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Chapter 4

The Laplace Transform

The Laplace transform is a powerful mathematical tool used to simplify the modeling and analysis of linear time-invariant systems
and differential equations. It converts a function of time t into a function of a complex variable s, making it easier to solve and
analyze differential equations.
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Illustrating the content of this chapter

Here is an introduction to the magical power of Laplace transforms. Given two positive constants a, b, consider the ODE:

ẍ+ (a+ b)ẋ+ abx = 0 (4.1)

The Laplace transform simplifies the understanding of this ODE by converting it into the simpler algebraic equation:

s2 + (a+ b)s+ ab = 0. (4.2)

This algebraic equation can be rewritten as

s2 + (a+ b)s+ ab = (s+ a)(s+ b) = 0, (4.3)

and so it has two solutions s1 = −a and s2 = −b.
As we will study in this chapter, the properties of the Laplace transform ensure that each solution to the ODE (4.1) is of the form

x(t) = c1 e
−at+c2 e

−bt (4.4)

where the constants c1 and c2 are determined by the initial conditions. In other words

a zero −a of the algebraic equation (4.2) → a term e−at in the solution to the differential equation (4.1).

This chapter is dedicated to understanding concepts and methods to generalize this result to arbitrary ODEs with inputs.
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A brief review of complex numbers

We let i denote the imaginary unit , that is, i2 = −1. Any complex number z is of the form

z = x+ iy, (4.5)

where x and iy are the real and imaginary parts. When useful, we let C denote the set of complex number, also known as the complex
plane. The conjugate of z is

z̄ = x− iy. (4.6)

The magnitude (or modulus) of a complex number z is

|z| =
√

x2 + y2. (4.7)

(Recall |z1z2| = |z1| · |z2| and |1/z| = 1/|z|.) The argument of a complex number z is the angle θ formed by the line representing the
complex number in the complex plane with the positive real axis, measured counterclockwise. The argument1 is denoted by

arg(z) = θ. (4.8)

Figure 4.1: The Euler formula is eiθ = cos(θ)+ i sin(θ). A complex number can be represented in polar form
as r(cos θ + i sin θ), where r is the magnitude of the complex number and θ is its argument:

z = r
(
cos(θ) + i sin(θ)

)
.

The inverse Euler formulas are:

sin(θ) =
eiθ − e−iθ

2i
and cos(θ) =

eiθ +e−iθ

2
.

1The argument of a complex number z = a+ bi can be computed using the two-argument arctangent function, also known as atan2(b, a), which takes into account the signs of a and b to
return the correct quadrant for the angle.
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4.1 The Laplace transform

The Laplace transform of a function f(t) is a function F (s) formally defined by

F (s) = L[f(t)] =
∫ +∞

0

e−st f(t) dt, (4.9)

where

• f(t) is a function of time, such that f(t) = 0 for all t < 0,

• s is a complex variable,

• L[·] is the symbol indicating the Laplace transform of its argument.

Because f(t) can be discontinuous at t = 0, we interpret f(0) in the formula (4.9) as the limit from the right: f(0) = limt→0+ f(t).
The reverse process of finding the function of time f(t) from its Laplace transform F (s) is called the inverse Laplace transform

and is denoted by
L−1[F (s)] = f(t). (4.10)

Note: Not all functions admit a well-defined Laplace transform (e.g., the integral could be unbounded or not exist), but all
functions we will encounter are. There exists an integral formula2 for the inverse Laplace transform, but we will not need it.

2For example, see https://en.wikipedia.org/wiki/Inverse_Laplace_transform

https://en.wikipedia.org/wiki/Inverse_Laplace_transform
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Figure 4.2: Left image: Laplace transforms are defined for functions that are zero for negative time. Right image: the unit step function.

In what follows, every function is to be understood as being zero for negative time. Hence the function f(t) = 1 is understood to
be the unit step function 1(t) defined by

1(t) =

{
0 if t < 0

1 if t ≥ 0.
(4.11)
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4.1.1 A useful example

It is relatively easy to get some intuition for the Laplace transform formula (4.9). For example, for any scalar real number a, we have

L[e−at 1(t)] = L[e−at] =
1

s+ a
(4.12)

To prove this formula (4.12), we compute

L[e−at] =

∫ ∞

0

e−st e−at dt =

∫ ∞

0

e−(a+s)t dt (4.13)

=
[ −1

a+ s
e−(a+s)t

]+∞

0
(4.14)

= lim
t→+∞

( −1

a+ s
e−(a+s)t

)
− −1

a+ s
e−(a+s)t

∣∣∣
t=0

(4.15)

(∗)
= 0 +

1

s+ a
. (4.16)

Here, the step (*) is true when the real part of s is greater than −a, but the formula is true even without that assumption. Similar
derivations are possible for many other functions.
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4.1.2 Some nomenclature

The function L[e−at] =
1

s+ a
is a fraction of polynomials.

• A function from C to C is rational if it is the quotient of two polynomial functions. In other words, F (s) is rational if there exist
two polynomial function num(s) and den(s) such that

F (s) =
num(s)

den(s)

• The domain of a rational function includes all complex numbers except for the values of s such that den(s) = 0.

• The points where the denominator equals zero are called the poles of the rational function.
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4.1.3 Properties of Laplace transforms

The good news is that we never need to compute Laplace transforms and their inverses using the definition (4.9) in the definition.
Instead of using the definition, we will use the properties of Laplace transform to quickly derive the result we want.

Properties of the Laplace transform: In what follows, assume F (s) = L[f(t)] and G(s) = L[g(t)].

(P1) Linearity: L[af(t) + bg(t)] = aF (s) + bG(s)

(P2) Derivative with respect to time: L
[ d
dt
f(t)

]
= sF (s)− f(0)

(P3) Integral with respect to time: L
[∫ t

0

f(u) du
]
=

1

s
F (s)

(P4) Complex translation: L[e−at f(t)] = F (s+ a).

The inverse Laplace transform inherits many properties too, e.g., it is linear.
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4.1.4 Using the properties to derive other examples of Laplace transforms

We start from the Laplace transform of the exponential function:

L[e−at 1(t)] = L[e−at] =
1

s+ a
(4.17)

Note that, when a = 0, we obtain the Laplace transform of the unit step function:

L[1(t)] = 1

s
(4.18)

We can now use the integral property (P3) to compute

L[t] = L[t1(t)] = L
[∫ t

0

1(τ)dτ
]
=

1

s
L[1(t)] = 1

s
· 1
s
,

so that the Laplace transform of the unit ramp function is:

L[t] = 1

s2
(4.19)
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Next, we use the inverse Euler formula for the sinusoidal function and the linearity property (P1) to compute

L[sinωt] = L
[eiωt− e−iωt

2i

]
=

1

2i

(
L[eiωt]− L[e−iωt]

)
=

1

2i

( 1

s− iω
− 1

s+ iω

)
=

1

2i

(s+ iω)− (s− iω)

(s− iω)(s+ iω)

so that the Laplace transform of the sine wave is:

L[sinωt] = ω

s2 + ω2
(4.20)

If we use the complex translation property (P4), we can compute the Laplace transform of the damped sine wave:

L[e−at sinωt] =
ω

(s+ a)2 + ω2
(4.21)

The Laplace transform of the cosine wave and of the damped cosine wave are computed in a similar way from the inverse Euler formula
for the cosine. Alternatively, one can use the derivative-with-respect-to-time property (P2) (recalling that d

dt sin(ωt) = ω cos(ωt))
and check that both methods lead to the same formula.
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4.1.5 Unit pulse and impulse functions

A ball bouncing off the floor, a hammer hitting a nail, a bullet hitting a wall, an explosion hitting a flexible structure, or a automobile
crash are situation where a dynamical system is subject to a large force for a short period of time.

Figure 4.3: Left panel: a realistic pulse with a
quick rise, possibly oscillations, and then a drop
to zero – over a short interval of time t0. The area
of the pulse is a positive amount a; we assume
a = 1 to define the unit pulse and unit impulse
functions.
Center panel: a unit pulse function with duration
t0 and amplitude 1/t0.
Right panel: in the limit as t0 → 0+, we define
the unit impulse function.

The unit pulse function with duration t0 is

pulse(t) =


1

t0
if 0 < t < t0

0 if t < 0 or t > t0

(4.22)

Note: The exact shape of a realistic pulse function of time is not important. Only the area is important. If the pulse has area a ̸= 1,
then the correct function to use is a · pulse(t).
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Next, we define an idealized and simplified version of the unit pulse function, which will allow for easier calculations.
The unit impulse function is defined to have area equal to 1. The impulse function is a mathematical construction to simplify

calculations when the duration of a pulse t0 is much smaller than the time constant of the system.

δ(t) =

{
+∞ if t = 0

0 if t ̸= 0.
such that

∫ +∞

−∞
δ(τ)dτ = 1 (4.23)

Even though we do not provide the proof here, it is useful to note:

L[δ(t)] = 1 (4.24)

Figure 4.4: From unit impulse to unit step to unit ramp function, via integration with respect to time.
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4.1.6 Table of Laplace transforms

Using the example of the exponential function L[e−at] = 1
s+a and the properties of the Laplace transform, we can derive this table of

examples. Here a is positive or negative, ω is positive, and n is a natural number.

Function of time f(t) Laplace transform F (s) and its poles

In this table we consider only exponential-like functions. Laplace transforms of exponential-like functions are rational functions.

(1) Unit impulse δ(t) 1 none

(2) Unit step 1(t)
1

s
s = 0

(3) Unit ramp t
1

s2
s = 0 repeated

(4) Exponential function e−at 1

s+ a
s = −a

(5) Sine wave sin(ωt)
ω

s2 + ω2
s = ±iω

(6) Cosine wave cos(ωt)
s

s2 + ω2
s = ±iω

(7) Damped sine wave e−at sin(ωt)
ω

(s+ a)2 + ω2
s = −a± iω

(8) Damped cosine wave e−at cos(ωt)
s+ a

(s+ a)2 + ω2
s = −a± iω

Table 4.1: Table of Laplace transforms. Rows (7) and (8) are more general than (5) and (6), in the sense that they are equal to (5) and (6) when a = 0.
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In summary, from the Table of Laplace transforms, we have learned that each exponential-like function of t transforms into a
rational function of s. In turn, each rational function of s has zero, one, or multiple poles. In Figure 4.5, for each point s∗ in the
complex plane (drawn with an × symbol), we illustrate the function of time whose Laplace transform has a pole at s∗.
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Figure 4.5: Time functions associated with poles in the complex plane. For each point s∗ in the complex plane (drawn with an × symbol), we illustrate the
function of time whose Laplace transform has a pole at s∗.



Lectures on Dynamical Systems, ed. 2024 (This version: October 27, 2024). Chapter 4, slide 18

4.2 The inverse Laplace transform

We now discuss how to compute the inverse Laplace transform of rational functions. Specifically, given a rational function F (s), we
discuss how to find the function of time f(t) such that L[f(t)] = F (s). There are three methods:
(i) the use of extensive lookup tables, with example pairs (f(t), F (s)),
(ii) the method of partial fraction expansion
(iii) the use of a symbolic manipulation software, such as the SymPy symbolic computing library in Python.

Regarding lookup tables, we have a more expansive table of Laplace transforms in Appendix 4.5. But, in general, there are too
many cases to consider and it is not practical to generate huge Laplace transform tables. Therefore, in practice a combination of
lookup tables and partial fraction expansions is used.

https://sympy.org
https://python.org
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4.2.1 Partial fraction expansions

Typically, we will consider functions F (s) that can be rewritten as the sum of simpler functions:

F (s) = F1(s) + F2(s) + · · ·+ Fn(s) (4.25)

so that

f(t) = L−1[F (s)] = L−1[F1(s)] + L−1[F2(s)] + · · ·+ L−1[Fn(s)] (4.26)

= f1(t) + f2(t) + · · ·+ fn(t) (4.27)

where f1(t), f2(t), . . . , fn(t) are the inverse Laplace transforms of F1(s), F2(s), . . . , Fn(s), respectively. Therefore, it is useful to have
a lookup table with a lot of different pairs (f(t), F (s)).
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Problem setup: We often consider a rational function

F (s) =
num(s)

den(s)
(4.28)

where the degree of the numerator is equal or lower than the degree of the denominator. We aim to compute the inverse Laplace
transform of F (s).
Step 1: The first step is to identify the poles of F and factorize the denominator:

F (s) =
num(s)

(s+ p1)(s+ p2) . . . (s+ pn)
(4.29)

Step 2: The second step is to expand F in a so-called partial fraction expansion

F (s) =
r1

s+ p1
+

r2
s+ p2

+ · · ·+ rn
s+ pn

.

where each coefficient ri is called a residue at the pole −pi. Sometime the expansion contains more complex terms (e.g., when there
are complex conjugate poles, as in the fourth example below, or repeated poles, as in the fifth example below).

Step 3: Compute the residues r1, . . . , rn, using one of the following two methods:
Matching the numerators: always applicable, sometimes lengthy
Single-pole residue formula: quick shortcut, when applicable
We will illustrate the methods in the examples below.

Step 4: The final easy step is to use linearity and obtain

L−1[F (s)] = r1L−1
[ 1

s+ p1

]
+ r2L−1

[ 1

s+ p2

]
+ · · ·+ rnL−1

[ 1

s+ pn

]
= r1 e

−p1t+r2 e
−p2t+ · · ·+ rn e

−pnt (4.30)
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First example (rational function already written as sum of simple terms)

We now consider various examples of partial fraction expansions and corresponding inverse Laplace transform. As first example, we
consider a function with real poles only and already written in partial fraction expansion:

F1(s) = 2 +
3

s
+

4

s+ 5
(4.31)

Using rows (1), (2) and (4) of Table 4.1 and the linearity property, we compute

f1(t) = L−1[F1(s)] = 2δ(t) + 3 · 1(t) + 4 e−5t (4.32)
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Second example (two isolated real poles)

As second example, we consider

F2(s) =
s+ 2

s2 + 7s+ 12
(4.33)

We compute

s2 + 7s+ 12 = 0 ⇐⇒ s = −3,−4 ⇐⇒ s2 + 7s+ 12 = (s+ 3)(s+ 4). (4.34)

Therefore, we write the partial fraction expansion

F2(s) =
s+ 2

(s+ 3)(s+ 4)
= r1

1

s+ 3
+ r2

1

s+ 4
(4.35)

We now describe first the matching the numerators method and then the single-pole residue formula.

Matching the numerators We start by writing equation (4.35) as

s+ 2

s2 + 7s+ 12
=

r1(s+ 4) + r2(s+ 3)

(s+ 3)(s+ 4)
(4.36)

The denominators are identical because of the computation of the partial fraction expansion. We therefore focus on the
numerators:

s+ 2 = r1(s+ 4) + r2(s+ 3) = (r1 + r2)s+ (4r1 + 3r2) (4.37)

We now equate each power of s: {
1 = r1 + r2

2 = 4r1 + 3r2
(4.38)

This is a linear set of 2 equation in 2 variables. After some tedious calculations, we obtain

r1 = −1 and r2 = 2. (4.39)
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Single-pole residue formula We now describe the single-pole residue formula method. This method applies only to single
real poles. The residue ri associated to a pole −pi is given by

ri = (s+ pi)F (s)
∣∣∣
s=−pi

(4.40)

Note: this formula is correct only when the pole p is not repeated; if the root is complex, it’s typically easier to use the
matching method.

For F2(s) =
s+ 2

(s+ 3)(s+ 4)
= r1

1

s+ 3
+ r2

1

s+ 4
, the single-pole residue formula (4.40) gives:

r1 = (s+ 3)F2(s)
∣∣∣
s=−3

=
s+ 2

s+ 4

∣∣∣
s=−3

=
−1

+1
= −1 (4.41)

r2 = (s+ 4)F2(s)
∣∣∣
s=−4

=
s+ 2

s+ 3

∣∣∣
s=−4

=
−2

−1
= +2 (4.42)

In summary, from either methods, we obtain

f2(t) = L−1[F2(s)] = L−1
[
(−1)

1

s+ 3
+ (+2)

1

s+ 4

]
= − e−3t+2 e−4t (4.43)
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Third example (three isolated real poles)

As third example, we consider the case of multiple isolated poles by analyzing the following rational function:

F3(s) =
2

s3 + 6s2 + 11s+ 6
(4.44)

In general, computing the roots of a high-order polynomial can be challenging. However, the rational root theorem simplifies
this task for polynomials with integer coefficients: the only possible integer roots are the divisors of the constant term.

For our example function F3(s), the denominator has integer coefficients and the constant term is 6. Therefore, the possible
integer roots are ±1, ±2, ±3, and ±6. By plugging these possible values into the denominator we find that s = −1, s = −2 and
s = −3 are indeed roots. We can therefore factor the denominator as

s3 + 6s2 + 11s+ 6 = (s+ 1)(s+ 2)(s+ 3) (4.45)

and write the partial fraction expansion as

F3(s) =
2

(s+ 1)(s+ 2)(s+ 3)
= r1

1

s+ 1
+ r2

1

s+ 2
+ r3

1

s+ 3
(4.46)

Another approach is to use mathematical software.
1 # Python code to compute the roots of a polynomial
2 from sympy import symbols , solve
3 s = symbols('s')
4 roots = solve(s**3 + 6*s**2 + 11*s + 6, s)
5 print(roots)

https://en.wikipedia.org/wiki/Rational_root_theorem
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Since F3(s) =
2

(s+1)(s+2)(s+3) = r1
1

s+1 + r2
1

s+2 + r3
1

s+3 , the single-pole residue formula (4.40) implies

r1 = (s+ 1)F3(s)
∣∣∣
s=−1

=
2

(s+ 2)(s+ 3)

∣∣∣
s=−1

= +1 (4.47)

r2 = (s+ 2)F3(s)
∣∣∣
s=−2

=
2

(s+ 1)(s+ 3)

∣∣∣
s=−2

= −2 (4.48)

r3 = (s+ 3)F3(s)
∣∣∣
s=−3

=
2

(s+ 1)(s+ 2)

∣∣∣
s=−3

= +1 (4.49)

In summary,

f3(t) = L−1
[
(+1)

1

s+ 1
+ (−2)

1

s+ 2
+ (+1)

1

s+ 3

]
= e−t−2 e−2t+e−3t (4.50)
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Fourth example (one pair of complex conjugate poles)

As fourth example, we consider a rational function with a complex conjugate pair of roots:

F4(s) =
8s+ 12

s2 + 6s+ 25
(4.51)

We compute3

s2 + 6s+ 25 = 0 ⇐⇒ s = −3± 4i ⇐⇒ s2 + 6s+ 25 = (s+ 3)2 + 42 (4.52)

Therefore, the denominator is of the form (s+ a)2 + ω2 where a = 3 and ω = 4. In this case, the single-pole residue formula (4.40) is
inconvenient to apply. Therefore we proceed by matching the numerators.

We now recall rows (7) and (8) for damped sine and cosine waves in the Table 4.1 of Laplace transforms, and look for coefficients
α, β such that:

8s+ 12

s2 + 6s+ 25
=

(
α

ω

(s+ a)2 + ω2
+ β

s+ a

(s+ a)2 + ω2

)
a=3,ω=4

= α
4

s2 + 6s+ 25
+ β

s+ 3

s2 + 6s+ 25
(4.53)

By matching the numerators and each power of s, we obtain

8s+ 12 = 4α + β(s+ 3) =⇒

{
8 = β

12 = 4α + 3β
(4.54)

so that β = +8 and 12 = 4α + 24, that is, α = −3. In summary, we know

f4(t) = L−1
[
(−3)

4

s2 + 6s+ 25
+ (+8)

s+ 3

s2 + 6s+ 25

]
= −3 e−3t sin(4t) + 8 e−3t cos(4t) (4.55)

3Given the second order algebraic equation az2 + bz + c = 0, recall the classic formula for the roots z1,2 = (−b±
√
b2 − 4ac)/(2a).
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Fifth example (repeated real poles)

As fifth and last example, we consider the case of a repeated pole. We consider

F5(s) =
s2 + 3s+ 3

(s+ 2)3
(4.56)

where the pole s = −2 is repeated three times. In this case, the correct partial fraction expansion contains three terms (the same
number as the multiplicity of the pole):

F5(s) =
s2 + 3s+ 3

(s+ 2)3
= α

1

s+ 2
+ β

1

(s+ 2)2
+ γ

1

(s+ 2)3
(4.57)

Since the single-pole residue formula (4.40) does not apply, we proceed by matching the numerators:

s2 + 3s+ 3

(s+ 2)3
= α

1

s+ 2
+ β

1

(s+ 2)2
+ γ

1

(s+ 2)3
=

α(s+ 2)2 + β(s+ 2) + γ

(s+ 2)3
(4.58)

=⇒ s2 + 3s+ 3 = α(s2 + 4s+ 4) + β(s+ 2) + γ (4.59)

=⇒


1 = α

3 = α4 + β

3 = 4α + 2β + γ

=⇒


α = +1

β = 3− 4 = −1

γ = 3− 4− 2 · (−1) = 1.

(4.60)

In summary, we know

f5(t) = L−1
[s2 + 3s+ 3

(s+ 2)3

]
= L−1

[
(+1)

1

s+ 2
+ (−1)

1

(s+ 2)2
+ (+1)

1

(s+ 2)3

]
(4.61)

= e−2t−t e−2t+
1

2!
t2 e−2t =

(
1− t+ 1

2t
2
)
e−2t (4.62)

where we have used row (11) from the Table 4.2 of additional Laplace transforms to compute

L−1
[ 1

(s+ 2)2

]
= t e−2t and L−1

[ 1

(s+ 2)3

]
=

1

2
t2 e−2t . (4.63)
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4.2.2 Symbolic mathematics software: the Python SymPy library

Programming notes

It is useful to briefly compare leading software libraries for symbolic mathematics, also known as computer algebra systems.

• Leading commercial software systems are Maple, Mathematica, and Maxima. These software systems include advanced
tools for calculus, linear algebra, number theory, and differential equations.

• SymPy is an open-source Python library for symbolic mathematics. It implements basic functionality in calculus, algebra,
discrete math, and geometry and it can compute Laplace transforms and inverse Laplace transforms, see (Meurer et al,
2017). SymPy is well-suited for those who prioritize open-source flexibility and Python integration (while commercial
systems possibly offer more extensive features and optimizations).

1 # Import SymPy for symbolic math operations
2 from sympy import symbols , diff , integrate , Eq, solve , sin , cos , series
3

4 # Define a symbol x
5 x = symbols('x')
6

7 print("Example calculations performed by SymPy:\n")
8

9 # 1. Differentiate a symbolic expression
10 expr = sin(x) * cos(x)
11 derivative = diff(expr , x)
12 print(f"Derivative of sin(x) * cos(x): {derivative}")
13

14 # 2. Integrate a symbolic expression
15 integral = integrate(expr , x)
16 print(f"Integral of sin(x) * cos(x): {integral}")
17

18 # 3. Solve a symbolic equation
19 equation = Eq(x**2 + 2*x - 8, 0)
20 solutions = solve(equation , x)
21 print(f"Solutions to x^2 + 2x - 8 = 0: {solutions}")
22

23 # 4. Perform a Taylor series expansion
24 taylor_series = series(sin(x), x, 0, 6)
25 print(f"Taylor series of sin(x) (5th degree): {taylor_series}")

Listing 4.1: Python script illustrating SymPy’s abilities, see Figure 4.6.
Available at sympy-demo.py

Example calculations performed by SymPy:

Derivative of sin(x) * cos(x): -sin(x)**2 + cos(x)**2
Integral of sin(x) * cos(x): sin(x)**2/2
Solutions to x^2 + 2x - 8 = 0: [-4, 2]
Taylor series of sin(x) (5th degree): x - x**3/6 + x**5/120 + O(x**6)

Figure 4.6: Output of the sympy-demo.py program.

https://python.org
https://sympy.org
https://sympy.org
https://python.org
https://sympy.org
https://python.org
https://python.org
https://sympy.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/sympy-demo.py
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/sympy-demo.py
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Symbolic computation of inverse Laplace transforms

1 from sympy import symbols , inverse_laplace_transform , latex
2 from sympy.abc import s, t
3

4 # Define symbols
5 a, b, c, omega = symbols('a b c omega', real=True)
6

7 # Define the rational functions for which we want the inverse ...
Laplace transform

8 functions = [
9 2 + 3/s + 4/(s + 5), # ex1: a single pole
10 (s + 2) / (s**2 + 7*s + 12), # ex2: two real poles
11 2 / (s**3 + 6*s**2 + 11*s + 6),# ex3: multiple isolated poles
12 (8*s + 12) / (s**2 + 6*s + 25),# ex4: complex conjugate poles
13 (s**2 + 3*s + 3) / (s + 2)**3, # ex5: a repeated pole
14 # Symbolic examples
15 (a*s + b) / (s**2 + 7*s + 12), # ex6: two poles
16 1 / ((s + a) * (s + b) * (s + c)), # ex7: three poles
17 1 / ((s + a) * (s**2 + omega **2)) # ex8: a real , two ...

conjugate poles
18 ]
19

20 # Prepare the LaTeX content
21 latex_content = "Examples of inverse Laplace ...

transforms :\n\\ begin{align}\n"
22

23 # Loop through the functions
24 for i, F in enumerate(functions):
25 # Compute the inverse Laplace transform
26 f = inverse_laplace_transform(F, s, t)
27

28 # Generate the LaTeX line for the current function
29 latex_line = f"\\ mathcal {{L}}^{{ -1}} \\left[ {latex(F)} ...

\\right] &= {latex(f)} \\label{{eq:example{i+1}}}"
30

31 # Add a line break after each equation , except the last one
32 if i < len(functions) - 1:
33 latex_line += " \\\\ \n"
34

35 # Add vertical space after the first five examples
36 if i == 4:
37 latex_line += "\\ nonumber \\\\ \n"
38

39 # Add the current line to the LaTeX content
40 latex_content += latex_line
41

42 # Close the LaTeX content with align
43 latex_content += "\\end{align}\n"
44

45 # Write the LaTeX to a file
46 with open("inverseLaplace.tex", "w") as file:
47 file.write(latex_content)

Listing 4.2: Python script generating the LATEX output in Figure 4.7.
Available at inverseLaplace.py

Examples of inverse Laplace transforms:

L−1

[
2 +

4

s+ 5
+

3

s

]
= 2δ (t) + 3θ (t) + 4e−5tθ (t) (4.64)

L−1

[
s+ 2

s2 + 7s+ 12

]
=

(
2− et

)
e−4tθ (t) (4.65)

L−1

[
2

s3 + 6s2 + 11s+ 6

]
=

(
e2t − 2et + 1

)
e−3tθ (t) (4.66)

L−1

[
8s+ 12

s2 + 6s+ 25

]
= − (3 sin (4t)− 8 cos (4t)) e−3tθ (t) (4.67)

L−1

[
s2 + 3s+ 3

(s+ 2)
3

]
=

(
t2 − 2t+ 2

)
e−2tθ (t)

2
(4.68)

L−1

[
as+ b

s2 + 7s+ 12

]
=

(
4a− b− (3a− b) et

)
e−4tθ (t) (4.69)

L−1

[
1

(a+ s) (b+ s) (c+ s)

]
=

(
(a− b) et(a+b) − (a− c) et(a+c) + (b− c) et(b+c)

)
e−t(a+b+c)θ (t)

(a− b) (a− c) (b− c)
(4.70)

L−1

[
1

(a+ s) (ω2 + s2)

]
=

(ω + (a sin (ωt)− ω cos (ωt)) eat) e−atθ (t)

ω (a2 + ω2)
(4.71)

Figure 4.7: Examples of inverse Laplace transforms of rational functions, via the SymPy symbolic
computing library (Meurer et al, 2017).
In SymPy, the function θ(t) is the unit step function 1(t).
The first five examples are the same inverse Laplace transforms that we computed in the
previous section.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/inverseLaplace.py
https://sympy.org
https://sympy.org
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4.3 Solving linear differential equations

As before we let F (s) = L[f(t)]. We now recall the derivative-with-respect-to-time property (P2) and extend it to higher order
derivatives (simply by applying it repeatedly). We recall

L
[ d
dt
f(t)

]
= sF (s)− f(0) (4.72)

so that

L
[ d2
dt2

f(t)
]
= sL

[ d
dt
f(t)

]
− df

dt
(0) = s

(
sF (s)− f(0)

)
− df

dt
(0) (4.73)

= s2F (s)− sf(0)− df

dt
(0) (4.74)

Applying the property repeatedly, we can compute higher-order time derivatives:

L
[dnf
dtn

(t)
]
= snF (s)− sn−1f(0)− sn−2df

df
(0)− . . .− dn−1f

dtn−1
(0) (4.75)

= snF (s)−
n−1∑
k=0

sn−1−kd
kf

dtk
(0) (4.76)

We use these properties to transform differential equations into algebraic equations. In what follows we let

X(s) = L[x(t)], Y (s) = L[y(t)], and U(s) = L[u(t)].
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4.3.1 A differential equation with non-zero initial conditions and zero input

Consider the differential equation
ÿ + 7ẏ + 12y = 0, y(0) = y0, ẏ(0) = v0 (4.77)

We aim to compute the solution y(t) as a function of the unknown initial conditions y0 and v0.
To do so, we take Laplace transform of both the left and the right hand side to obtain(

s2Y (s)− sy0 − v0
)
+ 7

(
sY (s)− y0

)
+ 12Y (s) = 0

where we used Y (s) = L[y(t)] and the derivative properties (4.72) and (4.73). We can now collect the terms multiplying Y (s):(
s2 + 7s+ 12)Y (s)− sy0 − v0 − 7y0 = 0

⇐⇒ Y (s) =
sy0 + (v0 + 7y0)

s2 + 7s+ 12
=

sy0 + (v0 + 7y0)

(s+ 3)(s+ 4)
. (4.78)

Equation (4.69) in the previous section on partial fraction expansions states:

L−1
[ sa+ b

s2 + 7s+ 12

]
= (4a− b) e−4t−(3a− b) e−3t .

Since here a = y0 and b = v0 + 7y0, the solution to the differential equation (4.77) is

y(t) = (4y0 − v0 − 7y0) e
−4t−(3y0 − v0 − 7y0) e

−3t = −(3y0 + v0) e
−4t+(4y0 + v0) e

−3t (4.79)

In summary, using to the Laplace transform, we have transformed the differential equation (4.77) into the algebraic equation (4.78).
We have then solved the algebraic equation and computed the solution to the differential equation via a partial fraction expansion.
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4.3.2 A differential equation with zero initial conditions and non-zero input

Given a constant scalar f , consider the differential equation

ÿ + 7ẏ + 12y = f, y(0) = 0, ẏ(0) = 0 (4.80)

We now take Laplace transform of both the left and the right hand side to obtain

s2Y (s) + 7sY (s) + 12Y (s) =
f

s
(4.81)

where we used Y (s) = L[y(t)], the derivative properties (4.72) and (4.73), and the equality L[f ] = L[f · 1(t)] = f/s. Hence,

Y (s) =
f

s(s2 + 7s+ 12)
=

f

s(s+ 3)(s+ 4)
(4.82)

Equation (4.70) in the previous section on partial fraction expansions states:

L−1
[ 1

(s+ a) (s+ b) (s+ c)

]
=

1

(a− b)(a− c)(b− c)

(
(b− c) e−at+(a− b) e−ct+(c− a) e−bt

)
(4.83)

Since here we have a = 0, b = 3 and c = 4, the solution to the differential equation (4.80) is

y(t) =
f

(−3)(−4)(3− 4)

(
(3− 4)1(t) + (−3) e−4t+(4) e−3t

)
(4.84)

=
f

12

(
1(t) + 3 e−4t−4 e−3t

)
(4.85)
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4.3.3 Combining the previous two examples

We now consider the differential equation

ÿ + 7ẏ + 12y = f, y(0) = y0, ẏ(0) = v0 (4.86)

Note: this problem is the same differential equation as in the previous two Sections 4.3.1 and 4.3.2 but here there are both: non-zero
initial conditions y0 and v0 and a constant scalar input f .

We claim that the solution is the sum of the solutions in the two previous case. Summing the solution in equation (4.79) to the
solution in equation (4.84) we obtain

y(t) = −(3y0 + v0) e
−4t+(4y0 + v0) e

−3t+
f

12

(
1(t) + 3 e−4t−4 e−3t

)
(4.87)

The reason why this formula is correct is given in the next section.
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4.3.4 General case
Suppose we are given a controlled dynamical system in the form:

n∑
i=0

ai
diy

dti
(t) = u(t) (4.88)

where

• y is the output and u is the control input

• a0, . . . , an are constant coefficients, and

• we use the abbreviation
n∑

i=0

ai
diy

dti
(t) = a0y(t) + a1

dy

dt
(t) + · · ·+ an

dny

dtn
(t)

We assume we are also given the initial conditions:

diy

dti
(0) = yi0 for i = 0, 1, . . . , n− 1 (4.89)
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The Laplace transform of both left and right hand side of the differential equation (4.88) gives:

n∑
i=0

ai

(
siY (s)−

i−1∑
k=0

si−1−kyk0

)
= U(s) (4.90)

Therefore, after some reorganizing and book keeping

Y (s) =
U(s)∑n

i=0
ais

i
+

∑n

i=0

∑i−1

k=0
ais

i−1−kyk0∑n

i=0
ais

i
=: Yforced(s) + Yfree(s)

which implies

y(t) = L−1 [Yforced(s)] + L−1 [Yfree(s)] = yforced(t) + yfree(t)

We learn a few useful lessons:

(i) the forced response yforced(t) is due to a non-zero input u(t), with zero initial conditions,

(ii) the free response yfree(t) is due to non-zero initial conditions, with zero input u(t) = 0,

(iii) the response y(t) is the sum of forced and free response. In other words, in a linear control system, the response is driven by two
causes: the initial conditions and the external input. The overall response is the sum of the effects produced by each of the two causes;

(iv) the characteristic polynomial is the denominator in the Laplace transform of both forced and free responses:

n∑
i=0

ais
i = ans

n + an−1s
n−1 + · · ·+ a1s+ a0 (4.91)

(v) the roots of the characteristic polynomials determine the exponential-like functions in the free response.
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4.4 Appendix: Additional Laplace transform properties

The Laplace transforms satisfies numerous properties beyond (P1)–(P4) listed in Section 4.1.3. Here are some additional properties
that are sometimes useful to analyze dynamical systems.

(P5) Final Value Theorem: lim
t→+∞

f(t) = lim
s→0

sF (s), if the limit of f exists finite4

(P6) Initial Value Theorem: lim
t→0+

f(t) = lim
s→∞

sF (s)

(P7) Time delay: L[f(t− T )] = e−sT F (s) (recall f(t− T ) = 0 for all t < T )

(P8) Convolution: L
[∫ t

0

f(τ)g(t− τ)dτ
]
= F (s)G(s), where

∫ t

0 f(τ)g(t− τ)dτ is the convolution integral.

(P9) Time scaling: L[f(at)] = 1

a
F
(s
a

)
(P10) Complex derivative: L[tf(t)] = − d

ds
F (s)

Higher-order complex derivatives: L[(−1)ntnf(t)] = (−1)s
d

ds
F (s)

4The limit of f exists finite if all the poles of the rational functino sF (s) are on the left half plane, as we will study in the next chapter.
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4.5 Appendix: Additional Laplace transform pairs, the 2nd table

In this appendix we present Laplace transform pairs that complement those presented in the first Table 4.1 of Laplace transform
pairs in Section 4.1.6.
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Function of time f(t) Laplace transform F (s) and its poles

In this table we consider only exponential-like functions. Laplace transforms of exponential-like functions are rational functions.

(9) tn (for any n = 1, 2, 3, . . . )
n!

sn+1
s = 0, repeated n+ 1 times

(10) t e−at 1

(s+ a)2
s = −a, repeated

(11) tn e−at n!

(s+ a)n+1
s = −a, repeated n+ 1 times

(7) e−at sin(ωt)
ω

(s+ a)2 + ω2
s = −a± iω

(8) e−at cos(ωt)
s+ a

(s+ a)2 + ω2
s = −a± iω

(12)
1

b− a
(e−at− e−bt)

1

(s+ a)(s+ b)
s = −a,−b, a ̸= b

(13)
1

b− a
(b e−bt−a e−at)

s

(s+ a)(s+ b)
s = −a,−b, a ̸= b

(14)
1

(a− b)(a− c)(b− c)

(
(c− a) e−bt+(a− b) e−ct+(b− c) e−at

) 1

(s+ a)(s+ b)(s+ c)
s = −a,−b,−c, a ̸= b ̸= c

(14)
1

ω(a2 + ω2)

(
ω e−at+a sin(ωt)− ω cos(ωt)

) 1

(s+ a)(s2 + ω2)
s = −a,±iω

Table 4.2: Row (11) is more general than rows (9) and (10) (as well as rows (1), (2) and (4) in Table 4.1) and focuses on the case of a single real pole, possibly
repeated. Recall n! is the factorial of n: 0! = 1, 1! = 1, 2! = 2, 3! = 6, . . . .
Rows (7), (8), (12) and (13) capture all possible cases of two poles, not repeated. Either both poles are real or the two poles are complex conjugate. Rows (7), (8)
are repeated here for convenience.
Rows (14) and (15) are only two examples of a rational function with three distinct poles.
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4.6 Exercises

E4.1 Laplace transforms (example #1). Given a signal x(t), let X(s) denote its Laplace transform. Using the properties and tables of Laplace transforms, compute:

(i) L
[
ẋ(t) + 4 e−2t−3

]
,

(ii) L
[∫ t

0
x(τ) dτ + cos(5t)

]
, and

(iii) L
[
ẍ(t)− t2 e−t+et sin(7t)

]
.

Hint: Use row (11) in Table 4.2.

Answer: The solutions are given as follows:

(i) The Laplace transform of the derivative (P2) is given by L[ẋ(t)] = sX(s) − x(0). The exponential term 4 e−2t transforms to
4

s+ 2
, and the constant −3

transforms to
−3

s
. Using the linearity property, we combine these terms:

L
[
ẋ(t) + 4 e−2t−3

]
= sX(s)− x(0) +

4

s+ 2
− 3

s

(ii) For the integral term, we apply the integral property (P3): L
[∫ t

0
x(τ) dτ

]
=

1

s
X(s). Additionally, the Laplace transform of cos(5t) is

s

s2 + 25
. Using linearity

to combine the two transforms, we get:

L
[∫ t

0
x(τ) dτ + cos(5t)

]
=

1

s
X(s) +

s

s2 + 25

(iii) The Laplace transform of the second derivative is given by L[ẍ(t)] = s2X(s) − sx(0) − ẋ(0), as we saw in equation (4.73). For the second term, we use

L[t2 e−t] =
2

(s+ 1)3
(see row (11) in Table 4.2), and for the third term, L[et sin(7t)] = 7

(s− 1)2 + 49
. Combining everything:

L
[
ẍ(t)− t2 e−t+et sin(7t)

]
= s2X(s)− sx(0)− ẋ(0)− 2

(s+ 1)3
+

7

(s− 1)2 + 49

■
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E4.2 Using the Laplace transform to solve a differential equation (example #1). Consider the differential equation (without inputs)

ẍ+ 4ẋ+ 5x = 0, x(0) = ẋ(0) = 1. (E4.1)

(i) Compute the solution in the Laplace domains X(s) = L[x(t)].
(ii) Expand the solution in a partial fraction.

(iii) Compute the inverse Laplace transform to obtain x(t).

Answer:

(i) We take the Laplace transform of left and right hand side:

s2X(s)− sx(0)− ẋ(0) + 4sX(s)− 4x(0) + 5X(s) = 0 (E4.2)

⇐⇒ s2X(s)− s− 1 + 4sX(s)− 4 + 5X(s) = 0 (E4.3)

We then compute X(s) and write it in partial fraction expansion

X(s) =
s+ 5

s2 + 4s+ 5
(E4.4)

(ii) We then write X(s) in partial fraction expansion. First, we note that s2 + 4s+ 5 = (s+ 2)2 + 1, that is, we have a pair of complex conjugate roots. Therefore,
as in the fourth example in Section 4.2.1, we know that damped sine and cosine waves will appear. After solving the linear equations to match the numerators
we obtain:

X(s) =
s+ 5

s2 + 4s+ 5
=

s+ 2

(s+ 2)2 + 1
+

3

(s+ 2)2 + 1
(E4.5)

where, in the last equality, we wrote the denominator as the sum of two positive numbers.

(iii) Finally, using the inverse Laplace transform of damped sine and cosine from the Table 4.1 of Laplace transforms:

x(t) = L−1[X(s)] = e−2t cos(t) + 3 e−2t sin(t) (E4.6)

■
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E4.3 Using the Laplace transform to solve a differential equation (example #2). Consider the differential equation with an input

ÿ − y = t, y(0) = ẏ(0) = 1. (E4.7)

(i) Compute the solution in the Laplace domain Y (s) = L[y(t)].
(ii) Compute the inverse Laplace transform of Y (s) to obtain y(t).

Hint: There are at least two distinct ways to solve this problem. One possible way is to use these additional Laplace transform pairs: L[cosh(t)] = s

s2 − 1
and

L[sinh(t)] = 1

s2 − 1
.

Answer: We take the Laplace transform of left and right hand side:

s2Y (s)− sy(0)− ẏ(0)− Y (s) =
1

s2
(E4.8)

⇐⇒ (s2 − 1)Y (s) = s+ 1 +
1

s2
=

s3 + s2 + 1

s2
(E4.9)

We then compute Y (s) and write it in an appropriate partial fraction expansion:

Y (s) =
s3 + s2 + 1

s2(s2 − 1)
= − 1

s2
+

s+ 2

s2 − 1
(E4.10)

Finally, using the inverse Laplace transform of hyperbolic sine and cosine:

y(t) = L−1[Y (s)] = −t+ cosh(t) + 2 sinh(t) (E4.11)

Alternative approach: The partial fraction expansion of Y (s) is of the form:

Y (s) =
s3 + s2 + 1

s2(s2 − 1)
=

α

s
+

β

s2
+

γ

s− 1
+

δ

s+ 1
(E4.12)

Using the inverse Laplace transform we know
y(t) = L−1[Y (s)] = α+ βt+ γ et+δ e−t (E4.13)

To compute the values of the coefficients, we use the method of “matching the numerators of left and right hand side” and we get

s3 + s2 + 1 = (α+ γ + δ)s3 + (γ − δ + β − α)s2 − (α+ β)s− β. (E4.14)

and we obtain α = 0, β = −1, γ = 3/2, and δ = −1/2.
■
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E4.4 Laplace transform of suspension system. Consider the suspension system described in Section 2.2 and Figure 2.7. Recall that the equations of motion for the
system were found to be:

msẍs + b (ẋs − ẋus) + ks (xs − xus) = 0

musẍus + b (ẋus − ẋs) + ks (xus − xs) + kw(xus − r(t)) = 0.

where xs(t) is the vertical position of the sprung mass, xus(t) the vertical position of the sprung mass, and r(t) is the height of the road surface. Assume that the
initial positions and velocities of both masses are equal to zero: xs(0) = xus(0) = ẋs(0) = ẋus(0) = 0

Define the Laplace transforms: Xus(s) = L[xus(t)], Xs(s) = L[xs(t)] and R(s) = L[r(t)].

(i) Using the properties of Laplace transforms, find the Laplace transforms of the two equations.

(ii) Use the two equations to eliminate the intermediate variable Xus(s) to obtain an expression for Xs(s) in terms of R(s).

Answer:

(i) Applying the Laplace transform yields

mss
2Xs(s) + bsXs(s)− bsXus(s) + ksXs(s)− ksXus(s) = 0

muss
2Xus(s) + bsXus(s)− bsXs(s) + ksXus(s)− ksXs(s) + kwXus(s)− kwR(s) = 0.

Grouping like terms, we get

(mss
2 + bs+ ks)Xs(s)− (bs+ ks)Xus(s) = 0

(muss
2 + bs+ ks + kw)Xus(s)− (bs+ ks)Xs(s)− kwR(s) = 0

(ii) We solve for Xus(s) in the first equation, ans substitute this into the second equation to obtain

(muss
2 + bs+ ks + kw)

(mss
2 + bs+ ks)

(bs+ ks)
Xs(s)− (bs+ ks)Xs(s)− kwR(s) = 0.

Solving for Xs(s) in terms of R(s) yields

Xs(s) =
kw(bs+ ks)

(muss2 + bs+ ks + kw)(mss2 + bs+ ks)− (bs+ ks)2
R(s)

■
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E4.5 Optional: Programming exercise. Verify the solutions to ordinary differential equations in Section 4.3 by modifying the following Python SymPy code.

1 # Python code to compute the roots of a polynomial
2 from sympy import Function , dsolve , Eq, Derivative , symbols , init_printing
3 from sympy.abc import t
4

5 # Define the symbols
6 y0 , v0 = symbols('y0 v0')
7

8 # Define the function which represents y(t)
9 y = Function('y')
10

11 # Define the differential equation as in Section 4.3
12 diffeq = Eq(y(t).diff(t, t) + 7*y(t).diff(t) + 12*y(t), 0)
13

14 # Solve the differential equation with initial conditions
15 solution = dsolve(diffeq , y(t), ics={y(0): y0, y(t).diff(t).subs(t, 0): v0})
16

17 # Display the solution
18 print("The ode solution with the specified initial conditions is:")
19 print(solution)

Listing 4.3: Python script illustrating SymPy’s abilities, see Figure E4.1.
Available at sympy-demo-ode.py

The ode solution with the specified initial conditions is:
Eq(y(t), (v0 + 4*y0 + (-v0 - 3*y0)*exp(-t))*exp(-3*t))

Figure E4.1: Output of the sympy-demo-ode.py program. Simple calculations
show that this solution is the same as in equation (4.79).

Answer: No solution is available at this time. ■

https://python.org
https://sympy.org
https://python.org
https://sympy.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/sympy-demo-ode.py
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/sympy-demo-ode.py
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E4.6 Laplace transforms (example #2). Given a signal x(t), let X(s) denote its Laplace transform. Using the properties and tables of Laplace transforms, compute:

(i) L
[
ẍ(t) + 3 e−2t−5

]
,

(ii) L
[
t e−2t−t2 e−t+e3t sin(5t)

]
, and

(iii) L [sin(ωt+ θ)], where ω and θ are constant parameters.
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E4.7 Inverse Laplace transforms. Compute the inverse Laplace transforms of:

(i)
s+ 3

s(s+ 1)
,

(ii)
s+ 3

s2 + 2s+ 10
,

(iii)
s+ 3

(s+ 1)2(s+ 2)
, and

(iv)
s+ 3

s(s2 + ω2)
.
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E4.8 Using the Laplace transform to solve a differential equation (example #3). Consider the differential equation (without inputs):

˙̇ẋ+ 6ẍ+ 5ẋ− 12x = 0, x(0) = 1, ẋ(0) = 0, ẍ(0) = −1. (E4.15)

(i) Compute the solution in the Laplace domain X(s) = L[x(t)].
(ii) Compute the roots of the denominator of the rational function X(s).

(iii) Expand X(s) in partial fractions and compute the unknown coefficients.

(iv) Compute the inverse Laplace transform to obtain x(t).
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E4.9 Dynamical behavior of a muscle. In E2.8, we modeled a muscle using a spring damper system and obtained its equations of motion5 by applying Newton’s
law. The system variables are x(t), ẋ(t), and xinterm(t). The system parameters are the positive constants m, k, and b. The system inputs are fload(f) and fmuscle(t).
Assume that the equations of motion for this system are:

mẍ = −k(x− xinterm) + fload(t),

bẋinterm = −k(xinterm − x)− fmuscle(t).

(i) Assuming that x(0) = ẋ(0) = xinterm(0) = 0, convert these differential equations to the Laplace domain.

(ii) Obtain expressions for X(s) and Xinterm(s) in terms of the parameters m, b, k, and the Laplace transform of the input forces Fload(s) = L[fload] and
Fmuscle(s) = L[fmuscle].

(iii) Assume that the load force fload(t) and the muscle force fmuscle(t) are equal to a constant value f0 that begins acting at time t = 0. Substitute the Laplace
transform of these forces into the expressions for X(s) and Xinterm(s) computed in part (ii).

(iv) Use the Final Value Theorem (P5) in Appendix 4.4 (assume the limit exists) in order to find the final positions of x(t) and xinterm(t).

5As a reminder, a muscle connected to a fixed point and subject to a load force can be modeled by the equivalent mechanical system shown in the Figure E2.4. The key elements of the
system are: (1) The muscle connects the fixed point to a mass m at position x. (2) The muscle is represented by the interconnection of two components, with the intermediate point at
coordinate xinterm. (3) The muscle exerts a force fmuscle(t) at the intermediate point. (4) A damper with damping coefficient b connects the intermediate point to the stationary point. (5) A
spring with stiffness k and zero rest length connects the intermediate point to the mass. (6) The massm is subject to a load force fload(t).
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E4.10 Laplace transforms (example #3). Perform the following calculations using the properties in Appendix 4.4 on the additional Laplace transform properties.

(i) Compute L [z(t− 2)1(t− 2)], using the time-delay property (P7).

(ii) Compute L
[∫ t

0
(t− τ)x(τ) dτ

]
, using the convolution integral property (P8).

(iii) Compute the final value of y(t) where Y (s) =
5

s(s+ 2)(s+ 4)
using the final value theorem (P5) and assuming the limit exists.

Answer: The solutions are given as follows:

(i) From the time-delay property (P7), the Laplace transform of z(t− 2)1(t− 2) is given by e−2s Z(s), since the signal is delayed by 2 units. Thus, the solution is:

L [z(t− 2)1(t− 2)] = e−2s Z(s)

(ii) The convolution theorem states that L
[∫ t

0 (t− τ)x(τ) dτ
]
= X(s)

s2
. Thus, the solution is:

L
[∫ t

0
(t− τ)x(τ) dτ

]
=

X(s)

s2

(iii) The final value theorem states that
lim
t→∞

y(t) = lim
s→0

sY (s).

We first compute the expression for sY (s):

sY (s) = s · 5

s(s+ 2)(s+ 4)
=

5

(s+ 2)(s+ 4)
.

Now, we take the limit as s → 0:

lim
s→0

5

(s+ 2)(s− 4)
=

5

(0 + 2)(0 + 4)
=

5

2 · 4
=

5

8
.

Thus, the final value of y(t) is:

lim
t→∞

y(t) =
5

8

■
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E4.11 Padé approximation for systems with time delayed inputs. Consider a first-order system with state variable x and time constant τ > 0. Assume that the initial
condition is zero and that the input to the system is a delayed unit impulse, i.e., a unit impulse that occurs at time T > 0.

(i) Write down the differential equation that describes this system and the input. Use the unit impulse function δ.

Hint: In other words, the input is zero at each time except t = T .

(ii) Compute the solution to the delayed impulse by simply delaying the solution to the unit impulse. In other words,

(a) write down the solution x(t) to the same first-order system with an unit impulse applied at time t = 0, and then
(b) modify the solution by delaying by time T .

(iii) Take the Laplace transform of the differential equation from part (i) and compute an expression for X(s). Is X(s) a rational function?

Hint: The time-delay property (P7) in Appendix 4.4 may be useful.

(iv) For analyzing systems with time delays, the so-called Padé approximation is a useful tool. The first-order Padé approximation of the exponential function is

ey ≈ 2 + y

2− y
. (E4.16)

Use the first-order Padé approximation and the inverse Laplace transform to obtain an approximate solution xapprox(t) in the time domain as a function of the
parameters τ and T .

(v) Show that, at fixed time constant τ > 0 and time t > 0, we have limT→0

(
x(t)− xapprox(t)

)
= 0.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
y

0

2

4

6

8
Comparison of ey and its Pade approximant

ey

Pade: 2 + y
2 y

Figure E4.2: Comparison of the exponential function ey with its Padé approximant (2+y)/(2−y).
The Padé approximant provides a close approximation around y = 0, but diverges with a vertical
asymptote at y = 2.

Answer:

(i) The differential equation is
τ ẋ(t) + x(t) = δ(t− T ).
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(ii) The response of a first-order system subject to a unit impulse at time zero is

x(t) =
1

τ
e−t/τ , t ≥ 0.

Therefore, the response to a delayed unit impulse at t = T is

x(t) =

 0, 0 ≤ t < T
1

τ
e−(t−T )/τ , t ≥ T.

(iii) Taking the Laplace transform using the time-delay property (P7) and rearranging yields

X(s) =
e−sT

1 + τs

No, X(s) is not a rational function because it is not the ratio of polynomials. Hence, the usual methods to compute inverse Laplace transform do not apply.

(iv) Using the Padé approximation yields

Xapprox(s) =
2− Ts

(2 + Ts)(1 + τs)
.

We can compute the partial fraction expansion as

Xapprox(s) =
2− Ts

(2 + Ts)(1 + τs)
=

α

2 + Ts
+

β

1 + τs
.

The matching method yields the expressions α =
4T

T − 2τ
and β = −T + 2τ

T − 2τ
. Substitution and the inverse Laplace transform yields

xapprox(t) =
4

T − 2τ
e−2t/T − T + 2τ

τ(T − 2τ)
e−t/τ

(v) We compute

lim
T→0+

xapprox(t) = lim
T→0+

4

T − 2τ
e−2t/T − lim

T→0+

T + 2τ

τ(T − 2τ)
e−t/τ = 0− 2τ

τ(−2τ)
e−t/τ =

1

τ
e−t/τ = lim

T→0+
x(t)

■
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