multiplication formula

Y (s) = G(s)U(s) (5.4)

Note:

• This result is simple to remember: in the Laplace domain,

output = transfer function × input (5.5)

• If G(s) and U(s) are rational functions, then also Y (s) is a rational function.

• If u(t) is exponential-like (as in the Laplace transform Tables 4.1 and 4.2) and the ODE is linear, then also y(t) is exponential-like.

• Here are some simple examples (where k is a constant):

(i) y(t) = ku(t) implies G(s) = k,
(ii) y(t) = ku̇(t) implies G(s) = ks, and

(iii) y(t) = k

∫ t

0

u(σ)dσ implies G(s) = k
s .
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Remarks 5.1. Here are some comments and extensions.

(i) Systems of the form (5.1) are said to be linear, because the input and state appear linearly, and time-invariant, because the coefficients
are assumed constant, that is, time invariant.

(ii) The transfer function G(s) is equivalent to the ODE model (5.1), in the sense that G(s) contains the same information as the ODE
model, i.e., the coefficients a0, . . . , an and b0, . . . , bm.

(iii) Many different physical systems may have the same transfer function. Therefore, it makes sense to define and study canonical
systems, e.g., first-order, second-order, etc.
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Canonical transfer functions and canonical inputs

In this and the next chapter we study the responses of canonical systems (i.e., canonical transfer functions) to canonical inputs.

transfer function: canonical form impulse response, step response,
and ramp response

frequency response
(i.e., response to a sinusoidal input)

first order:
1

τs+ 1
Section 5.3 Chapter 6

second order:
ω2
n

s2 + 2ζωns+ ω2
n

Section 5.4 Chapter 6

higher order: no typical form Section 5.5 Chapter 6

Table 5.1: Transfer functions for canonical systems. Their responses to canonical inputs are discussed in this chapter and the next.
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Responses to canonical inputs: impulse, step, and ramp

Given a transfer function G(s), we wish to compute how the system responds to canonical inputs. Specifically, we consider:

impulse response: the response yimpulse(t) from zero initial condition when the input u(t) = δ(t) is a unit impulse,

step response: the response ystep(t) from zero initial condition when the input u(t) = 1(t) is a unit step, and

ramp response: the response yramp(t) from zero initial condition when the input u(t) = t · 1(t) is a unit ramp.

These canonical input have a very simple physical intuition: in a mechanical example, the impulse corresponds to a hammer hitting
a nail, the step corresponds to a constant force applied to a vehicle (like in the car velocity system), and the ramp corresponds to a
growing signal with constant (like a thermometer in a tank that is warming up).

From the Laplace transform Table 4.1 recall that L[δ(t)] = 1, L[1(t)] = 1
s , and L[t] = 1

s2 so that, from Y (s) = G(s)U(s),

Yimpulse(s) = L[yimpulse(t)] = G(s) (5.6)

Ystep(s) = L[ystep(t)] =
1

s
G(s) (5.7)

Yramp(s) = L[yramp(t)] =
1

s2
G(s) (5.8)

Figure 5.1: Unit impulse, unit step, and unit ramp functions
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5.2 The impulse response

Therefore, the impulse response is
Yimpulse(s) = L[yimpulse(t)] = G(s) (5.9)

This simple equation has a surprising implication. Taking the inverse Laplace transform of both left and right hand side we obtain:

yimpulse(t) = L−1[G(s)] = g(t) (5.10)

where, following our convention, we use g(t) denote the function of time whose Laplace transform is G(s).
We have learned:

(i) the Laplace transform of the impulse response is the transfer function,

(ii) to learn the transfer function of an unknown system, (1) apply an impulse and (2) take the Laplace transform of the response

(iii) the impulse response contains all information about the input/output control system

Note: the following representations are all equivalent:

(i) two vectors of coefficients a0, . . . , an and b0, . . . , bm,

(ii) the differential equation (5.1),

(iii) the transfer function G(s) =
b0 + b1s+ · · ·+ bns

m

a0 + a1s+ · · ·+ ansn
, and

(iv) the impulse response yimpulse(t) = L−1[G(s)]
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5.2.1 Detour: The impulse response in vehicle dynamics and audio system analysis

Remark 5.2 (The impulse response in acoustics). In the field of acoustics and audio engineering, measuring the impulse response
of a room (like a concert hall or a living room) or an audio system (like a speaker or a microphone) is very useful. Measuring impulse
response is the first step towards optimizing them for audio quality and thereby designing audio-related products and technologies.

In the context of acoustics, the impulse response is the sound received at a specific location B in response to a brief large-magnitude
input signal at location A.

SoundQuality Assessment: By analyzing the impulse response, engineers can determine the reverberation characteristics of a room.
This helps in assessing how sound is reflected and absorbed, affecting the quality of audio heard in the space.

Speaker and Microphone Design: Understanding the impulse response of speakers and microphones allows designers to optimize their
products for clarity, frequency response, and distortion characteristics.

Audio Mixing and Mastering: In music production, the impulse response of different spaces (like concert halls, studios, etc.) can be
used to digitally simulate how music would sound in those environments.

Noise Reduction and Echo Cancellation: In telecommunications, the impulse response of devices and environments helps in developing
algorithms for noise reduction and echo cancellation.
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5.3 First order systems and their responses

It is useful to consider examples of canonical transfer functions and their responses. We start with first order systems. Examples of
first order systems include:
(i) the linear growth/decay model (1.1),
(ii) the car velocity system (2.4),
(iii) the thermal dynamics of a thermometer, and
(iv) the RC circuit.

Figure 5.2: Illustrations of first order systems from earlier and later chapters.
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As in Section 2.1.1, given a time constant τ > 0, the canonical form of a first order system is

τ ẏ(t) + y(t) = u(t) (5.11)

where, as usual, u(t) and y(t) are the input and output of the system. The transfer function is

Gfirst-order(s) =
Y (s)

U(s)
=

1

τs+ 1
(5.12)

Figure 5.3: The transfer function (5.12) of a first order system has a single real pole at s = −1/τ .
Since τ > 0 is always positive, the pole is always on the strict left half plane.
When the time constant τ increases, the pole s = −1/τ moves towards the imaginary axis and the system
response (both free and forced) becomes slower.

Via the inverse Laplace transform methods, we compute the impulse, step, and ramp response of a first-order system to be:

yimpulse(t) = L−1

[
1

sτ + 1

]
=

1

τ
e−t/τ (5.13)

ystep(t) = L−1

[
1

s (sτ + 1)

]
= 1− e−t/τ (5.14)

yramp(t) = L−1

[
1

s2 (sτ + 1)

]
= t− τ(1− e−t/τ) (5.15)

These calculations are left to Exercise E5.1.
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Impulse, step and ramp responses of first-order systems
1 import numpy as np; import matplotlib.pyplot as plt; import control as ctrl
2 plt.rcParams.update ({"text.usetex": True , "font.family": "serif", "font.serif": ...

["Computer Modern Roman"] })
3

4 # Define a range of time constants and time range for the simulation
5 time_constants = [10, 8, 5, 3, 2, 1, 0.5]
6 t = np.linspace(0, 25, 1000)
7

8 # Define your preferred color vector
9 colors = ['#752 d00', '#a43e00 ', '#d35000 ', '#ff6100 ', '#ff8800 ', '#ffaf00 ', '#ffcc00 ']
10

11 # Initialize the figure for impulse , step , and ramp responses
12 fig , axs = plt.subplots(3, 1, figsize =(10, 10))
13

14 # Loop through each time constant and plot the impulse , step , and ramp responses
15 for idx , tau in enumerate(time_constants):
16 # Define the transfer function of the first -order system
17 num = [1]
18 den = [tau , 1]
19 system = ctrl.TransferFunction(num , den)
20

21 # Compute and plot the impulse response
22 t_impulse , y_impulse = ctrl.impulse_response(system , T=t)
23 axs [0]. plot(t_impulse , y_impulse , label=f'$\\tau = {tau}$', color=colors[idx])
24

25 # Compute and plot the step response
26 t_step , y_step = ctrl.step_response(system , T=t)
27 axs [1]. plot(t_step , y_step , label=f'$\\tau = {tau}$', color=colors[idx])
28

29 # Compute and plot the ramp response
30 ramp_input = t
31 t_ramp , y_ramp = ctrl.forced_response(system , T=t, U=ramp_input)
32 axs [2]. plot(t_ramp , y_ramp , label=f'$\\tau = {tau}$', color=colors[idx])
33

34 # Add labels , legends , grid , and set xlim for all subplots
35 for ax in axs:
36 ax.legend (); ax.grid(True); ax.set_xlim(0, 25); ax.set_ylabel('Response ')
37 axs [0]. set_xlim(0, 5); axs [0]. set_xticklabels ([]); axs [1]. set_xticklabels ([]);
38

39 # Add arrow with text
40 arrow_color = '#0055 A4'
41 text_color = arrow_color
42

43 axs [0]. text (0.5, 0.5, "increasing $\\tau$", ha="center", va="center", rotation =45, ...
size=15, color=text_color , bbox=dict(boxstyle="larrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

44 axs [1]. text (2.5, 0.75, "increasing $\\tau$", ha="center", va="center", rotation =-45, ...
size=15, color=text_color , bbox=dict(boxstyle="rarrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

45 axs [2]. text(15, 12, "increasing $\\tau$", ha="center", va="center", rotation =-45, ...
size=15, color=text_color , bbox=dict(boxstyle="rarrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

46

47 # Plot unit step and unit ramp in gray
48 axs [1]. plot(t, np.ones_like(t), label='Unit Step', color='gray', linestyle='--')
49 axs [2]. plot(t, t, label='Unit Ramp', color='gray', linestyle='--')
50

51 axs [0]. set_title(r'Impulse response of 1st order system , for varying time constant $\tau$');
52 axs [1]. set_title(r'Step response of 1st order system , for varying time constant $\tau$');
53 axs [2]. set_title(r'Ramp response of 1st order system , for varying time constant ...

$\tau$'); axs [2]. set_xlabel('Time (s)')
54

55 # Adjust layout and save the plot to a PDF file
56 plt.tight_layout (); plt.savefig('1storder -responses.pdf', bbox_inches='tight ')

Listing 5.1: Python script generating Figure 5.4. This script relies upon the Python Control
Systems Library (Fuller et al., 2021). Available at

1storder-responses.py
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Figure 5.4: Canonical responses of the first order dynamics (5.11), when the input is a
unit impulse, a unit step, and a unit ramp.
For increasing time constant τ , the system response become slower for all three inputs
and, for the ramp response, the difference between input and output (tracking error)
becomes larger.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/1storder-responses.py
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/1storder-responses.py
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5.4 Second order systems and their responses

Example of second order systems include:
(i) the forced mass-spring-damper system (2.12),
(ii) the RLC circuit (2.44), and
(iii) the linearized pendulum about either the up or down position (3.30).
(We will study more examples in the third part.1 )

Figure 5.5: Illustrations of second order systems from earlier chapters.

1Namely, a first order system subject to proportional + integral control (7.28), and an inverted pendulum subject to proportional + derivative control (7.33).
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5.4.1 Transfer function of a mass-spring-damper systems

<latexit sha1_base64="sFL0TVHgznw0uGZLWa+I8uIUUU0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkZsBLx4TMA9IljA76U3GzM4uM7NCCPkCLx4U8eonefMv/AQnmxw0saChqOqmuytIBNfGdb+cldW19Y3N3FZ+e2d3b79wcNjQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSLuoWiW3IzkGXizUnx5hsyVLuFz04vZmmE0jBBtW57bmL8MVWGM4GTfCfVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzVh2R9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDZ5G4K3+PIyaZyXvKvSZe2iWCnP0oAcHMMJnIEH11CBO6hCHRggPMELvDoPzrPz5rzPWlec+cwR/IHz8QNw3Y4g</latexit>

m
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b
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k
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f

Figure 5.6: Generalizing equation (2.12), a mass-spring-damper system with parameters
m > 0, b ≥ 0, and k > 0, subject to a force f(t).

In our discussion, the mass and the spring coefficient are always positive, but we
do allow the damper to be present (b > 0) or not (b = 0).

Consider a forced mass spring damper system:

mẍ(t) + bẋ(t) + kx(t) = f(t). (5.16)

Taking the Laplace transform (at zero initial conditions) we obtain

(ms2 + bs+ k)X(s) = F (s) (5.17)

and therefore the transfer function is
X(s)

F (s)
=

1

ms2 + bs+ k
(5.18)

Recall the definition of natural frequency ωn =
√

k/m.
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In class assignment

Recallm > 0 and k > 0, whereas b ≥ 0.

Where may the two poles be in the complex plane?
How many qualitatively different cases do there exist?
When is a system fast or slow?
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5.4.2 Canonical form of second-order systems with canonical parameters (ωn, ζ)

Before computing the poles of a generic second order system it is convenient to define a canonical form with canonical parameters
(like the time constant τ > 0 for first order systems).

The canonical form of a second order system is

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = ω2

nu(t) (5.19)

with corresponding transfer function

Gsecond-order(s) =
Y (s)

U(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(5.20)

where, as usual, u(t) and y(t) are the input and output of the system, and where the canonical parameters are:

• ωn > 0 is the natural frequency of the system, indicating how fast the system oscillates in the absence of damping; and

• ζ ≥ 0 is the damping ratio, a dimensionless measure of damping in the system.

Remark 5.3 (The canonical form and the mass-spring-damper system). We compare the canonical form of a second order
system with the mass-spring-damper system. The natural frequency ωn and damping ratio ζ can be computed as functions of massm,
spring stiffness k and damping coefficient b by matching the denominators of (5.20) and (5.18) (divided bym), that is,

1

m
(ms2 + bs+ k) = s2 + 2ζωns+ ω2

n (5.21)

=⇒ ωn =

√
k

m
and ζ =

b

2
√
mk

. (5.22)

•



Lectures on Dynamical Systems, ed. 2024 (This version: November 18, 2024). Chapter 5, slide 18

5.4.3 Classification of second-order systems, as a function of the pole placement

We are now ready to compute the two poles of the second-order system in canonical form (5.20), which we report for convenience:

Gsecond-order(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(5.23)

The poles are

poles of Gsecond-order(s) =
−2ζωn ±

√
4ζ2ω2

n − 4ω2
n

2
= −ωn

(
ζ ±

√
ζ2 − 1

)

Depending upon the damping ratio ζ , the poles are purely imaginary, complex conjugate, real equal, or real distinct, see Figure 5.7.
When 0 < ζ < 1, we write

complex conjugate poles of Gsecond-order(s) = −ζωn ± iωd , where the damped natural frequency is ωd = ωn

√
1− ζ2

(a) ζ = 0.0 =⇒ two poles = ±iωn

Case I: undamped system
(b) ζ = 0.2
Case II: underdamped system

(c) ζ = 0.5
Case II: underdamped system

(d) ζ = 0.8
Case II: underdamped system

(e) ζ = 1.0 =⇒ two poles = −ωn

Case III: critically-damped system
(f) ζ = 1.1
Case IV: overdamped system

(g) ζ = 1.5
Case IV: overdamped system

Figure 5.7: Poles of a second order system as a function of the damping ratio ζ , at fixed natural frequency ωn. The dashed semicircle has radius ωn.
At ζ = 0, the two poles are purely imaginary and equal to ±iωn.
As ζ increases from 0 to 1, the two complex conjugate poles move strictly inside the left half plane, sliding along the semicircle.
When 0 < ζ < 1, the two complex conjugate poles have real part −ζωn and imaginary part ±iωd.
At ζ = 1, the two poles are coincident at the real value −ωn.
For ζ > 1, the two poles split: one moves left towards −∞ (the fast pole) and one moves right towards the imaginary axis (the slow dominant pole).
Available at 2ndorder-poles.py

http://motion.me.ucsb.edu/ME103-Fall2024/handouts/2ndorder-poles.py
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damping
ratio ζ

poles of transfer function (5.23) and
corresponding functions of time

poles location
(dashed line =

circle of radius ωn)

free response of ẍ+ 2ζωnẋ+ ω2
nx = 0

with initial conditions x(0) = 1 and
ẋ(0) = 0

Case I:
undamped
system ζ = 0

two poles = ±iωn

sin(ωnt) , cos(ωnt)

sinusoidal waves
−1.0

−0.5

0.0

0.5

1.0

Case II:
underdamped

system 0 < ζ < 1

two poles=−ωnζ±iωn

√
1− ζ2

e−ωnζt sin(ωdt) ,

e−ωnζt cos(ωdt)

where ωd = ωn

√
1− ζ2

damped sinusoidal waves
−1.0

−0.5

0.0

0.5

1.0

Case III:
critically-
damped
system ζ = 1

two poles = −ωn

e−ωnt , t e−ωnt

exponential decay (with transient)
−1.0

−0.5

0.0

0.5

1.0

Case IV:
overdamped

system ζ > 1

two poles = −ωn(ζ±
√
ζ2 − 1)

slow pole: e−ωn(ζ−
√

ζ2−1)t

fast pole: e−ωn(ζ+
√

ζ2−1)t

exponential decay
−1.0

−0.5

0.0

0.5

1.0

Table 5.2: Classification of a second order system into 4 classes: undamped, underdamped, critically-damped, and overdamped.
For 0 < ζ < 1 (Case II), the damped frequency is ωd = ωn

√
1− ζ2. Note ωd < ωn, so the presence of damping diminishes the frequency of oscillations.

In the overdamped case (Case IV), the pole close to the imaginary axis is the slow pole, whereas the pole moving towards −∞ is the fast pole.
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+iωn

+iωd = +iωn

√
1− ζ2

−ζωn
−ωn

−iωn

β(ζ) = tan−1

(√
1−ζ2

ζ

)

Poles of an underdamped system in the complex plane

Figure 5.8: Poles of an underdamped second-order system, defined by a natural frequency ωn and a damping ratio 0 < ζ < 1.
Note the damped natural frequency ωd and the damping angle β(ζ).
To verify that the complex conjugate poles of Gsecond-order(s) move on the circle of radius ωn, it suffices to show that |−ζωn ± iωd| = ωn.
Available at 2ndorder-pole-beta.py

http://motion.me.ucsb.edu/ME103-Fall2024/handouts/2ndorder-pole-beta.py
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Case I: Undamped systems. When ζ = 0, the system is undamped and exhibits persistent oscillatory behavior.

Case I: Underdamped systems. When 0 < ζ < 1, the system is underdamped and exhibits damped oscillatory behavior.

Case III: Critically-damped systems. When ζ = 1, the system is critically damped and returns to equilibrium as quickly as
possible without oscillating.

Case IV: Overdamped systems. When ζ > 1, the system is overdamped and returns to equilibrium without oscillating, but
more slowly than in the critically damped case.

Regarding the natural frequency: this parameter determines the speed of the response in each of the four cases.
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Remark 5.4 (The canonical form and the mass-spring-damper system: continued). For a mass-spring-damper system, the
characteristic equation isms2+ bs+ k = 0 and its solutions are −b±

√
b2−4mk
2m . Therefore, the two roots are equal and real when b2 = 4mk.

We define the critical damping parameter as bcritical = 2
√
mk. Then

• the system is underdamped for b < bcritical = 2
√
mk,

• the system is critically damped for b = bcritical = 2
√
mk, and

• the system is overdamped for b > bcritical = 2
√
mk.

• It is now clear why ζ is called the damping ratio: for mass-spring-dampers systems, ζ is indeed a ratio:

ζ =
b

bcritical
=

b

2
√
mk

.

•
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5.4.4 Step response of an underdamped system

For an underdamped second-order system with damping ratio 0 < ζ < 1, and arbitrary natural frequency ωn, the step response is

y(t) = 1− e−ζωnt
(
cos(ωdt) +

ζ√
1− ζ2

sin(ωdt)
)

(5.24)

where ωd = ωn

√
1− ζ2 is the damped natural frequency . (We refer to Appendix 5.6 for inverse Laplace transform calculations.)

0 2 4 6 8 10 12

Time (t)

0

0.5

1

1.25

1.4

Trise

Tpeak

Tsettling

ζ = 0.40, ωn = 1

y(t)

rise time Trise = 2.16

peak time Tpeak = 3.43

percent overshoot = Mpercent = 25.4%

5% settling time Tsettling = 7.50

(a) ζ = .4 and ωn = 1

0 2 4 6 8 10 12

Time (t)

0

0.5

11.02

1.4

Trise

Tpeak
Tsettling

ζ = 0.80, ωn = 1

y(t)

rise time Trise = 4.16

peak time Tpeak = 5.24

percent overshoot = Mpercent = 1.5%

5% settling time Tsettling = 3.75

(b) ζ = .8 and ωn = 1

Figure 5.9: Step response of an underdamped second order system from zero initial position and initial velocity, for varying damping ratios ζ .

The step response shows how different values of ζ affect key characteristics such as rise time, peak time, percent overshoot, and settling time.

A low damping ratio ζ = .4 leads to fast response times, but also high overshoot and prolonged oscillations before settling.
A high damping ratio ζ = .8 provides a smooth slower response with minimal overshoot, but also slow reaction times.

http://motion.me.ucsb.edu/ME103-Fall2024/handouts/2ndorder-underdamped-stepresponse.py


Lectures on Dynamical Systems, ed. 2024 (This version: November 18, 2024). Chapter 5, slide 24

Time domain specifications

• The rise time Trise is the time required for the response to rise from 0% to 100% of the final value. Some calculations show:

Trise =
π − β(ζ)

ωd
where β(ζ) = tan−1

(√1− ζ2

ζ

)
(5.25)

• The peak time Tpeak is the time it takes for the response to reach the maximum overshoot value (this is the first peak in the
oscillatory response, at which the overshoot is maximum). Some calculations show:

Tpeak =
π

ωd
=

π

ωn

√
1− ζ2

(5.26)

• The percent overshoot Mpercent is the maximum amount the system response overshoots its final value, devided by its final value.
Some calculations show:

Mpercent = e
− πζ√

1−ζ2 (5.27)

• The settling time Tsettling is the time it takes for the response to remain within a certain range (typically 1% or 5%) of the
steady-state value. For the 1% ad 5% criteria, approximate formulas are:

Tsettling 1% ≈ 5

ζωn
and Tsettling 5% ≈ 3

ζωn
(5.28)

On a related note, the time constant of the underdamped system is

τ =
1

ζωn
(5.29)

It is a useful simple exercise to verify that the values of Trise, Tpeak, Tsettling and Mpercent in Figure 5.9 are correct, for values of ω = 1
and ζ ∈ {0.4, 0.8}.
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5.4.5 Impulse, step, and ramp responses of second-order systems

1 import numpy as np; import matplotlib.pyplot as plt; import control as ctrl
2 plt.rcParams.update ({"text.usetex": True , "font.family": "serif", "font.serif": ...

["Computer Modern Roman"] })
3

4 # Define the parameters of the system
5 natural_frequency = 1.0 # Natural frequency , omega_n
6 damping_ratios = [0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 3.0] # Damping ratios , zeta
7

8 # Define time range for the simulation
9 t = np.linspace(0, 12, 1000); ramp_input = t # Unit ramp input
10 colors = ['#752 d00', '#a43e00 ', '#d35000 ', '#ff6100 ', '#ff8800 ', '#ffaf00 ', '#ffcc00 ']
11

12 # Initialize the figure for impulse , step , and ramp response
13 fig , axs = plt.subplots(3, 1, figsize =(10, 11))
14

15 # Loop through each damping ratio and plot impulse , step , and ramp responses
16 for idx , zeta in enumerate(damping_ratios):
17 # Define the transfer function of the second -order system
18 num = [natural_frequency **2]; den = [1, 2 * zeta * natural_frequency , ...

natural_frequency **2]
19 system = ctrl.TransferFunction(num , den)
20

21 # Compute and plot the impulse response
22 t_impulse , y_impulse = ctrl.impulse_response(system , T=t)
23 line_style = '--' if idx == 4 else '-'
24 axs [0]. plot(t_impulse , y_impulse , line_style , label=f'$\\zeta$ = {zeta}', ...

color=colors[idx])
25

26 # Compute and plot the step response
27 t_step , y_step = ctrl.step_response(system , T=t)
28 axs [1]. plot(t_step , y_step , line_style , label=f'$\\zeta$ = {zeta}', color=colors[idx])
29

30 # Compute and plot the ramp response
31 t_ramp , y_ramp = ctrl.forced_response(system , T=t, U=ramp_input)
32 axs [2]. plot(t_ramp , y_ramp , line_style , label=f'$\\zeta = {zeta}$', color=colors[idx])
33

34 # Add labels , legends , grid , and set xlim for all subplots
35 for ax in axs:
36 ax.legend(loc='lower right '); ax.grid(True); ax.set_xlim(0, 25); ...

ax.set_ylabel('Response ')
37

38 # Set plot properties
39 axs [0]. set_xlim(0, 12); axs [0]. set_ylim (-1.1, 1.1)
40 axs [0]. set_title('Impulse response of 2nd order system , for varying damping ratio $\zeta$')
41 axs [1]. set_xlim(0, 12); axs [1]. set_ylim (-0.1, 2.1)
42 axs [1]. set_title('Step response of 2nd order system , for varying damping ratio $\zeta$ ')
43 axs [2]. set_xlim(0, 12); axs [2]. set_ylim(0, 12); axs [2]. set_xlabel('Time (s)');
44 axs [2]. set_title('Ramp response of 2nd order system , for varying damping ratio $\zeta$ ')
45

46 # Add arrow with text
47 arrow_color = '#0055 A4'
48 text_color = arrow_color # Set text color same as arrow color
49

50 axs [0]. text(1, 0.5, "increasing $\\ zeta$", ha="center", va="center", rotation =-45, ...
size=15, color=text_color , bbox=dict(boxstyle="rarrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

51 axs [1]. text(2, 0.75, "increasing $\\zeta$", ha="center", va="center", rotation =-45, ...
size=15, color=text_color , bbox=dict(boxstyle="rarrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

52 axs [2]. text(7, 5, "increasing $\\zeta$", ha="center", va="center", rotation =-45, ...
size=15, color=text_color , bbox=dict(boxstyle="rarrow ,pad =0.3", fc="none", ...
ec=arrow_color , lw=2, alpha =0.5))

53

54 # Save the plot to a PDF file
55 plt.tight_layout (); plt.savefig('2ndorder -responses.pdf', bbox_inches='tight ')

Listing 5.2: Python script generating Figure 5.10. This script relies upon the Python Control
Systems Library (Fuller et al., 2021). Available at

2ndorder-responses.py
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Figure 5.10: Solutions of the 2nd order dynamics (5.19).

https://python.org
https://python-control.org
https://python-control.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/2ndorder-responses.py
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5.4.6 Free response of an underdamped system

In the undamped and underdamped regime, when 0 ≤ ζ < 1, consider

ẍ+ 2ζωnẋ+ ω2
nx = 0

with positive initial position x(0) = x0 > 0 and zero initial velocity ẋ(0) = 0. Via the inverse Laplace transform calculations in
Appendix 5.6, the free response of an underdamped system

x(t) = x0 e
−ζωnt

(
cos(ωdt) +

ζ√
1− ζ2

sin(ωdt)
)

(5.30)

where the damped frequency is ωd = ωn

√
1− ζ2. Using trigonometric equalities, we can rewrite the solution as

x(t) =
x0√
1− ζ2

e−ζωnt

︸ ︷︷ ︸
exponentially-decaying envelope

· cos
(
ωdt+ arctan

ζ√
1− ζ2

)
(5.31)

The expression (5.31) is useful because the precise expression of the exponentially-decaying envelope is now clear.
As for first order systems, after time equal to 5 · τ , the free response is guaranteed to be below 1% of the initial value

x0√
1− ζ2

.
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1τ 2τ 3τ 4τ 5τ 6τ

time (t)

−x0

0

x0

+ x0√
1−ζ2

− x0√
1−ζ2

τ = 1
ζωn

, ζ = 0.40

x(t) = x0e
−ζωnt

(
cos(ωdt) + ζ√

1−ζ2
sin(ωdt)

)

envelope = ± x0√
1−ζ2

e−ζωnt

(a) ζ = .4

1τ 2τ 3τ 4τ 5τ 6τ

time (t)

−x0

0

x0

+ x0√
1−ζ2

− x0√
1−ζ2

τ = 1
ζωn

, ζ = 0.80

x(t) = x0e
−ζωnt

(
cos(ωdt) + ζ√

1−ζ2
sin(ωdt)

)

envelope = ± x0√
1−ζ2

e−ζωnt

(b) ζ = .8

Figure 5.11: Free response of an underdamped second order system from initial position x0 > 0 and zero initial velocity.
Note: the the exponentially-decaying envelope starts at ± x0√

1− ζ2
.

Note: after time equal to 5 · τ = 5/(ζωn), the solution is guaranteed to be below 1% of the initial value
x0√
1− ζ2

.

Note however: for 0 < ζ < 1, the factor 1√
1−ζ2

is always greater than 1 and approximately 2.3, 7.1 and 22.4 at ζ = .9, .99, .999, respectively.
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Figure 5.12: Illustrations of the free response of undamped and un-
derdamped second-order systems.
Left panels: location of the two poles and semicircle of radius ωn, we
let ωn = 1.
Right panels: the free response from zero initial velocity (solid blue
line) and the exponentially-decaying envelope (dashed gray lines):
± x0√

1− ζ2
e−ζωnt.
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5.5 Higher order systems and their step response

G(s) =
Y (s)

U(s)
=

b0 + b1s+ · · ·+ bms
m

a0 + a1s+ · · ·+ ansn
(5.32)

AssumeG(s) has distinct real poles−p1, . . . ,−pn, meaning that the denominator ofG(s) can be factored as (s+p1)(s+p2) . . . (s+
pn). We assume the poles are in the strict left half plane, that is, all pi are strictly positive.

In class assignment

Why do we assume that the poles are in the left half plane?
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A linear time-invariant system is

• stable when all poles are in the strict left half plane,

• unstable when at least one pole lies in the strict right half plane,

• marginally stable when

– all poles are in the strict half plane or on the imaginary axis,
– the poles on the imaginary axis (if any) are not repeated.
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X X
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X X X
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(d) unstable system
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For a stable transfer function G(s),

(i) if the input is a unit step, then the steady-state output (the output after all decaying signals have decayed) is a step of
magnitude G(0):

u(t) = 1(t) =⇒ ysteady-state(t) = G(0)1(t), (5.33)

(ii) G(0) is the steady-state gain (or DC gain) since it is the amplification (or attenuation) of the input signal at the output.

Note: G(0) = 1 for the canonical forms of first and second-order systems.

We now verify these statements. When u(t) = 1(t) and U(s) = 1
s , the partial fraction expansion of Y (s) = G(s) · 1

s is

Y (s) =
r

s
+

n∑

i=1

ri
s+ pi

(5.34)

for appropriate residues r, r1, . . . , rn. Therefore, the output is the sum of a step function and n exponentially decaying terms:

y(t) = r +
n∑

i=1

ri e
−pit (5.35)

We are particularly interested in the behavior for large times t, when the exponentially decaying terms are below 1% of their
initial value. To study this asymptotic behavior, we compute r using the single-pole residue formula:

r = sY (s)
∣∣∣
s=0

= s · 1
s
G(s)

∣∣∣
s=0

= G(0) (5.36)
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In systems with multiple poles, one or a few dominant poles might primarily determine the system’s transient response. The
dominant poles are the ones closest to the imaginary axis (i.e., with the smallest real parts) which decay more slowly:

• if the dominant pole is a single real pole, the system’s response resembles that of a first-order system, characterized by a
single exponential decay, and

• if the dominant poles are a pair of complex conjugate poles, the response resembles that of a second-order system,
featuring oscillatory behavior with a decay rate governed by the real part of the dominant poles.

This approximation is accurate when the dominant pole(s) are significantly slower (e.g., 5x slower) than the remaining poles.

0 1 2 3 4 5 6 7
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

Step response of higher-order system vs first-order system

Higher Order System (Poles: [-1, (-5+5j), (-5-5j), -7, -9])
First Order System (Pole: [-1])

(a) one dominant pole

0 1 2 3 4 5 6 7
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
sp

on
se

Step response of  higher-order system vs second-order system
Higher Order System (Poles: [(-1+2j), (-1-2j), -5, -7, -9])
Second Order System (Poles: [(-1+2j), (-1-2j)])

(b) complex conjugate poles

Figure 5.13: Step responses of higher-order systems with either a single dominant pole or a pair of dominant complex conjugate poles.
In both cases, the dominant pole approximation has numerator set to have the same DC gain as the original system (unit DC gain in these examples).
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5.6 Appendix: Free and step response for second order systems via Laplace calculations

In this appendix we report some useful calculations that explain some of the formulas and plots presented earlier.
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5.6.1 Step response for underdamped system

We consider an underdamped second-order system with zero initial conditions (x(0) = ẋ(0) = 0) subject to a step input:

ÿ + 2ζωnẏ + ω2
ny = ω2

n1(t) (5.37)

with natural frequency ωn and damping ratio ζ . Since U(s) = 1/s, we compute

Y (s) =
ω2
n

s(s2 + 2ωnζs+ ω2
n)

(5.38)

Since s2 + 2ωnζs+ ω2
n = (s+ ωnζ)

2 + ω2
d for ωd = ωn

√
1− ζ2, we now expand this rational function in a partial fraction expansion

using the terms corresponding to unit step and damped sine and cosine waves:

Y (s) =
α

s
+ β

ωd

(s+ ωnζ)2 + ω2
d
+ γ

s+ ζωn

(s+ ωnζ)2 + ω2
d

(5.39)

To compute α, we can use the residue’s formula:

α = sY (s)
∣∣∣
s=0

= 1. (5.40)

Using the numerators matching method, we can compute the coefficients β and γ and obtain

y(t) = 1− e−ζωnt
(
cos(ωdt) +

ζ√
1− ζ2

sin(ωdt)
)

(5.41)

As this response is equal to the one given in equation (5.24).



Lectures on Dynamical Systems, ed. 2024 (This version: November 18, 2024). Chapter 5, slide 35

5.6.2 Free response for underdamped system

For 0 < ζ < 1, we consider
ẍ+ 2ζωnẋ+ ω2

nx = 0

with initial position x(0) and initial velocity ẋ(0). We take the Laplace transform to obtain:
(
s2X(s)− sx(0)− ẋ(0)

)
+ 2ζωn

(
sX(s)− x(0)

)
+ ω2

nX(s) = 0. (5.42)

From here we compute X(s) as follows

X(s) =
(s+ 2ζωn)x(0) + ẋ(0)

s2 + 2ζωns+ ω2
n

(5.43)

Since the system is underdamped, we define the damped frequency by ωd = ωn

√
1− ζ2 and we note

s2 + 2ζωns+ ω2
n = (s+ ζωn)

2 + (ωn

√
1− ζ)2

by definition
= (s+ ζωn)

2 + ω2
d (5.44)

With this denominator, recalling rows (7) and (8) of Table 4.1, we compute the partial fraction expansion:

X(s) =
ζωnx(0) + ẋ(0)

ωd
· ωd

(s+ ζωn)2 + ω2
d
+ x(0) · s+ ζωn

(s+ ζωn)2 + ω2
d

(5.45)

so that the inverse Laplace transform is immediate:

x(t) =
ζωnx(0) + ẋ(0)

ωd
· e−ζωnt sin(ωdt) + x(0) · e−ζωnt cos(ωdt) (5.46)

When ẋ(0) = 0, we simplify this expression to

x(t) = x(0) e−ζωnt
(
cos(ωdt) +

ζ√
1− ζ2

sin(ωdt)
)
. (5.47)

This solution is shown in Figure 5.12, for varying values of the damping ratio ζ .
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5.7 Appendix: Underdamped systems with zeros in the left and right half plane
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5.8 Exercises

E5.1 Inverse Laplace transforms appearing in the responses of first-order systems). Using the Tables 4.1 and 4.2 of Laplace transforms and the partial fraction
expansion method, verify:

L−1

[
1

sτ + 1

]
=

1

τ
e−t/τ , (E5.1)

L−1

[
1

s (sτ + 1)

]
= 1− e−t/τ , (E5.2)

L−1

[
1

s2 (sτ + 1)

]
= t− τ(1− e−t/τ ) (E5.3)

Answer:

(i) Using the property from row (4) in Table 4.1 that
1

s+ a
7→ e−at

we can multiply the numerator and denominator by 1/τ to then find

L−1

[
1

τ

(
1

s+ 1/τ

)]
=

1

τ
e−t/τ

(ii) The first step is to select the following partial fraction expansion:

1

s(sτ + 1)
=

α

s
+

β

sτ + 1

Multiplying both sides of the equation by s(sτ + 1) we then have

1 = αsτ + α+ βs

which yields the set of equations

α = 1

αs+ βs = 0s =⇒ α+ β = 0

We can solve for α and β to find (α, β) = (1,−τ). Finally, using rows (2) and (4) of Table 4.1 we find

L−1

[
1

s
− τ

1

sτ + 1

]
= 1− e−t/τ
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(iii) Performing a partial fraction decomposition, we find that

1

s2(sτ + 1)
=

α

s
+

β

s2
+

γ

sτ + 1

Multiplying both sides by s(s2)(sτ + 1) yields

s = α(sτ + 1)(s2) + β(sτ + 1)(s) + γ(s)(s2)

=⇒ s = ατs3 + αs2 + βτs2 + βs+ γs3

This in turn yields the set of equations

ατs3 + γs3 = 0s3 =⇒ ατ + γ = 0

αs2 + βτs2 = 0s2 =⇒ α+ βτ = 0

β = 1

Solving for α, β, and γ, we find (α, β, γ) = (−τ, 1, τ2). Finally, using rows (2), (3), and (4) of Table 4.1, we obtain

L−1

[−τ

s
+

1

s2
+

τ2

sτ + 1

]
= −τ + t+ τ e−t/τ = t− τ

(
1− e−t/τ

)

■
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E5.2 Free response of undamped harmonic oscillator. Consider the undamped harmonic oscillatormẍ+ kx = 0 without any input, wherem > 0 and k > 0.

(i) Compute the free response in the Laplace domain X(s) from initial conditions x(0) = x0 and ẋ(0) = v0

(ii) Compute the free response x(t) by performing the inverse Laplace transform of X(s).

Note: We studied the undamped harmonic oscillator in Section 2.1.2. The results in this exercises are consistent with that previous analysis.

Answer:

(i) We take the Laplace transform to get
m(s2X(s)− sx0 − v0) + kX(s) = 0.

We obtain the free response by solving for X(s):

X(s) =
m(sx0 + v0)

ms2 + k
=

sx0 + v0
s2 + ω2

n

where ωn =
√
k/m.

(ii) First, we rewrite the free response in partial fraction expansion as:

X(s) = x0
s

s2 + ω2
n

+
v0
ωn

ωn

s2 + ω2
n

Then, taking the inverse Laplace transform and using rows (5) and (6) of Table 4.1, we obtain

x(t) = x0 cos(ωnt) +
v0
ωn

sin(ωnt)

■
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E5.3 Transfer function of building system. Recall the dynamics of the building system (without air conditioner) studied in Section 3.1:

c1θ̇1 =
1

r12
(θ2 − θ1) +

1

r1,ext
(θext − θ1)

c2θ̇2 =
1

r12
(θ1 − θ2) +

1

r23
(θ3 − θ2)

c3θ̇3 =
1

r23
(θ2 − θ3).

Note that we changed notation: we let θi(t) denote the temperature in room i and Θi(s) = L[θi(t)] be its Laplace transform. Similarly, we let Θext(s) = L[θext(t)].
We aim to compute the transfer function of the building system (without air conditioner) from the external temperature to the temperature in room 3.

(i) Take the Laplace transforms of the three equations, assuming zero initial conditions.
(ii) Explain, in words, how to find the overall transfer function from Θext(s) to Θ3(s).
(iii) Find the overall transfer function from Θext(s) to Θ3(s). You may use Matlab or Python for this if you wish, but be sure to include your code if you choose to

do so.
(iv) What is the order of this transfer function?

Answer:

(i) Taking the Laplace transforms of the three equations, we get

c1sΘ1(s) =
1

r12
(Θ2(s)−Θ1(s)) +

1

r1,ext
(Θext(s)−Θ1(s))

c2sΘ2(s) =
1

r12
(Θ1(s)−Θ2(s)) +

1

r23
(Θ3(s)−Θ2(s))

c3sΘ3(s) =
1

r23
(Θ2(s)−Θ3(s))

(ii)

The three Laplace transforms above give three equations for four unknowns. Use your favorite method to eliminate the intermediate variables Θ1(s)
and Θ2(s) to get one equation relating Θext(s) and Θ3(s). Solve for the ratio Θ3(s)/Θext(s). This ratio is the transfer function.

(iii) After several tedious steps of algebra, the overall transfer function is found to be

Θ3(s)

Θext(s)
=

r12r23(
(c2r12r23s+ r12 + r23)(c1r12r1,exts+ r12 + r1,ext)− r23r1,ext

)
(c3r23s+ 1) − r12(c1r12r1,exts+ r12 + r1,ext)

(E5.4)
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(iv)
This is a third-order transfer function, as the highest power of s appearing in the denominator is 3.

■
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E5.4 Transfer function of DC motor. In this exercise, we compute the transfer function of the DC motor in Section 2.5. We recall the governing equations (2.46):

Imθ̈m(t) + bθ̇m(t) = Ktorqueicond(t) (E5.5a)

ℓ
d

dt
icond(t) + ricond(t) = vsource(t)−Kvelocityθ̇m(t) (E5.5b)

and refer to Section 2.5 for the definition of all terms.
Let ωm = θ̇m be the shaft angular velocity. Use the following notation: Vsource(s) = L[vsource(t)], Ωm(s) = L[ωm(t)], and Icond(s) = L[icond(t)].

(i) Take the Laplace transforms of the two equations, assuming zero initial conditions and using only the shaft angular velocity (and not the shaft angle).

(ii) Compute the transfer function from the voltage source Vsource(s) to the angular velocity Ωm(s).

(iii) What is the order of this transfer function?

(iv) Explain why the system is underdamped for large values ofKvelocity andKtorque.
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E5.5 Transfer function of a (spring-mass)2-damper system. Consider the following system composed of two masses, two springs and a damper. As usual, let
X1(s) = L[x1(t)], X2(s) = L[x2(t)], and Y (s) = L[y(t)].

(i) Derive the equations of motion for this system.
(ii) Take the Laplace transforms of the equations you derived in part (i), assuming zero initial conditions.
(iii) Compute the transfer function from Y (s) to X1(s).
(iv) What is the order of this transfer function?

Answer:

(i) Using free-body diagrams, the equations of motion for this system are

m1ẍ1 + (k1 + k2)x1 = k2x2

m2ẍ2 + bẋ2 + k2x2 = k2x1 + bẏ .

(ii) Taking the Laplace transforms of the two equations yields

(m1s
2 + k1 + k2)X1(s) = k2X2(s)

(m2s
2 + bs+ k2)X2(s) = k2X1(s) + bsY (s) .

(iii) Solving the first equation for X2(s), substituting into the second equation, and solving for the transfer function G(s) = X1(s)/Y (s) yields

G(s) =
k2bs

(m2s2 + bs+ k2)(m1s2 + k1 + k2)− k22

(iv) The order of this transfer function is 4 .

■
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E5.6 From complex conjugate poles to canonical parameters and functions of time. Consider a function of time x(t) with Laplace transform X(s). The rational
function X(s) has two poles drawn in the attached figure.

-3

i
√

2 ≈ i1.41

−i
√

2 ≈ −i1.41

Figure E5.1: Complex plane with two complex conjugate poles.
Recall that s1,2 = −ωn

(
ζ ±

√
ζ2 − 1

)
and that that the poles belong to a semicircle of radius ωn.

(i) Compute the damping ratio ζ , natural frequency ωn, damped natural frequency ωd, and time constant τ for these poles.

(ii) What are the two functions of time f1(t) and f2(t) associated to the two poles? Substitute in the vaues of the ζ and ωn.

(iii) Assume x(t) = αf1(t) + βf2(t), assume x(0) = 0 and ẋ(0) = 10, and write a formula for x(t).
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E5.7 From poles to transfer function and differential equation. The poles of a transfer function G(s) are drawn in the attached figure.

-1-2

i

−i

Figure E5.2: Complex plane with poles of a transfer function
Assume G(0) = 1/5.
Recall the canonical denominator of a second order system is of the form s2 + 2ζωns+ ω2

n .

(i) Compute the transfer function G(s) such that G(0) = 1/5.

(ii) Compute the damping ratio ζ and natural frequency ωn for the two complex poles.

(iii) Let X(s) = G(s)U(s) and compute the differential equation associated to these poles, governing x(t) as a function of u(t).
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E5.8 Thermometer transfer function and ramp response in a warming tank. Consider a thermometer with temperature θ(t) immersed in a water tank with
temperature θtank(t). Let c and r denote the thermal capacity of the thermometer and the tank-thermometer thermal resistance, respectively.

(i) Derive the governing equation for the system.
(ii) Take the Laplace transform of the equation you found in part (i), assuming zero initial conditions.
(iii) Compute the transfer function from Θtank(s) = L[θtank(t)] to Θ(s) = L[θ(t)].
(iv) Is this a first-order or a second-order system? If it is first order, compute the time constant. Otherwise, if it is a second-order system, compute the natural

frequency and the damping ratio.
(v) Compute the step response of this system in the time domain.
(vi) Finally, assume θtank(t) = t is the unit ramp function. Compute the asymptotic value esteady-state = limt→∞ e(t), where the error e(t) := θ(t)− θtank(t).

Hint: In exercise E6.1, we computed
1

s2(sτ + 1)
= −τ

s
+

1

s2
+

τ2

sτ + 1
.



Lectures on Dynamical Systems, ed. 2024 (This version: November 18, 2024). Chapter 5, slide 47

E5.9 Transfer function, step response, and final value of a mass-spring-damper plus extra damper. Consider a mass-spring-damper system (with parameters m,
b1 and k) connected to an additional damper (with parameter b2), as illustrated in Figure. Let z(t) be the position of the right-most point connected to the additional
damper. At t = 0, a unit-step input is applied to position z(t). Assume the initial conditions are x(0) = ẋ(0) = z(0) = 0.

m

x z

b2
b1

k

z

(i) Write the governing equation for the position x(t) with input z(t).

(ii) Write the transfer function from Z(s) = L[z(t)] to X(s) = L[x(t)].
(iii) Compute the step response X(s) in the Laplace domain, using the following parameter values: m = 1kg, b1 = b2 = 5Ns/m, k = 50N/m.

(iv) Compute the inverse Laplace transform x(t) = L−1[X(s)].

(v) What is the final value of x(t), that is, x(∞) = limt→+∞ x(t)?

(vi) In the Appendix 4.4 to Chapter 4, there is a property called Final Value Theorem. Feel free to assume that the limit of x(t) exists and apply the Final Value
Theorem to X(s) as computed in point (iii). Verify that you obtain the same result as in point (v).

Note: Does this final value behavior of this mechanical system makes physical sense to you?

Answer:

(i) The equation of motion is
mẍ+ b1ẋ+ b2(ẋ− ż) + kx = 0

so that
mẍ+ (b1 + b2)ẋ+ kx = b2ż

(ii) We compute the Laplace transform with zero initial conditions:

(
ms2 + (b1 + b2)s+ k

)
X(s) = b2sZ(s)

so that
X(s)

Z(s)
=

b2s

ms2 + (b1 + b2)s+ k
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(iii) We now apply a unit step Z(s) = 1
s to compute

X(s) =
b2

ms2 + (b1 + b2)s+ k

and substitute in the parameter values:

X(s) =
5

s2 + 10s+ 50
=

5

(s+ 5)2 + 52

(iv) The inverse Laplace transform of X(s) is precisely (no need to perform the partial fraction expansion in this case):

x(t) = e−5t sin(5t)

(v) Since x(t) is a damped sinusoidal wave, lim
t→+∞

x(t) = 0 .

(vi) It is immediate to see that, from the Final Value Theorem,

lim
t→+∞

x(t) = lim
s→0

sX(s) = lim
s→0

b2s

ms2 + (b1 + b2)s+ k
= 0

■
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