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Chapter 3

Thermal and Fluids Dynamics Systems
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3.1 Heat flow

The field of thermodynamics includes the study of dynamical models for heat flow. The three primary mechanisms for heat flow are
conduction, convection, and radiation. In these notes we focus on conduction, i.e., the transfer of heat energy through a conducting

substance, from a region of higher temperature to a region of lower temperature.

conducting substance

-~

heat flow ~ A temperature

Figure 3.1: In short, Fourier’s law states that heat flow is proportional to the temperature differential.

Remark 3.1. Fourier’s law of heat conduction is also known as the resistive heat flow law. This law is analogous to (i) Ohm’s law in
electrical circuits, where the current is proportional to the voltage difference, and (ii) Fick’s first law of diffusion in chemistry, where the
diffusion flux is proportional to the concentration gradient.
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Fourier’s law of heat conduction from region 1 through a substance to region 2 (e.g., from room 1 through a wall to room 2) states

1
G2 = —(T1 — Th) (3.1)

r

where

q1—2 is the heat flow rate from region 1 to region 2, measured in watts W, i.e., joules per second.

T; s the temperature in region i = 1,2, measured in kelvins (or, Celsius or Fahrenheit),'

r is the thermal resistance,” measured in kelvin per watt.

we allow the heat flow ¢;_,2 to be both positive (when 77 > T5) or negative (when T, > T}). Other references always assume
that 77 > 75 and talk about only positive heat flow.

Equivalently, one could measure the heat flow in the opposite direction, that is, from room 2 to room 1. Clearly, the heat flow in

the opposite direction is equal in magnitude and opposite in sign, that is,

1
o1 = —(q12 so that o1 = ;(T2 —~T). (3.2)

'"While the Fahrenheit scale is still the most commonly used scale in the United States, the majority of the world uses Celsius. Yet, these notes and scientists prefer the Kelvin, due to its
direct link to the absolute zero temperature.
2The thermal resistance is typically proportional to a thermal conductivity of the material and to the cross-sectional area of the substance (perpendicular to the heat flow).
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Next, from thermal energy balance, we know that the heat flow from region 1 into region 2 will change the temperature of both
regions according to:
Ty = qo and Ty = q1so (3.3)
where ¢; is the heat capacity of region 7, where : = 1,2, measured in joules per kelvin. In other words, these equations describe the
conservation of energy in the context of heat transfer between two regions.
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3.1.1 A thermometer

Figure 3.2: We let T'(t) denote the thermometer temperature. We let Ti,, denote the tank temperature; we assume Ti,, is constant.

Fourier’s law for the heat flow gives us
1

-
Additionally, the temperature of the thermometer is governed by the equation

(tank—thermometer —

C T(t) = (tank—sthermometer (t) .

Combining these two equations gives us the thermometer dynamics:

1

cr

T(t) (Trank — T'(2)).

Here T'(t) is variable, c and r are two parameters.

(T’tank - T(t))

(3.4)

Note: The thermometer dynamics (3.4) is a first order system, similar to the linear growth/decay model (1.1) in Chapter 1 and the
car velocity system (2.4) in Chapter 2. The thermometer time constant is 7 = cr. Also, these dynamics (3.4) are sometimes referred

to as Newton’s law of cooling or heating.
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In class assignment

To measure the tank’s temperature we immerse in it a thermometer.
Are we measuring the correct temperature?
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3.1.2 A building thermal system

T q1—2 T, 9253 T;

Consider a building with three adjacent rooms, numbered 1, 2, 3 (and assume that the air in each room has uniform temperature at
all times). Heat can flow between rooms 1 and 2, and between rooms 2 and 3. Considering room 2, we note the additive effect:

. 1
Ty = qrs2 + @32 where, for example, ¢ = T_(Tl —T5).
12

Similar equations hold for the other rooms and the other heat flow rates.

Overall we model the heat flow in a building via the Fourier law (3.1); the building thermal dynamics are:

: 1
oy = —(Ty —T)
T'12
: 1 1
CQTQ = —(T1 — Tg) + —(Tg — TQ) (3.5)
T'12 r'23
: 1
csT3 = —(To — T3)
723
where
o T is the temperature in room ¢, for ¢ = 1, 2, 3,
. C is the thermal capacity of room ¢, fori = 1,2, 3, and

« 1;; = 1 is the thermal resistance between room ¢ and j, for¢,j = 1,2,3 and ¢ # j.
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Numerical simulation of building thermal system: convergence to uniform temperature

1 import numpy as np; from scipy.integrate import solve_ivp Temperatures of the rooms
2 import matplotlib.pyplot as plt —— Temperature of Room 1 (Celsius)
3
4 def heat_flow_dynamics(t, state, c1, c2, c3, r12, r23): ———'kmpemtweofRocmz(cdﬁuﬂ
5 T1, T2, T3 = state 34 4 —— Temperature of Room 3 (Celsius)
6 Ti_dot = (T2 - T1) / (r12 * c1)
7 T2_dot = (T1 - T2) / (r12 % c2) + (T3 - T2) / (r23 % c2)
8 T3_dot = (T2 - T3) / (r23 * c3) 324
9 return [T1_dot, T2_dot, T3_dot]
10
11 # Parameters for the heat flow system
12 ¢l = 1000 # Heat capacity of room 1 (J/K) A_30< Ts(t)
13 c2 = 1000 # Heat capacity of room 2 (J/K) El 3
14 c3 = 1000 # Heat capacity of room 3 (J/K) ° \-\‘\\\\_-—\\*_‘*‘*‘~—~——_____________________
15 r12 = 0.2 # Thermal resistance between rooms 1 and 2 (K/W) < 281
16 r23 = 0.9 # Thermal resistance between rooms 2 and 3 (K/W) g
T _ . Ta(t)
18 # Time array and initial conditions: [T1, T2, T3] E26<
19 t = np.linspace (@, 1800, 12000) o}
20 initial_conditions = [20.0, 28.0, 35.0]
21 sol = solve_ivp(heat_flow_dynamics, [t[@], t[-1]], initial_conditions, ... T1(t)
t_eval=t, args=(cl, c2, c3, r12, r23), method='LSODA"') 24 1
2
23 # Plotting
24 plt.figure(figsize=(12, 7)) 22 4
25 blues = ['#002447', '#003c76', '#0055A4', '#006CD4', '#0085ff'
"#239cff', '#58b1ff'1; oranges = ['#471b00', '#752d00', '#a43e00',
"#d35000', '#ff6100', '#ff7fla’', 'ff9b56']
26 plt.plot(sol.t, sol.y[@], label='Temperature of Room 1 (Celsius)', 207
color=blues[1]) — — — — —
27 plt.plot(sol.t, sol.y[1], label='Temperature of Room 2 (Celsius)', 0 5 min 10 min ﬁizg) 20 min 25 min 30 min

color=blues[3])
28 plt.plot(sol.t, sol.y[2], label='Temperature of Room 3 (Celsius)',
color=blues[5])

Figure 3.3: Solutions of the building system (3.5).

e Toats o the o Since the thermal resistance between rooms 2 and 3 is selected much larger than that

31 plt.text(300, 24.5, r's$T_1(t)$"', fontsize=14, ha='center', va='center',

bbox=dict (facecolor="white', edgecolor='none', pad=5.0)) H H H

b blt. e ioon ams o e D) e, between rooms 1 and 2, rooms 1 and 2 quickly reach a temperature similar to each
bbox=dict (facecolor="white', edgecolor='none', pad=5.0)) 1 H

33 plt.text (900, 29.5, r'ST_3(t)$', fontsize=14, ha='center', va='center', ... other. Ultlmately, however, all temperatures will become equal.

bbox=dict (facecolor="'white', edgecolor='none', pad=5.0))

35 plt.grid(True)

36 plt.xlabel('Time (s)')

37 plt.ylabel('Temperature (Celsius)')

38 plt.xticks(np.arange(o, 1801, 300), ['0', '5 min', '"10 min', '15 min',
'20 min', '25 min', '30 min'])

39 plt.legend()

40 plt.xlim(@, 1800)

41 plt.title('Temperatures of the rooms')

42 plt.tight_layout()

43 plt.savefig("building.pdf”, bbox_inches="'tight')

Listing 3.1: Python script generating Figure 3.3. Available at
building.py ﬁ


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/building.py
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3.1.3 A controlled building thermal system

Text

Next, we include two additional effects and design a temperature controller. We assume that:
(i) room 1 is in direct contact with an external environment with a constant temperature 7., through a thermal resistance ;.
We assume T is high and the external environment is heating up the building;

(ii) room 3 contains an air conditioning system that supplies air at a constant temperature 7,. where T,. < T¢,. The quantity of
air and, therefore, the effect of the air conditioner is modulated by a control signal u(t), which is binary:

(3.6)

1 sets the air conditioner ON, or
0 sets the air conditioner OFF,

(iii) as first control design, we choose a desirable temperature, cooler than the warm environment T, and yet warmer than the
cold air of the air-conditioner 7}.. For example, with T,,; = 30°C and 7T, = 20°C, we turn ON the air conditioner every time

T3 > 23°C, that is,
1 if T35 > 23°C,
w(Ty) = T (3.7)
0 if 75 < 23°C.

This control law is called on-off control.
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In summary, the governing differential equations for this system are:

5 1 1
ot =—T,—T1) + — (Texe — T1),
T12 T1ext
. 1 1
Ty = — (T — Ty) + —(T3 — T3), (3.8)
12 23

: 1
03T3 = T_(TQ — Tg) + ku(Tg)(TaC — Tg)
23

where k£ > 0 is a proportionality constant determining the effectiveness of the air conditioner and related to the amount of air
flowing into room 3.
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Numerical simulation: no control, only the external environment

; import numpy as np; import matplotlib.pyplot as plt; import matplotlib 30 Temperatures of the rooms and AC control signal over 1.5 hours
3 def heat_flow_dynamics(T1, T2, T3, c¢l1, c2, c¢3, r12, r23, k, Tac, Text): —— Temperature of Room 1 (C)
4 u = 0 # no control = no air conditioning 294 — Temperature of Room 2 (C)
5 Ti_dot = (T2 - T1) / (r12 * c1) + (Text - T1) / (rlext * c1) | —— Temperature of Room 3 (C)
6 T2_dot = (T1 - T2) / (r12 % c2) + (T3 - T2) / (r23 * c2) 28
7 T3_dot = (T2 - T3) / (r23 * ¢c3) + k * u * (Tac - T3) / c3
8 return T1_dot, T2_dot, T3_dot, u 277 T2(t) T3(t)
9 26
10 # Parameters Tl(t)
mn cl, c2, c3, r12, r23, rlext, Text, Tac, k = 1000, 1000, 1000, 0.2, 0.9, .5, 30, ... 254
20, 3.0 _
12 u_prev = [0]; t_end = 5400; dt = t_end / 24000; times = np.arange(@, t_end + dt, dt) 824‘
13 <4 234
14 # Initialize values ‘E
15 Tl_vals, T2_vals, T3_vals, u_vals = [18.0], [18.0], [27.0], [e] 222<
w6 T1, T2, T3 = 15.0, 18.0, 27.0 £
17 for t in times[1:]: 214
18 T1_dot, T2_dot, T3_dot, u = heat_flow_dynamics(T1, T2, T3, c1, c2, c3, ri12,
r23, k, Tac, Text) 207
19 T1 += dt * T1_dot; T2 += dt * T2_dot; T3 += dt * T3_dot 19 4
20 T1_vals.append(T1); T2_vals.append(T2); T3_vals.append(T3); u_vals.append(u)
21 18
22 # Create the figure and the gridspec
23 fig = plt.figure(figsize=(12, 8)); gs = matplotlib.gridspec.GridSpec(2, 1, 171
height_ratios=[3, 11) 164
24 blues = ['#002447', '#003c76', '#0055A4', '#006CD4', '#0085ff', '#239cff', '#58b1ff']
25 orngs = ['#471b00', '#752d00', '#a43e00', '#d35000', '#ff6100', '#ff7fla’, '#ff9b56'] 15 } } } } }
26 0 15 min 30 min 45 min 60 min 75 min 90 min
27 # First subplot (Temperatures)
28 ax1 = plt.subplot(gs[@]); ax1.set_ylim(15, 28) ON +
29 ax1.plot(times, T1_vals, label='Temperature of Room 1 (C)', color=blues[1]) %
30 axl.plot(times, T2_vals, label='Temperature of Room 2 (C)', color=blues[3]) S
31 ax1.plot(times, T3_vals, label='Temperature of Room 3 (C)', color=blues[5]) ]
32 ax1.grid(True); ax1.legend(); ax1.set_ylabel('Temperature (C)"') °
33 axl.set_title('Temperatures of the rooms and AC control signal over 1.5 hours') E
34 axl.set_yticks(np.arange(15, max(max(T1_vals), max(T2_vals), max(T3_vals)) + 1, 1)) o
35 axl.set_x1lim(@, t_end); ax1.set_xticks([@, 900, 1800, 2700, 3600, 4500, 5400]) OFF
36 axl.set_xticklabels(['@', '15 min', '30 min', '45 min', '60 min', '75 min', '90 min']) — — — — — .
37 axl.text(900, 25.5, r's$T_1(t)$', fontsize=14, ha='center', va='center', 0 15 min 30 min 45"-”" 60 min 75 min 90 min
bbox=dict(facecolor="white', edgecolor='none', pad=5.0)) Time (s)
38 axl.text(1800, 27, r'$T_2(t)$', fontsize=14, ha='center', va='center',
bbox=dict(facecolor="white', edgecolor='none', pad=5.0)) . . . . . .
» axl.text(2700, 26.75, r'S$T_3()3', fontsize=14, ha='center', vaz'center’, ... Figure 3.4: Solutions of the building system with heat exchange with the external
bbox=dict(facecolor="white', edgecolor='none', pad=5.0)) . . L . .
e econ ubpiot CControl <ioma environment (3.8) and zero control (the air conditioning is off).
@ ax2 = plt.subplot(gsl1]); ax2.set_xlin(8, tend); ax2.grid(True) The external environment is at 7¢,; = 30°C and so the temperature in each room, slowly
43 ax2.plot(times, u_vals, label='Control signal (u)', color='black') ’
44 ax2.set_xlabel('Time (s)'); ax2.set_ylabel('Control Signal') o
6 ax2.set xticks([o, 900, 1300, 2700, 3600, 4500, 54001 but surely, converges to 30°C.
46 ax2.set_xticklabels(['0', '15 min', '30 min', '45 min', '60 min', '75 min', '90 min'I1)
47 ax2.set_yticks ([0, 1]); ax2.set_yticklabels(['OFF', 'ON']); ax2.set_ylim(-0.1, 1.1)
48
49 # Save the figure
s0 plt.tight_layout(); plt.savefig("building-Text.pdf”, bbox_inches="tight"')

Listing 3.2: Python script generating Figure 3.4. Available at
building-Text.py P


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/building-Text.py
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Numerical simulation: chattering in on-off control

1 import numpy as np; from scipy.integrate import solve_ivp . .
2 import matplotlib.pyplot as plt; import matplotlib.gridspec as gridspec 28 Temperatures of the rooms and AC control signal over 30 minutes
3
4 def heat_flow_dynamics(t, state, cl1, c2, c3, r12, r23, k, Tac, Text): 271
5 T1, T2, T3 = state
6 u=1.0 if T3 > 23.0 else 0.0 ## on off control
7 air_conditioning = k * u *x (Tac - T3) 26 1
8 Ti_dot = (T2 - T1) / (r12 * c1) + (Text - T1) / (rlext * c1)
9 T2_dot = (T1 - T2) / (r12 * c2) + (T3 - T2) / (r23 * c2) 25
10 T3_dot = (T2 - T3) / (r23 * c3) + air_conditioning / c3
1 return [T1_dot, T2_dot, T3_dot, ul 24 4
12
13 # Parameters for the heat flow system 823<
“ cl, c2, c3, r12, r23, rilext, k = 1000, 1000, 1000, 0.2, 0.9, .5, 3.0 g
15 Text, Tac = 30, 20; initial_conditions = [17.0, 18.0, 27.0] ®
16 t = np.linspace(@, 1800, 18000) §22<
17 =
18 def wrap_dynamics(t, y): 2 21
19 return heat_flow_dynamics(t, y, c1, c2, ¢3, r12, r23, k, Tac, Text)[:3] T1(t) T>(t)
20 20 4
21 sol = solve_ivp(wrap_dynamics, [t[@], t[-1]], initial_conditions, t_eval=t,
method="'LSODA") 194
22 u_values = [heat_flow_dynamics(ti, y, c1, c2, c3, r12, r23, k, Tac, Text)[3] for
ti, y in zip(sol.t, sol.y.T)] —— Temperature of Room 1 (C)
23 18 1 —— Temperature of Room 2 (C)
24 # Create the figure and the gridspec —— Temperature of Room 3 (C)
25 fig = plt.figure(figsize=(12, 8)); gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) 17 ——- Target Temperature (23C)
26 blues = ['#002447', '#003c76', '#0055A4', '#006CD4', '#0085ff', '#239cff', '#58b1ff"'] T T
27 oranges = ['#471bo0', '#752de0', '#a43e00', '#d35000', '#ff6100', '#ff7fla’', 'ff9b56'] 0 10 min 20 min 30 min
2
29 # First subplot (Temperatures) ON
30 ax1 = plt.subplot(gs[e]) =
31 axl.plot(sol.t, sol.y[@], label='Temperature of Room 1 (C)', color=blues[1]) 5
32 axl.plot(sol.t, sol.y[1], label='Temperature of Room 2 (C)', color=blues[3]) f
33 axl.plot(sol.t, sol.y[2], label='Temperature of Room 3 (C)', color=blues[5]) £
34 ax1.axhline(y=23, color=oranges[4], linestyle='--', linewidth=1.5, S
35 label="Target Temperature (23C)"') o
36 ax1.grid(True); ax1.set_ylabel('Temperature (C)'); ax1.legend() OFF
37 axl.set_title('Temperatures of the rooms and AC control signal over 30 minutes') — — 1
33 0 10 min 20 min 30 min
39 # Add LaTeX labels to the plot Time (s)
4 ax1.text(150, 20.5, r'$T_1(t)$', fontsize=14, ha='center', va='center',
bbox=dict(facecolor="white', edgecolor='none', pad=5.0)) . . . . . . L. .
@ ax1.text(300, 20.5, r'ST_2(t)$', fontsize=14, ha='center', va='center’, ... Figure 3.5: Solutions of the building system with air conditioning and heat exchange
bbox=dict(facecolor="white', edgecolor='none', pad=5.0))
a2 axl ,text(BQ@, 22.5, r‘$T_3(§)$‘, fontsize=14, ha='center', va='center', ... W|th the external enVIr-onment (38)
bbox=dict(facecolor="white', edgecolor='none', pad=5.0))
43 o [P . .
1 set_yticks (np.arange (17, max(nax(sol.yL01) . max(sol.y[17y. max(sol.y(21)) + ... Room 1 starts at a cold 10°C, but it is directly exposed to a warm external environment
1, 1)) o .
45 axl.set_xlim(@, 1800); ax1.set_xticks([@, 600, 1200, 1800]) at 30 C’ lt ends up as the WarmeSt room.
46 axl1.set_xticklabels(['0', '10 min', '20 min', '30 min']) o . [ . . .
. Room 3 starts at 27°C and therefore the air conditioning is ON for small times.
48 # Second subplot (Control signal) .
 ax2 = plt.subplot(gs[1]) So long as T, < T5, room 3 is cooled by room 2. Once room 2 becomes hot, room 1
50 ax2.plot(sol.t, u_values, label='Control signal (u)', color='black') . .. . g . . .
51 ax2.grid(True); ax2.set_xlabel('Tine (s)'); ax2.set_ylabel('Control Signal’) starts to warm up and then the air conditioning exhibit a chattering behavior about the
52 ax2.set_xticks ([0, 600, 1200, 1800]); ax2.set_xlim(@, 1800) . o . R
% ax2.set_xticklabels(['0', '10 min', '20 min', '30 min'1) desired temperature of 23°C. Fast switching happens too frequently, can damage the
54 ax2.set_yticks ([0, 1]); ax2.set_yticklabels(['OFF', 'ON']); ax2.set_ylim(-0.1, 1.1)
s5 plt.tight_layout(); plt.savefig("building-onoff.pdf"”, bbox_inches='tight") deVlce, and IS undeS[rabIe.

Listing 3.3: Python script generating Figure 3.5. Available at
building-onoff.py g


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/building-onoff.py
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The on-off control is possibly the simplest control strategy one could design: when the error is positive, the control is on, when
the error is negative, the control of off.
In the following figure, we define two variations: dead-zone control and hysteresis control.

A A A
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Numerical simulation: hysteresis control

import numpy as np; import matplotlib.pyplot as plt; import matplotlib

1
2

3 def heat_flow_dynamics(T1, T2, T3, c¢l1, c2, c3, r12, r23, k, Tac, Text)
4 u= 1.0 if T3 > 24.0 else (0.0 if T3 < 22.0 else u_prev[0])

5 u_prev[0] = u ## hysteresis control

6 Ti_dot = (T2 - T1) / (r12 * c1) + (Text - T1) / (rlext * c1)

7 T2_dot = (T1 - T2) / (r12 * c2) + (T3 - T2) / (r23 % c2)

8 T3_dot = (T2 - T3) / (r23 * ¢3) + k * u * (Tac - T3) / c3

9 return T1_dot, T2_dot, T3_dot, u

1 # Parameters

12 cl, c2, ¢3, r12, r23, rilext, Text, Tac, k = 1000, 1000, 1000, 0.2, 0.9, .5, 30,
20, 3.0

13 u_prev = [0]; t_end = 5400; dt = t_end / 24000; times = np.arange(@, t_end + dt

15 # Initialize values

16 Tl_vals, T2_vals, T3_vals, u_vals = [18.0], [18.0], [27.0], [e]
v T1, T2, T3 = 15.0, 18.0, 27.0

8 for t in times[1:]:

dt)

19 T1_dot, T2_dot, T3_dot, u = heat_flow_dynamics(T1, T2, T3, c1, c2, c3, ri12,
r23, k, Tac, Text)

20 T1 += dt * Tl_dot; T2 += dt * T2_dot; T3 += dt * T3_dot

21 T1_vals.append(T1); T2_vals.append(T2); T3_vals.append(T3); u_vals.append(u)

23 # Create the figure and the gridspec
24 fig = plt.figure(figsize=(12, 8)); gs = matplotlib.gridspec.GridSpec(2, 1,
height_ratios=[3, 1])

55 blues = ['#002447', '#0@3c76', '#0055A4', '#@06CD4', '#@085Ff', '#239cff', '#58b1ff']
2% orngs = ['#471b00', '#752d@0', '#a43e00', '#d35000', '#ff6100', '#ff7fla', '#ff9b56']

28 # First subplot (Temperatures)

29 ax1 = plt.subplot(gs[0@]); ax1.set_ylim(15, 28)

30 axl.plot(times, T1_vals, label='Temperature of Room 1 (C)', color=blues[1])

31 ax1.plot(times, T2_vals, label='Temperature of Room 2 (C)', color=blues[3])

32 axl.plot(times, T3_vals, label='Temperature of Room 3 (C)', color=blues[5])

33 ax1.axhline(y=22, color=orngs[4], linestyle='--', linewidth=1.5, label='Lower
Bound (22C)")

34 ax1.axhline(y=24, color=orngs[4], linestyle='--', linewidth=1.5, label='Upper
Bound (24C)"')

35 ax1.grid(True); ax1.legend(); ax1.set_ylabel('Temperature (C)")

36 axl.set_title('Temperatures of the rooms and AC control signal over 1.5 hours')

37 axl.set_yticks(np.arange (15, max(max(T1_vals), max(T2_vals), max(T3_vals)) + 1

38 axl.set_x1im(@, t_end); ax1.set_xticks([0, 900, 1800, 2700, 3600, 4500, 5400])

39 axl.set_xticklabels(['@', '15 min', '30 min', '45 min', '60 min', '75 min', '90

40 ax1.text(900, 25, r'$T_1(t)$', fontsize=14, ha='center', va='center', ...

bbox=dict(facecolor="white', edgecolor='none', pad=5.0))

.text (1800, 26.25, r's$T_2(t)$', fontsize=14, ha='center', va='center',

bbox=dict(facecolor="'white', edgecolor='none', pad=5.0))

42 ax1.text (2700, 23, r'$T_3(t)$', fontsize=14, ha='center', va='center',
bbox=dict(facecolor="white', edgecolor='none', pad=5.0))

41 ax

4 # Second subplot (Control signal)

45 ax2 = plt.subplot(gs[1]); ax2.set_x1im(@, t_end); ax2.grid(True)

46 ax2.plot(times, u_vals, label='Control signal (u)', color='black')

47 ax2.set_xlabel('Time (s)'); ax2.set_ylabel('Control Signal')

48 ax2.set_xticks ([0, 900, 1800, 2700, 3600, 4500, 5400])

49 ax2.set_xticklabels(['0', '15 min', '30 min', '45 min', '60 min', '75 min', '90
50 ax2.set_yticks([@, 1]); ax2.set_yticklabels(['OFF', 'ON']); ax2.set_ylim(-0.1,

s2 # Save the figure
53 plt.tight_layout(); plt.savefig("building-hysteresis.pdf”, bbox_inches="tight')

)

min'])

min'])

1.1)

Listing 3.4: Python script generating Figure 3.6. Available at
building-hysteresis.py @B

Temperatures of the rooms and AC control signal over 1.5 hours

28
271 ___—_—_______,——————————________———"____————-—____————”—_-__“‘
2 T>(t)
25 T1(t)
24 +—4—- 5 -—- -= -- -- -- -- - -—- -- -——1
3 Ts(t
g% 3(t)
o
é22< ————— [~ - - - - - - —= - ———
j
g 214
5
= 204
191
181
—— Temperature of Room 1 (C)
174 —— Temperature of Room 2 (C)
—— Temperature of Room 3 (C)
164 —=-- Lower Bound (22C)
Upper Bound (24C)
15 T T T T T
0 15 min 30 min 45 min 60 min 75 min 90 min
ON
©
c
>
s
B
€
S
o
OFF
0 15 min 30 min 45 min 60 min 75 min 90 min

Time (s)

Figure 3.6: Solutions of the building system with air conditioning and heat exchange
with the external environment (3.8).

We now design a controller with a hysteresis, that is, the air conditioner will:

turn ON when the temperature exceeds 24°C.

turn OFF when the temperature drops below 22°C.

Do nothing if the temperature is between 22°Cand 24°C.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/building-hysteresis.py

Lectures on Dynamical Systems, ed. 2024 (This version: October 22, 2024).

Chapter 3, slide 17

3.2 Incompressible fluid flow

Fluid flows are widely studied and of major importance in mechanical engineering systems. The simplest physical law governing

fluid flow is continuity or conservation of mass.

m Wout
—

Figure 3.7: Water tank example

For the water tank example in Figure 3.7, conservation of mass implies

m = Win — Wout

where
« m is the fluid mass inside the tank, measured in kg,
e Wi, is the incoming mass flow rate into the tank, measured in kg/sec, and

e Woyt is the outgoing mass flow rate out of the tank.

(3.9)
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A second physical law regulating incompressible fluid flow is force equilibrium.

FPl.S-toh

pressure
?

X

| ——>l

Figure 3.8: Piston example, with incompressible fluid in chamber

For the piston example in Figure 3.8, the fluid flow system is counteracting a force acting on the piston. Newton’s law (force
equal mass times acceleration) implies

where

« M
.«
« A
*p
« f

is the mass of the piston,

is the position of the piston,

is the cross-sectional area of the piston,
is the pressure in the piston chamber, and

is the force applied to the piston.

Mi=Ap— f

(3.10)
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A third and final physical law governing fluid flow is the law of nonlinear resistance.

(a) Laminar flow (b) Turbulent flow

Figure 3.9: Fluid flow in a pipe: laminar versus turbulent.

Consider a fluid flow through a pipe from a location with high pressure p; to a location with low pressure ps, that is, p; > ps. The

effect of resistance is approximately modeled by
1

w = ;(pl — pg)t/e (3.11)
where
o« w is the mass flow rate,
e D1 —p2 >0 is the pressure difference,
o7 is a flow resistance, determined by the pipe’s roughness, diameter, length, and the fluid’s viscosity, and
cl<a<?2 is a flow behavior parameter, which (unfortunately) does not directly correlate to laminar or turbulent flow as in
Figure 3.9. Roughly speaking,
a2 is an appropriate value for high flow rates through pipes or nozzles,
a1 is an appropriate value for very slow flows through long pipes,

1 <a<?2 corresponds to intermediate regimes.

(A complete analysis of flow behavior is outside the scope of these notes.)
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An example water tank: height dynamics with pressure-dependent outflow

Starting from the water tank model m = wj, — wou, we recall m(t) = Aph(t), where h(t) > 0 is the water height, A is the
cross-sectional area’ of the tank, and p is the density of water. We write the dynamics of the water height as

- 1
h:Z;@%—umg. (3.12)
We consider a constant incoming mass flow rate wj,. For the outgoing mass flow rate, using the flow resistance model (3.11) with

a = 1/2, we assume instead that
1

1/2
wout(h) - ;(phydrostatic(h) - pambient) / (313)
where Dambient is the ambient pressure and phydrostatic(h) is the hydrostatic pressure, that is, the pressure exerted by a fluid at equilibrium
due to the force of gravity.
Now, (from Pascal’s principle) recall that the hydrostatic pressure at the bottom of the tank is the sum of the ambient pressure
and the pressure due to the “water column,” that is

phydrostatic(h) = Pambient /)gh (3.14)
In summary, the tank height dynamics are
; 1 1 1/2 VP9 1
h=——(win —=(pgh) ") = — A+ ——Win. 3.15
25 (wn = 5 (egh) ) = =T Vh + w (3.15)

3The cross-sectional area of a tank is the area of the shape formed by intersecting the tank with a plane perpendicular to its axis at a given level.
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For simplicity, we introduce the parameter a = % >0and b = Aip > () so that we can rewrite the water tank equations as

h = —aVh + bw, (3.16)

Next, we compute the equilibria of the water tank system by setting 4 = 0. Note that there is only one equilibrium:

av h* = bwi, S h* = (b/a)*w?,. (3.17)

Figure 3.10: Phase portrait on the line for the water tank

4,\ system with input mass flow rate wy,.

. We observe that there exists only 1 equilibrium point and

f(&) 2_7- B GW"’ !DAS;“ zlg(ﬁ) it is stable.
R = (bla) i
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3.3 Linearization of nonlinear systems for small signals

A dynamical system with a control input or a control system with n state variables x and m state variables u is a system of the form

T = f(z,u) (3.18)

For example, first order systems include:
« the car velocity system (2.4) © = —(b/m)v + f/m has n = 1 state v and m = 1 input f;
« the water tank system (3.16) h=—avh+ bwi, has 1 state h and 1 input wjy;

and second order systems include:

« the forced mass-spring-damper system (2.12) mz + b + kx = f has 2 states (x, ) and 1 input f;
« the air-conditioned building system (3.8) has three states (77, 75,73) and 2 inputs: the air conditioning control u and the

external temperature Tey;.
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3.3.1 Mathematical analysis: Equilibrium pair for a control system

For a control system (3.18), an equilibrium is a pair (z*,u*) such that
flz*,u*) =0
so that the constant trajectory (z(t), u(t)) = (2*,u*) is a solution for all time. For example

- for the water tank system (h*, w},) = ((b/a)*(w*)?, w*) is an equilibrium,

« for the forced mass-spring-damper system (z, &, f) = (fo/k, 0, fo) is an equilibrium.

(3.19)
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3.3.2 Mathematical analysis: Linearization of nonlinear systems near an equilibrium

Next, we discuss the linearization process that is very useful to analyze nonlinear dynamical systems. Specifically, to understand
the properties of nonlinear systems (e.g., the stability of an equilibrium point), we will proceed in two steps: (1) via small signal
linearization, we understand how nonlinear systems behave linearly locally near the equilibrium, and (2) we will then study the
stability problem for general linear systems.

In what follows, we will use Taylor expansions, see the review in Appendix 3.5.
Loosely speaking, as we did for the car velocity system, we now consider a change of coordinate. Near the equilibrium pair (z*, u*),
we consider small variations and write
x(t) = 2" 4 ox(t),
u(t) = u" + ou(t),

and we plug into both sides of & = f(x,u) to obtain

x(t) = i(x* + 0x(t)) = iéx(t) = f(a* + 0x(t), u" + du(t))

dt dt
~ f(z*,u") + a—x(x Jut) ox(t) + %(az ,ut) ou(t),
~F =z

where we have used the Taylor expansion about the equilibrium point (x*, u*).
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One-dimensional scalar systems  For one-dimensional systems with one input (that is, (¢) € R and inputs u(t) € R), the small signal
linearization of the control system (3.18) about the equilibrium point (z*, u*) is

d
%533 = Fox + Gou, (3.20)
or equivalently, emphasizing the dimensions of vectors and matrices:
ox| ~ |F||oz| + |G ||oul. (3.21)
(Ix1) (Ix1) (1x1) (Ix1)(1x1)

The classic example is the so-called small-angle approximation. The nonlinear first-order system
§ = —sinf
is approximated, for small angles 0, by the linear first-order system
00 = — sin 60

where the variable is 060 = 6 — 0.
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Two and larger dimensional systems For control systems with multiple states and inputs (that is, z(t) € R" and inputs u(t) € R™),
we recall that the matrix of partial derivatives is called the Jacobian matrix. Since f is a function of x and w, it has two Jacobian
matrices:

0 0
F = a—i(x*,u*) and G = a—i(m*,u*) (3.22)
In summary, the small signal linearization (or Jacobian linearization) of the control system (3.18) about the equilibrium point (z*, u*)
is g

%533 = Féx + Gou, (3.23)

or equivalently, emphasizing the dimensions of vectors and matrices:

ou
ox| =~ F ox| + @ . (3.24)
(mx1)
(nx1) (nxn) (nx1) (nxm)

Recall: n = # states and m = # inputs.
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3.3.3 Linearizing the pendulum equations

As in Section 2.3.1, we consider a pendulum of length ¢ with mass m concentrated at its end, subject to gravity with constant g and
to friction (due to air or due to the mechanical rotation at the pivot point) described by a damping coefficient .

Figure 3.11: A pendulum subject to gravity, connected to a pivot point.
The variable is the angle 6, measured counterclockwise from the zero value when the

pendulum is in its vertical rest state.
The moment of inertia of the pendulum about the pivot point is I = m/(?.
The pendulum is subject to the gravity force of magnitude mg, which translates into a

restoring torque of magnitude mfgsin(0).

As in equation (2.27), the equations of motion are:

0 w
i 29
with the two equilibria:
—_ [ Gown 0 , - e
« the equilibrium point = ol corresponding to the pendulum in its down position,

w* 0

9*
« the equilibrium point ”p] = [71 , corresponding to the pendulum in its up position.
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Linearization of the pendulum equations at the down and up positions

We compute the Jacobian matrix of (3.25) at an arbitrary point (0, w):

0 1
J(0,w) = [_% cosf  —-b (3.26)
and evaluate it at the two equilibria 0,,,, = 0 and 07, = 7 (where wy,,,, = wg, = 0):
Jdown (@iown = 0, Wigwn = 0) = [ g 1b ] and Jup(0hp = T, w0y, = 0) = [gO 1b ] (3.27)
A - me? l - me?
Therefore, the two linearizations of the pendulum dynamics are:
00 06
[(5&)] - Jdown [6&)] (328)
where 60 = 0 — 0} ., = 0 and dw = w — W} ,,, = w, and
00 00
A .

where 00 = 0 — 0, =0 — 7 and dw = w — w;, = w,

p
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Intuitively, the pendulum down case corresponds to approximating sin(6) by 0. This approximation is reasonable for small ¢
and because the point (6,6) = (0,0) is a stable equilibrium of the pendulum dynamics. We note that this approximated model is

identical to a linear mass-spring-damper system:

I
0+ —0+=60=0. 3.30

* me? * 1 (3.30)
Let us now verify empirically the impact of this approximation. We compare the phase portrait for the exact dynamics (2.25) with

sin # and for the approximated dynamics, where sin 6 is replaced by 6.

—3n/2 -n —n/2 0 n2 n 3n/2
Theta

(a) Exact pendulum dynamics (b) Pendulum dynamics linearized at the pendulum down configuration

Figure 3.12: Phase portrait for the undamped pendulum dynamics and its linearization about the “pendulum down” configuration.
Note that the phase portraits are reasonably similar for small 6.
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3.4 Historical notes, further reading, and online resources

Additional example systems can be found in Ogata (2003).
For additional information about heat flow models, including for example the differential form of Fourier’s law, we refer to

wikipedia: Thermal conduction and wikipedia: Thermal conductivity.

It is instructive to consider how a binary ON/OFF controller is implemented in a circuit. A relay circuit is an electrical control
device that typically uses an electromagnet to mechanically switch an electrical load on or off. It consists of a coil, a set of contacts,
and a spring-loaded mechanism. When an electrical current is applied to the coil, a magnetic field attracts or repels the contacts,
causing them to make or break an electrical connection. Relays are commonly used in automotive systems, industrial automation,
and electronics. They are especially useful in high-voltage or high-current devices for electrical isolation and protection.


https://en.wikipedia.org/wiki/Thermal_conduction#Differential_form
https://en.wikipedia.org/wiki/Thermal_conductivity_and_resistivity
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3.5 Appendix: Taylor expansions

Taylor Expansion for a Scalar Function of a Scalar Variable (n=1) For a function f(z) that is differentiable at a point x*, its Taylor

f@) ~ S+ D) (- a)

expansion up to the first order about x* is:

where:
o f(x¥) is the function at x*,
. %(m*) is the derivative of the function at z*, and
ex —2a* is the difference between the point of interest x and the expansion point z*.

Equivalently, emphasizing the dimensions of vectors and matrices:

flx*)| + %(w*) z—z* (3.31)

(1x1) (1x1) (1x1) (1x1)

P
&
Q
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Taylor Expansion for a Vector Function of a Vector Variable (n=2) Now we consider a differentiable function f: R? — R? where

and

flx) = f(@") + J(z7) - (z — 27)

where:
o f(x¥) is the vector function evaluated at z*,
« J(x¥) is the Jacobian matrix of f evaluated at x*, defined by
on of
Ty = ghe = | o
9f 0
or; O0xold .,
e x —2a* is the difference vector between the point of interest = and the expansion point x*.

Equivalently, emphasizing the dimensions of vectors and matrices:

f(z)

Q

flz*) | + J(z*) r—z* (3.32)

(nx1) (nx1) (nxn) (nx1)
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3.6 Appendix: Basic models in convective and radiative heat transfer

In this appendix, we present simple low-dimensional examples of convective and radiative heat transfer.

3.6.1 Convective heat transfer

This model describes how an object cools or heats over time when placed in an environment where heat is exchanged between the
object’s surface and the surrounding fluid. This model is commonly used to describe transient heat conduction in simple geometries
with convective boundary conditions. The convective heat transfer dynamics is:

dT’ hA
— = _%(T —T), (3.33)

where:
« T'(t)is the temperature of the object at time t,
« T, is the ambient temperature (assumed constant),
« h is the convective heat transfer coefficient,
« A s the surface area of the object,
« m is the mass of the object, and
« ¢ s the specific heat capacity.

This first-order linear ODE provides insights into cooling rates in real-world applications like engines, heat exchangers, or electronic
devices.
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3.6.2 Radiative cooling of a blackbody

The Stefan-Boltzmann law describes radiative heat transfer from an object to its surroundings. For a body emitting thermal radiation,

the radiative cooling dynamics of a blackbody is
dI' — ocA

“l 4 i
yy — (T -1Ts.), (3.34)

where:

« T'(t)is the temperature of the object at time ¢,

« Ty, is the ambient temperature (assumed constant),
« 0 is the Stefan-Boltzmann constant,

is the emissivity of the object,

€
« A isthe surface area,
m

is the mass, and

c¢ is the specific heat capacity.

This nonlinear ODE models is especially relevant for high-temperature systems like engines, furnaces, or even spacecraft, where
radiation is a dominant heat transfer mechanism. A key feature of this model is that radiation depends on T and so the model is
nonlinear.
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3.7 Exercises

E3.1 Positive and negative fluid flow in a pipe with positive and negative pressure difference. Given a flow resistance  and a flow behavior parameter «, recall
that equation (3.11) assumes p; > py and provides a mass flow rate w that is always positive. When the pressure difference p; — p2 can be both positive and negative,
the resulting mass flow rate from 1 to 2 can be both positive and negative.

Let w12 denote the signed flow (“signed” means positive or negative) from point 1 to point 2.
(i) Write an equation for wi_o as function of p; — pa, when p; — Py can be both positive and negative.
Hint: In other words, given two arbitrary numbers p; and pa (without assuming necessarily that p; > p2), how would you compute the mass flow rate?
(ii) Verify that your proposed equation reduces to equation (3.11), when p; > pa.

(iii) Write an equation for wo_,1 and explain how it relates to wi_2.

Answer:
(i) We propose
1 1/a :
, 1 —(p1 — p2) if p1 > po
w12 = sign(pr — p2)—(Ip1 —pa)r =S Ve (E3.1)
—;(m—pl) ¢ ifpa >pr
(i) When p; > pa, we compute

. 1 1
wi—2 = sign(py —p2);(1p1 —po )/ = ;(pl — py)/e (E3.2)

. 1
(i) wa1 = —wi2 = sign(pe —pl);(lpl — po|) /@
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E3.2  Water heater model. Consider a water tank above a coil heater as in Figure E3.1.

win, T //ﬁ\ Figure E3.1: A water tank model.

—C— 11

Text The water in the tank is thermally connected to (i) a coil heater
e—" N ~—] . .. .
- 25% et through a thermal resistance 7, and (ii) the external environment
water

through a thermal resistance 7y.-ext.

Wout, Lout = Twater )
Twe O ———> Let Tyaters» 1o and T., denote the temperatures of water, coil

heater, and external environment, respectively.

Tcoih Ccoil \I
Rcoil

(i) Using Fourier’s law, write an equation for the heat flow gcoil—water from coil to tank, and gyater—ext from tank to external environment.

Now, assume that the coil heater warms up due to Joule resistive heating with its electrical resistance R, when a current [ is applied. This means that the energy
produced per second, that is, power generated is:
P = Ry I? (measured in watts = Joule per sec)

Let Ccoi be the total heat capacity of the coil heater. Let m denote the water mass in the tank, let cyater denote the specific heat capacity, that is, the amount of
heat required per unit mass to raise the temperature of water by one-degree Celsius. Therefore, mcyater is the total heat capacity of the water in the heater. For now,
assume no water flows into and out of the tank (both valves are closed).

(if) Write an equation for the evolution of the temperature of the tank water and of the coil.

Finally, open the both valves and assume wi, > 0 and wey: > 0 are incoming and outgoing mass flow rates, as in the mass balance equation (3.9). Let T;, denote the
temperature of the incoming water. Note that

« the total thermal energy of the tank water is cyaterm T water

+ due to the incoming water, energy is added to the water tank at a rate gjn = WinCwaterZin and subtracted at a rate gout = WoutCwater L water-

(iii) Write the balance equation for the time-derivative of the total thermal energy.
(iv) Using the formula from (iii) and the mass balance equation i = wj, — wout, obtain a single equation for Twate,.

(v) Collect the various results and write the resulting control system with three variables (m, Tcoi1, and Ty ater) With two inputs (wjp, I?) and a disturbance (wqut).

Answer:
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(i) According to Fourier’s law, the heat flow from coil to water and from water to external environment are

1 1
coil—water — 7(Tcoil - Twater) and Qwater—ext — 7(Twater - Text)
T'w,c w-ext
(if) The temperature change of the coil heater is:
. . 1 9
C’coiltrcoil = —{coil—swater + P — CcoiITcoiI - f(Twater - Tcoil) + 1 Rcoil
w,C
The temperature change of the tank water is:
MCwater L water = —Qwater—coil T Qwater—sext - MCyater L water = ri(TcoiI - Twater) + ri(Text - Twater)
w,C w-ext

(iif) Now, both valves are opened and cause a change of temperature and water mass. The total thermal energy changes according to

d(mcwaterTwater) .
dt = (coil—swater — Qwater—ext T Qin — Qout
——Cgivar Loeiiar 3 mcwaterﬂ = 7(Tcoi| - Twater) T 7(Text - Twater) I WhsCoriarLin = WhniCoeier Luveier (E3~3)
dt dt Poae Tw-ext

(iv) Plugging the mass balance equation m = wj, — woyt into (E3.3) we obtain

dTwater o 1 1

MCwater dt = (Tcoi[ - Twater) + , (Text - Twater) + WinCwater Lin — WoutCwater L water — (win - wout)cwaterTwater (E3-4)
w,C w-ext

so that, after a simplification,

i~ 1 1
m water _ (Tcoil - Twater) + 7(Text - Twater) + win(ﬂ” - Twater) : (E3.5)

dt rw,c Cwater T'w-extCwater

(v) In summary, we have a control system with three variables (m, T¢.ii, and T\ ater) With two inputs (wip, I?) and a disturbance (wout):

m = Win — Wout ,

. 1
C1c0i|,I’coil — 7(Twater - Tcoil) 4 I2Rcoi| 5
T'w,c
dTwater 1 1
- T_Tw r 7TX_TW r inT}n_Tw r) -
" dt rw,ccwater( coil ate ) * rw—extcwater( ext ate ) w ( ate )
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E3.3

Epidemic model and linearization. In this exercise we explore the dynamics of epidemics and the occurrence of epidemic outbreaks. Given a population and a
pathogen, we assume that each individual is in one of three possible states:
susceptible: the individual is not infected, but is vulnerable to being infected,
infected: the individual is infected and capable of transmitting the disease to susceptible individuals, and
recovered: the individual has been infected and has now recovered, gaining immunity to the pathogen.
Mathematically, we let s, x, r denote the fractions of susceptible, infected, and recovered individuals, respectively. Note that s(t) + x(t) + r(t) = 1 at all times t.
We call this simplified model the SIR model and we allow only two types of transitions:
susceptible — infected: this transition is due to an interaction between one susceptible individual and one infected individual. Therefore, the transition rate
depends upon the likelihood of contact between individuals in the two states. Mathematically, the transition rate equals Ssz, where the infection rate 5 > 0 is
describes how transmissible is the pathogen;
infected — recovered: this transition is spontaneous, independent of interactions, and proportional to the fraction of infected individuals. The transition rate is
~vz, where the recovery rate v > 0 describes the decay rate of the infection.
We illustrate the transitions and their rates in Figure E3.2.

Bsx r — fraction| % PR —— Figure E3.2: The three states, the two possible transitions, and the transition rates

s = fraction
susceptible a infected > raseEed] for the two possible transitions.

In summary, our proposed SIR epidemic model is

= —Bsx (E3.6)
T = fBsx —yx (E3.7)
7= yz. (E3.8)

(i) How many variables and parameters are in this epidemic system? (Here we mean variables dependent on time and we do not count time)
(ii) Identify all equilibria of the system.
(iii) Linearize the model around the equilibrium (1,0, 0).
(iv) Show that, for the linearized dynamics, the time derivative of the infected individuals éx is independent of the values of ds and dr.

(v) An epidemic outbreak is said to occur when: (i) all individuals are susceptible except for a small positive fraction of infected individuals, and (ii) the number of
infected individuals starts to grow exponentially fast. Use the linearized model from questions (iii) and (iv) to find a condition on the ratio 3/ that leads to an
epidemic outbreak.

Note: Some additional analysis explains that the ratio 3/~ equals the Ry value in the literature. The Ry value equals the average number of individuals that an infected
individual will infect. This value was widely publicized during the COVID-19 pandemic.

*More realistic models include more states and more possible transitions.
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Answer:

(i) 3variables and 2 parameters
(ii) We can see that it is both necessary and sufficient that x = 0 for the system to be in equilibrium.

Thus, all points of the form (a, 0,b) are equilibria.

(Since s + = + r is a conserved quantity, we can equivalently write (a,0,1 — a), assuming that the system starts from (1,0, 0).)

(iii) Linearizing the model about an arbitrary point (s, z,r) yields the following system:

d ds —Bx —pBs 0| [ds
p7 ox| = | Bx Bs—~v 0] |[dx|. (E3.9)
or 0 v 0f |or
Evaluating the linearized system at the point (1,0, 0) yields
d 0s 0 —B 0] |ds
p ox| = |0 B—~v 0] [dx (E3.10)
or 0 ~v 0] |or

(iv) The equation 0z = (8 — 7)oz is decoupled from the evolution of the susceptible and recovered fractions.

(v) We can see that the linear system 6z = (3 — ~)dx is a linear growth model (studied in Chapter 1) and it is an unstable system if 3 —~ > 0. Manipulating this
expression, we obtain the equivalent condition:

if 5/~ > 1, then the linearized system is unstable

When this linearized system is unstable, z(t) grows exponentially fast (for small times, before we leave the neighborhood of the equilibrium point (1,0, 0))
and so we have an epidemic outbreak.

This answer to question (v) shows that, when Ry > 1, there is an epidemic outbreak.
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E34  Linearization of the water tank dynamics with input. Recall that, given two positive coefficients a, b, the water tank dynamics is

h(t) = —a~/h(t) + bw(t) (E3.11)
where h(t) is the water height and w(t) > 0 is the input signal.

(i) Compute each possible equilibrium point of the system.
Hint: Recall that an equilibrium point is a pair (h*, w*).
(if) Compute the small signal linearization of the system at an equilibrium point such that w* > 0.
(iii) Is it possible to compute the small-signal linearization at the equilibrium point such that w* = 0? It not, explain why not. Otherwise compute it.

Note: As discussed after the flow resistance model (3.11), when h is small and the flow is slow, then the assumption o = 2 is inappropriate.
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E3.5

Linearization of a mass-spring-damper system with a nonlinear spring . Consider a nonlinear spring with zero rest length and restoring force equal, in
magnitude, to

fnonlinear—spring(ﬁ) =kir + k2$3 (E3.12)

where z is the displacement. Consider a mass-spring-damper system with this nonlinear spring:
méi + bi + k1x + koa® = f (E3.13)

(i) Assume k1 = 0. For each value of f (positive and negative) and k2 > 0, compute each possible equilibrium point of the mass-spring-damper system.
Hint: As a minor point, recall that an equilibrium point for this dynamical system is not just a position x*.
(ii) If k1 > 0, ke > 0,and f = k1 + ko, what is the equilibrium? Let (2*,0) denote this equilibrium point.

(iii) Compute the small signal linearization of the mass-spring-damper system at the equilibrium point (z*,0) when f = ky + ko.
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E3.6  Hydroelectric dam. Consider the hydroelectric dam shown in Figure E3.3a. When the intake is open, water flows from the reservoir through the penstock and out
the outlet. The turbine and generator are coupled with a shaft so that energy is extracted from the flowing water and converted into electricity.

« The state variable for the hydroelectric dam control system is the rotation speed of the turbine-generator shaft w.
+ The hydraulic head & is the input signal to the hydroelectric dam control system.

« We assume that the pressure at the penstock intake is ppydrostatic, and the pressure at the outlet is pambient.- The combined flow resistance of the penstock and
turbine is r, and the flow behavior parameter is & = 2 (recall the flow resistance law in equation (3.11)). The density of the water is p, and the acceleration due
to gravity is g. As shown in Figure E3.3b, the shaft has moment of inertia I and experiences a torque 7y due to the water flowing through the turbine which is
counteracted by a torque 7, due to the generator.
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(a) Schematic of a hydroelectric dam (b) Free body diagram of
turbine-generator shaft

Figure E3.3: Schematic and free body diagram of a hydroelectric dam.

(i) Derive the equation of motion for the rotation speed w of the turbine-generator shaft in terms of the moment of inertia I and the torques 7, 7,.

(ii) The turbine torque 7 = (¢ P;)/w where ¢; is an efficiency constant (unitless) and P; is the mechanical power of the turbine (in watts). We have the following
equation for P;:

P = Q(phydrostatic - pambient)
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where ¢ is the volumetric flowrate® through the penstock (in cubic meters per second). Use these relations along with others from the chapter to write an
expression for the turbine torque 7 in terms of the state w, the input h, and other defined quantities.

(iii) Substitute the expression found in part (ii) into the equation of motion found in part (i). Identify the equilibrium of the resulting system. Sketch a phase portrait
and classify the stability of the equilibrium.

(iv) Linearize the system about the identified equilibrium. Use the notation dw, dh for the transformed coordinates. Use the linearized model to verify the stability
or instability of the equilibrium.

SFor the purpose of this exercise, assume the volumetric flow rate ¢ = w/p, where w is the flow rate and p the water density.
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E3.7  Surf’s up, the thermal dynamics of surfing. In this problem, we will investigate how the presence or absence of a wetsuit affects the body temperature of a person
while surfing in cold water. Assume that all heat transfer occurs through conduction. The system can be analyzed in two scenarios: (a) without a wetsuit and (b) with
a wetsuit. These configurations are illustrated in Figure E3.4.

B 7 -~

a) System with no wetsuit (b) System with a wetsuit

Figure E3.4: Person in the water (a) without a wetsuit and (b) with a wetsuit.

No Wetsuit Denote the core body temperature by T} and thermal capacity by c¢1, and the surface temperature of the body by T5 and its thermal capacity by cs.
Assume that the body generates heat at a rate gpod4y. Assume the water temperature 73 is constant.

(i) Write down the dynamics for the system in Figure E3.4a.

(i) Derive an expression for the equilibrium temperature of the body. Express the result in terms of 11, gpody, and the relevant thermal resistances.

With Wetsuit In the second scenario, a wetsuit is introduced into the system. Let Ty represent the temperature at the surface of the wetsuit. The rest of the
setup remains the same.

(iii) Write down the new dynamics for the system in Figure E3.4b.
(iv) Derive a new expression for the equilibrium temperature of the body. Express the result in terms of 17, T3 and the appropriate thermal resistances.

(v) Assume the thermal resistances are related by ri2 = r34 = ro3 = %7‘24. How much greater is the difference 77 — T3 with a wetsuit than without?

Hint: Recall that the equilibrium point is found where T, =0fori e 1,2,3,4.
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