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Chapter 2

Mechanical and Electromechanical Dynamical Systems
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2.1 Mechanical systems

Newton’s law is the starting point for any analysis of mechanical systems. For a body composed of a single particle or rigidly

interconnected particles moving in a single direction,
F=ma (2.1)

where:

 F'is the resultant force (resultant = algebraic sum of) applied to the body, measured in Newtons (N),
« m is the mass of the body, measured in Kg, and

« a = a(t) = i(t) is the acceleration of the body, that is, the second time derivative of the body position x(t), measured in m/sec?.

As in Chapter 1, the independent variable ¢ is time and the position x(¢) is the dependent variable. The mass m is most often
treated as a constant parameter.’ The force F' is independent of Newton’s law, it may well be an external force generated by some
unspecified means.

Equation (2.1) is referred to as the equation of motion as it describes the evolution of the position ().

When no force is applied to the particle, then the solution is a translation at constant velocity.

"The mass of a rocket burning fuel is a variable of interest and it is not constant.
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2.1.1 First-order systems

A damper is a mechanical element that dissipates energy. The classic example of a translation damper is a piston connected to a rod
and an oil-filled cylinder. Oil resists any relative motion between the piston and the cylinder. Typically, one approximates the force
generated by the damper linearly:

Fdamper - —b.T(t) (2'2)

where b > 0 is the damping coefficient (aka the viscous friction coefficient and the mechanical resistance).

In a moving car, energy is dissipated by the interaction between air and moving car. Assuming dissipation linearly proportional to
car speed (again with damping coefficient b) and assuming the motor produces a constant force f, the equations of motion are

mi(t) = —bi(t) + f. (2.3)
If we concern ourselves only with velocity v(t) = Z£x(t), the car velocity system as
mo(t) = —bu(t) + f. (2.4)

This is a first-order system, i.e., a linear decay system with a forcing term.
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Numerical simulation of car velocity system with switching force

1 # Python libraries

2 import numpy as np; import matplotlib.pyplot as plt Solutionto mv= —bv + f, m= 3, b= 4, f=20fort<5and f=30fort>5

3 from scipy.integrate import odeint

1

s # Differential equation model of the dynamical system 8

6 def model(v, t, b, m, f):

7 dvdt = - (b/m) * v + f(t)/m -

8 return dvdt —

9 //

10 # Parameters and time array 7 4

1m b =4; m=3; t = np.linspace(@, 10, 500)

12 # Force with a step change at time 5

13 def f(t):

i if t < 5:

15 return 20 6 y

16 else:

17 return 30 //

18 —_ 4

19 # Initial conditions = /

20 v@_values = [2, 3, 4, 5, 6, 7, 8]; { /

21 colors = ['#471b00"', '#752d00', '#a43e00', '#d35000', '#ff6100', '#ff7fla', '#ff9b56'] 9 5 =

22 ©

23 # Numerically integrate and plot solutions for each initial condition :ﬁ

24 plt.figure(figsize=(10, 6))

25 for idx, v@ in enumerate(v@_values):

2 v = odeint(model, vo, t, args=(b, m, f)) 4

27 plt.plot(t, v, label=f'vo={v0}', color=colors[idx]) —_ v0=2

28

29 # Annotate and save the plot — v0=3

30 plt.title('Solution to $m \dot{v} = - b v + f$, $m=3%, $b=4%, $f=20% for $t<5% and v0=4
$f=30% for $t>5%') 34

31 plt.xlabel('Time, t'); plt.ylabel('State, v(t)') — v0=5

32 plt.legend(); plt.grid(True); plt.xlim(0, 10) 0=6

33 plt.savefig("first-order-ode.pdf”, bbox_inches="tight"') vi=

3 — v0=7

35 # Second figure: Illustrate time constant

3% tau =m / b 27 v0=8

37 def fzero(t): T T T

38 return @ 0 2 4 6 8 10

39 # Initial condition and time array

0 ve = 1 Time, t

42 # Numerically integrate and plot solution for the given initial condition
43 plt.figure(figsize=(10, 3)); . . . . .
W v = odeint(nodel, vo, t, args=(b, m, Fzero)) Figure 2.1: Solutions to the first-order equation (2.4): mo(t) = —bv(t) + f.
45 plt.plot(t, v, label=f'vo={v0}', color='#0085ff")

“ When the force is f = 20, the final value is vga = f/b = 20/4 = 5.

47 # Highlighting the time constants

@ time_constants = [tau, 2rtau, 3rtau, 4xtau, Srtau] When the force changes for f = 30, the final value is v, = f/b = 30/4 = 7.5.

49 for tc in time_constants:

S plt.uticks(tine constants, L S{} \taus'.format{int(te/taur) For té in time.constantsl) Loosely speaking, the speed at which the solution starting at (0) = 8 drops to the
52 . . . . . .

5 # Drawing the 1% horizontal dashed line value 5 is the same with which the solution starting at x(0) = 2 rises to the value 5.

54 one_percent_value = 0.01; exp_value = np.exp(-1);

55 plt.axhline(y=one_percent_value, color=colors[3], linestyle='--', linewidth=1.5)

56 plt.annotate(f'$1\\% > e*{{-5}} \\approx 0.67\\%$', (6xtau, one_percent_value),
textcoords="offset points”, xytext=(0,10), ha='left', color=colors[3])

57 plt.axhline(y=exp_value, color=colors[3], linestyle='--', linewidth=1.5)

58 plt.annotate(f'$e”{{-1}}\\approx 36.8\\%$', (6xtau, exp_value), textcoords="offset
points”, xytext=(0,10), ha='left', color=colors[3])

61 # Annotate and save the plot

62 plt.title(r'Solution to unforced $\tau \dot{x} = -x$')

63 plt.xlabel('Time, t'); plt.ylabel('state, x(t)');

64 plt.grid(True); plt.xlim(@, 6); plt.ylim(-0, 1)

65 plt.savefig("first-order-ode-timeconstant.pdf”, bbox_inches="'tight")

Listing 2.1: Python script generating Figure 2.1. Available at
first-order-ode.py ﬁ


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/first-order-ode.py
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Mathematical analysis: Change of coordinates into error system (i.e., an unforced first-order system)

Consider the affine’ first-order system
mo(t) = —bu(t) + f = i(t) = ——a(t) + —, (2.5)

with constant coefficients m, b, and f.
We saw in the numerical simulation that, for each constant force f, the solution converges to a constant final value. In other
words, the system has a stable equilibrium point, which is easily computed to be:

Vfinal = f/b (26)
Next, we consider a change of coordinates into a set of relative velocity (velocity relative to the final value)
Urelative(t) — U(t) — Ufinal = U(t) — f/b (27)

The relative velocity play the role of an error variable, measuring the error from current position to final position. We can now
perform a simple calculation:

d ) 1 b b
Evrelative =v—-0= E(_bv + f) = _E(Urelative + Ufinal) + % - _Evrelative-

In summary, the error system is an unforced first-order system

. b
Urelative (t) — _Evrelative(t)- (2'8)

2A function is affine if it is the sum of a linear function and a constant.
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Mathematical analysis: Time constant of unforced first-order systems
We rewrite the first order system with a useful new parameter:
T =—rx = TE = — —  z(t) = e " 2(0), (2.9)
where we define the time constant
T=1/r. (2.10)
Note:

(i) for an unforced system from a nonzero initial condition,
T is the time required for the system’s response x(t) to decay to e~ ! ~ 36.8% of the initial value x(0), and

(ii) at time ¢ = 57, the distance to the final value reaches a value e =~ 0.67% < 1% of the initial value (0). The rule of thumb is
to state that, after five time constants, the error has practically vanished.

Solution to unforced Tx= —x
1.0
0.8 -
£ 0.6
9 -1 o,
£ e 1~36.8%
L b T T T S R L T T ———
- \
T~ 1%>e"5~0.67%
0.0 o e e e e e e e e e ==
1t 2T 3T 4T 5T
Time, t
Figure 2.2: lllustrating the time constant of an unforced first-order system 7@ = —x, z(0) = 1.

Note z(7) = e ' 2(0) and z(57) = e~° x(0). Hence, the state is equal to ¢! =~ 36.8% at t = 7 and is below 1% at and after t = 57.
For the forced system 72 = —z + 1 and z(0) = 0, the constant 7 is the time required for () to reach approximately 1 — e™! &~ 63.2% of its final value.
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2.1.2 Second-order systems: harmonic oscillators

A spring is a mechanical element that stores energy. For now, we focus on translational springs. Typically, a spring has a natural rest
length with the property that, at rest length, the spring produces no force. When the spring is stretched or compressed, it produces a

restoring force which is proportional to the displacement.

Assume that the first end of the spring is fixed and the second end is at position 0. When the second end is attached to a body at

position z, then the spring force on the body is

Fspring =

where k > 0 is a stiffness or spring constant.

b

B (2.11)

~ x

T 1
- S

e

m

NN

OO o

Figure 2.3: A mass-spring-damper system, described by equation (2.12).



Lectures on Dynamical Systems, ed. 2024 (This version: October 9, 2024). Chapter 2, slide 11

When a body (translating along a single axis) is connected to both a spring and damper, the resulting dynamics are called the
damped harmonic oscillator:

mi(t) + bi(t) + kx(t) = 0. (2.12)

It is possible and useful to rewrite this second-order differential equation as a first order equation in two variables. As before, we
define the velocity variable v(t) = Z(t) and write

z(t) = v(t) (2.13a)
0(t) = —(b/m)v(t) — (k/m)x(t) (2.13b)

Since we need two variables, this system is said to have dimension 2.
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Numerical analysis of the damped harmonic oscillator: Underdamped oscillator

1 # Python libraries Damped harmonic oscillator: solutions (from zero initial velocity) and phase portrait
2 import numpy as np; import matplotlib.pyplot as plt
3 from scipy.integrate import odeint 2.01 — x0=2, v0=0
: — x0=1, v0=0
5 # Constants 1.51 — x0=0.5,v0=0
6 m=1.0 # Mass — x0=0.1,v0=0
7 b =10.5 # Damper X 1.0 — x0=-1,v0=0
8 k = 2.0 # Stiffness g
9 £
10 # Differential equations for damped harmonic oscillator g
11 def damped_oscillator(y, t, b, k, m): a
12 X, V=y a
13 dxdt = v
14 dvdt = -(b/m) * v - (k/m) * x
15 return [dxdt, dvdt]
16
17 # Time vector
18 t = np.linspace(@, 14, 1000)
19
20 # Six different initial conditions [x0, v@]
21 initial_conditions = [ [2, @], [1, @], [.5, el, [.1, o], [-1, e]]
2 colors = ['#471b00', ' #752d00', '#a43e00', '#d35000', '#ff6100', '#ff7fla'l
23
24 # Plotting solutions as a function of time
25 plt.figure(figsize=(10, 4)); plt.xlim(o, 14);
26 for idx, init_cond in enumerate(initial_conditions):
27 sol = odeint(damped_oscillator, init_cond, t, args=(b, k, m))
28 plt.plot(t, sol[:, @], label=f'x0={init_cond[0]},
vo={init_cond[1]}', color=colors[idx])

29
30 plt.title('Damped harmonic oscillator: solutions (from zero initial

velocity) and phase portrait');
31 plt.ylabel('Displacement (x)'); plt.legend(); plt.grid(True); s

plt.xlabel('Time") =
32 plt.savefig('damped-harmonic.pdf', bbox_inches="tight") %
33 %
34 # Phase portrait >
35 X, Y = np.meshgrid(np.linspace(-2, 2, 20), np.linspace(-3, 3, 20))
36 U =1Y; V= -(b/m) Y - (k/m) * X; magnitude = np.sqrt(Uxx2 + V*x2)
37
38 plt.figure(figsize=(10,8)); plt.grid(True)
39 plt.xlim(-2, 2); plt.ylim(-3, 3); plt.scatter(@, @, color='black',

s=50, zorder=5)
4 plt.streamplot(X, Y, U, V, density=0.75, color="'#0085ff",

arrowsize=1.5, linewidth=magnitude)
41 plt.xlabel('Displacement x'); plt.ylabel('Velocity v')
42 plt.savefig('damped-harmonic-phase.pdf', bbox_inches="'tight"')

Listing 2.2: Python script generating Figure 2.4. Available at

: -3 - . : :
damped-harmonic.py ﬁ -2.0 -15 -1.0 -05 0.0 05 1.0 15 2.0
Displacement (x)

Figure 2.4: Solutions and phase portrait for the damped harmonic oscillator (2.13), with
a low value of the damping coefficient. When there are oscillations, the system is said
to be underdamped.
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Numerical analysis of the damped harmonic oscillator: Overdamped oscillator

# Python libraries Overdamped harmonic oscillator: solutions (from zero initial velocity) and phase portrait
import numpy as np; import matplotlib.pyplot as plt 20

x0=2,v0=0 |
x0=1, v0=0
x0=0.5, v0=0 |
x0=0.1, vO=0
x0=-1, v0=0 |

from scipy.integrate import odeint

1

2

3

4

5 # Constants 15

6 m 1.0 # Mass \\\
7 b 3.0 # Damper 1.0

8 k

9

2.0 # Stiffness
0.5

10 # Differential equations for overdamped harmonic oscillator
11 def overdamped_oscillator(y, t, b, k, m):

12 X, V y

13 dxdt v

14 dvdt = -(b/m) * v - (k/m) * x -05
15 return [dxdt, dvdt]
16 -1.0
17 # Time vector

18 t = np.linspace(@, 14, 1000)

0.0

Displacement (x)

Time

20 # Six different initial conditions [x0, v@]
21 initial_conditions = [ [2, @], [1, o], [.5, o], [.1, o], [-1, @] 1]
2 colors = ['#471b00', ' #752d00', '#a43e00', '#d35000', '#ff6100', '#ff7fla'l

24 # Plotting solutions as a function of time

25 plt.figure(figsize=(10, 4)); plt.xlim(o, 14);

26 for idx, init_cond in enumerate(initial_conditions):

27 sol = odeint(overdamped_oscillator, init_cond, t, args=(b, k, m))

28 plt.plot(t, sol[:, @], label=f'x0={init_cond[0]},
vo={init_cond[1]}', color=colors[idx])

30 plt.title('Overdamped harmonic oscillator: solutions (from zero initial
velocity) and phase portrait');

31 plt.ylabel('Displacement (x)'); plt.legend(); plt.grid(True);
plt.xlabel('Time")

32 plt.savefig('overdamped-harmonic.pdf', bbox_inches="tight")

Velocity (v)

# Phase portrait
35 X, Y = np.meshgrid(np.linspace(-2, 2, 20), np.linspace(-3, 3, 20))
U=1Y; V= -(b/m) Y - (k/m) * X; magnitude = np.sqrt(U**x2 + V*x%2)

38 plt.figure(figsize=(10,8)); plt.grid(True)

39 plt.xlim(-2, 2); plt.ylim(-3, 3); plt.scatter(@, @, color='black',
s=50, zorder=5)

4 plt.streamplot(X, Y, U, V, density=0.75, color="'#0085ff",
arrowsize=1.5, linewidth=magnitude)

41 plt.xlabel('Displacement (x)'); plt.ylabel('Velocity (v)')

42 plt.savefig('overdamped-harmonic-phase.pdf', bbox_inches="tight")

Listing 2.3: Python script generating Figure 2.5. Available at

overdamped-harmonic. py a -2.0 -15 -1.0 -05 0.0 05 1.0 15 2.0
Displacement (x)

Figure 2.5: Solutions and phase portrait for the damped harmonic oscillator (2.13) with
a high value of the damping coefficient. When there are no oscillations, the system is
said to be overdamped.
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It is also possible to set the damping coefficient to zero (b = 0) and consider the undamped harmonic oscillator:

mi(t) + kx(t) = 0. (2.14)

Writing this second order differential equation as first-order in two variables, we get

z(t) = v(t) (2.15a)
0(t) = —(k/m)x(t) (2.15b)
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Numerical analysis of the damped harmonic oscillator: Undamped oscillator

1 # Python libraries Undamped harmonic oscillator: solutions (from zero initial velocity) and phase portrait
2 import numpy as np; import matplotlib.pyplot as plt
3 from scipy.integrate import odeint 201 — x0=2,v0=0
4 154 — x0=1, v0=0
5 # Constants — x0=0.5,v0=0
6 m=1.0 # Mass 1.0 1 —— x0=0.1, v0=0
7 k = 2.0 # Stiffness =z —7° X0="1,v0=0
s g 0.5 1
9 # Differential equations for undamped harmonic oscillator g
10 def undamped_oscillator(y, t, k, m): 9
1 X, Vv=y S
12 dxdt = v a
13 dvdt = - (k/m) * x
14 return [dxdt, dvdt]
15
16 # Time vector
17 t = np.linspace(@, 14, 1000)
18
19 # Six different initial conditions [x@, vo]
20 initial_conditions = [ [2, @], [1, el, [.5, el, [.1, @], [-1, @]l
21 colors = ['#471b00"', " '#752d00', '#a43e00', '#d35000', '#ff6100', '#ff7f1a']
2
23 # Plotting solutions as a function of time
24 plt.figure(figsize=(10, 4)); plt.xlim(o, 14);
25 for idx, init_cond in enumerate(initial_conditions):
26 sol = odeint(undamped_oscillator, init_cond, t, args=(k, m))
27 plt.plot(t, sol[:, @], label=f'x0={init_cond[0]},
vo={init_cond[1]}"', color=colors[idx])

28
29 plt.title('Undamped harmonic oscillator: solutions (from zero initial

velocity) and phase portrait');
30 plt.ylabel('Displacement (x)'); plt.legend(); plt.grid(True);

plt.xlabel('Time") s
31 plt.savefig('undamped-harmonic.pdf', bbox_inches="'tight") i
32 =
33 # Phase portrait %
3 X, Y = np.meshgrid(np.linspace(-2, 2, 20), np.linspace(-3, 3, 20)) >
35 U =1Y; V= - (k/m) * X; magnitude = np.sqrt(Ux*2 + V*x*x2)
36
37 plt.figure(figsize=(10,8)); plt.grid(True)
33 plt.xlim(-2, 2); plt.ylim(-3, 3); plt.scatter(@, @, color='black',

s=50, zorder=5)
39 plt.streamplot(X, Y, U, V, density=0.75, color="#0085ff",

arrowsize=1.5, linewidth=magnitude)
40 plt.xlabel('Displacement (x)'); plt.ylabel('Velocity (v)')
41 plt.savefig('undamped-harmonic-phase.pdf', bbox_inches="'tight")

undamped-harmonic.py @B

Listing 2.4: Python script generating Figure 2.6. Available at \
-3
2.0

-15 -10 -05 0.0 05
Displacement (x)

0

Figure 2.6: Solutions and phase portrait for the undamped harmonic oscillator (2.15).


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/undamped-harmonic.py

Lectures on Dynamical Systems, ed. 2024 (This version: October 9, 2024). Chapter 2, slide 16

Transition from zero to high damping values
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(a) Undamped system: b =0 (b) Underdamped system: small b > 0 (c) Underdamped system: large b > 0
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2.1.3 Mathematical analysis: Harmonic solutions

Each solution to the undamped harmonic oscillator
mZ + kx =0 (2.16)

is of the form
x(t) = asin(wnyt) + bcos(wnt) (2.17)

where

| k
« wy = {/ — is called the natural frequency, measured in radians per second,
m

the parameters a and b in equation (2.17) are uniquely determined by the initial condition (and vice versa) (z(0), z(0)),

it is possible to define the period of oscillation

2
=" (2.18)

Wn

Natural frequency and period of oscillation are intrinsic to the system and independent of initial conditions,

the sinusoidal function a sin(wt) + b cos(wt) is called a harmonic motion. Each harmonic motion is determined by a frequency,
magnitude, and phase. For’ ¢ = arctans(b, a), one can show that

asin(wt) 4+ beos(wt) = v a? + b? sin(wt + ¢) (2.19)

We will study harmonic, overdamped and underdamped oscillators carefully in a later chapter.

3The function arctany(y, 2) computes the angle of the point (x,y) in the Cartesian coordinate system, measured counterclockwise from the positive z-axis. It returns the angle in the
range (—, ], taking into account the signs of both x and y to correctly determine the quadrant in which the angle lies. When both x and y are positive, arctans (y, x) = arctan(y/x).
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2.2 Two degrees of freedom systems: The suspension

In automotive engineering, a suspension system is a set of components including springs, shock absorbers, and linkages that connect
a vehicle to its wheels. Its primary purpose is to absorb and dampen shocks from the irregularities in the road surface, while also
maintaining contact between the tires and the road surface. A well-designed suspension system enhances ride comfort, vehicle
handling, and the overall safety of the vehicle.

Figure 2.7: The suspension in an automobile.

Ag The body of the vehicle, passengers and cargo is called the sprung mass and denoted by my;
the vertical position of the sprung mass is denoted by z.

The wheels, axles, and other parts that are directly connected to the road surface are called
the unsprung mass, denoted by m,; the vertical position is x .

The interaction wheel/road is usually described as a spring with stiffness k,,.

The suspension includes a shock absorber, that is a damper with coefficient b, and a spring
with stiffness k.

We assume the automobile is moving forward at constant speed over a possibly-uneven terrain.
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From a full to a quarter vehicle suspension system

©

Full vehicle Half vehicle Quarter vehicle
suspension system suspension system suspension system

Figure 2.8: From a full to a quarter vehicle suspension system. Image sources from (Zhang et al., 2020) without permission.
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As in Figure 2.7, let x5 and x,s denote the vertical displacements of two masses from their equilibrium position. (The equilibrium
position accounts for gravity and a counterbalancing compression of the two springs; therefore we do not consider gravity). It is
important to understand that the sprung mass moves relative to the unsprung mass.

From Newton’s law, we know that the equations will be of the form

msZs = resultant force on sprung mass, and

MysZTys = resultant force on unsprung mass.

Paying special attention to the signs of the terms in the spring and damper terms (see remark below, check twice, and read
Exercise E2.1), one can compute:

MmsZs = ks(ys — xs) + b(Zys — Ts), (2.20a)
MusTus = —ks(Tus — xs) — b(Tys — Ts) — Ky (xus —r(t)), (2.20b)

where r(t) is the height of the road surface as function of time.
In summary, after rearranging these equations, the suspension dynamics are:
msZs + b(Ts — Tys) + ks(xs — xys) = 0, (2.21a)

MusTus + b(Tus — Ts) + ks(Tys — Ts) + kwys = kwr(t), (2.21b)

Note: Just like the force in the simulation of the car velocity system, the road surface r(t) is now an input into the the dynamical
system. An input signal is an exogenous, i.e., an external input affects the system’s behavior but is not influenced by the system’s
state.
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Remark 2.1 (Absolute versus relative effects). Consider a body with position x1 and velocity v;. Note the difference between a
“absolute force” like

—kxry or — by (absolute spring and absolute damper forces)

and a “relative force” (due to the interconnection with a second body with position x5 and velocity vs):
—k(xy —x9) or —b(vy — vy) (relative spring and relative damper forces)

But, for clarity, truly all springs and dampers generate always only relative forces, i.e., forces proportional to relative position and relative
velocity. The reason why (absolute spring and absolute damper forces) appear is because the second body is assumed to be at zero
position and zero velocity (xo = v9 = 0).

Remark 2.2 (How to get the correct signs). Recall the damped harmonic oscillator in equation (2.12): mZ + bx + kx = 0. Similarly,
to ensure that the signs are correct in the first equation (2.21a), note that the acceleration, velocity and position terms in xs and its
derivative need to be multiplied by positive coefficients. The same is true in equation (2.21b) for the coefficients of x,s and its derivatives.®

Remark 2.3. A choice of realistic automobile parameters taken from (Franklin et al., 2015, Section 2.2) is:

sprung mass M 1500 kg
unsprung mass M 80 kg

wheel stiffness kv, 1,000,000 N/m
suspension stiffness ks 130,000 N/m
suspension damping b 9800 N sec / m

Remark 2.4. It is usually preferable to have low unsprung weight (and high sprung to unsprung weight ratio) in order to allow the
suspension to respond more effectively to road imperfections, improving ride quality and handling.
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Numerical analysis of the syspension system

import numpy as np; from scipy.integrate import odeint; Unforced suspension system

1
2 import matplotlib.pyplot as plt
3
4 # Define the system of ODEs with state = [xs, xs_dot, xu, xu_dot]
5 def system_of_eqns(state, t, mu, ms, ks, b, kw, road): 0.00 7
6 Xxs, xs_dot, xu, xu_dot = state
7 xs_ddot = (-ks*(xs-xu) - b*(xs_dot-xu_dot)) / ms
8 xu_ddot = (ks*(xs-xu) + b*(xs_dot-xu_dot) - kwxxu + kwxroad(t)) / mu —0.02
9 return [xs_dot, xs_ddot, xu_dot, xu_ddot]
10 m
11 # Parameters for a "quarter automobile” and time array §
12 ms = 375 # Sprung mass (for a quarter of a car) g—0-04'
13 mu = 20 # Unsprung mass ~
1 kw = 1000000 # Wheel stiffness S
15 ks = 130000 # Suspension stiffness ﬁ
16 b = 9800 # Suspension damping coefficient & —0.06 1
17
18 # Initial conditions: [xs, xs_dot, xu, xu_dot]. positions in meters.
19 t = np.linspace(@, 1.4, 300) —0.08 1
20 initial_conditions = [-0.1, 0.0, 0.00, 0.0]
21 sol = odeint(system_of_eqns, initial_conditions, t, args=(mu, ms, ks, b,

kw, lambda t: @)) — Xsprung
» -0.10 ——— X unsprung
23 # Plotting the unforced solution T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

24 plt.figure(figsize=(10, 5)); plt.plot(t, sol[:, @], label='x sprung')
25 plt.plot(t, sol[:, 2], label='x unsprung'); plt.grid(True)

26 plt.xlabel('Time'); plt.ylabel('Position (meters)'); plt.xlim(oQ, 1.4);
27 plt.title('Unforced suspension system'); plt.legend(); Forced suspension system

Time

28 plt.savefig(”suspension-unforced.pdf"”, bbox_inches="tight")
2 —— s (Sprung mass)
30 # Road surface: zero for first .5 seconds, then a sinusoidal bump —— U (Unsprung mass)
31 bumpheight = .116 # typical bump height = 4 inches = .116 meters 0.10 —-- Road surface
32 duration = .46 / 4.4 # typical bump width = 18 inches = 0.46 meters. 10
miles/hour = 4.4 meter/sec
33 def bump_road(t):
34 if 0.5 <t < 0.5 + duration: % 0.05
35 return bumpheight * np.sin((t - .5) * np.pi / duration) o
36 else: ©
37 return 0 Lc-,
» S 0.001
39 # Solving for forced case from equilibrium initial condition = :
4 initial_conditions_forced = [-0.1, 0.0, 0.0, 0.0] §
41 sol_forced = odeint(system_of_eqns, initial_conditions_forced, t,
args=(mu, ms, ks, b, kw, bump_road))
42 road_data = np.array([bump_road(time) for time in tI1) —0.05 1
43
44 # Plotting the forced solution
45 plt.figure(figsize=(10, 5)); plt.plot(t, sol_forced[:, @], label='s
(Sprung mass)') ~0.10
46 plt.plot(t, sol_forced[:, 2], label='u (Unsprung mass)'); plt.grid(True) ! ! ! ! ! !
47 plt.plot(t, road_data, label='Road surface', linestyle='--'); plt.xlim(o, 1.4); 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
48 plt.xlabel('Time'); plt.ylabel('Position (meters)'); plt.title('Forced ... Time

suspension system')
49 plt.legend(); plt.savefig(”suspension-forced.pdf”, bbox_inches="'tight")

Listing 2.5: Python script generating Figure 2.9. Available at Figure 2.9: Solutions of the suspension system (2.21): unforced solution (road height = 0
suspension.py ¢ for all time) and forced solution due to a speed bump at time 0.5.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/suspension.py
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Comments on vehicle suspension systems

(a) A MacPherson suspension system for a front wheel,
featuring:

(i) a strut (with coil spring and damper), where the
upper part of the strut is connected to the chassis
via a pivoting bearing mount that allows rotational
movement for steering, and the lower part of the
strut connects to the wheel hub via a ball joint; and
(ii) a lower control arm, also known as a wishbone
arm, (i.e., an A or V-shaped arm connected to revo-
lute joints on the chassis and to a ball joint on the
wheel), which provides lateral support and manages
the vertical movement of the wheel.

PRODUCT DETAILS

Durable Oil Seal

Electrophoretic Painting

Fig. 1 Schematic
representation of a vehicle
suspension system with
Double Wishbone
geometry: a equilibrium
position; b extended and ¢
compressed

(a) (b)

(b) A strut combining a shock absorber () From (Fernandes et al., 2019) without permission. Illustration of the automobile double

and a coil spring, sourced from https:
//amazon.com without permission.

wishbone suspension system based upon a four-bar linkage.


https://amazon.com
https://amazon.com
https://en.wikipedia.org/wiki/Four-bar_linkage
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2.3 Rotational motion

Newton’s law applies also to rotational mechanical systems such as pendula, pulleys, and any mechanical system with an axis of
rotation. The law is simply

=10 (2.22)

where

T is the resultant torque (resultant = algebraic sum of) applied to the body, measured in N - m,

o I is the moment of inertia of the body, measured in Kg m?, and

e 0 is the angular acceleration of the body, i.e., the second time derivative of the angular position 0(t), measured in rad/sec?.

|
[

Figure 2.10: The Yamaha© YK500XG is a high-speed SCARA robot Figure 2.11: lllustration of NASA’s Transiting Exoplanet Survey Satellite:
with two revolute joints and a vertical prismatic joint. Image cour- TESS. Credit: NASA’s Goddard Space Flight Center.

tesy of Yamaha Motor Co., Ltd, http://global.yamaha-motor.com/
business/robot.


http://global.yamaha-motor.com/business/robot
http://global.yamaha-motor.com/business/robot
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In class assignment

How many distinct bits of information are required to unambiguously specify the meaning of an angle 6?
(e.g., one bit of information is the direction of angle measurement: clockwise vs counterclockwise)
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How to fully describe an angle
In order to unambiguously specify the meaning of an angle 6, one needs to specify:

(i) reference angle: where is the zero angle,
(ii) direction: counterclockwise (or clockwise, but in this text, all angles are measured counterclockwise),
(iii) unit: radians (not degrees), and

(iv) range: (—, 7).
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Rotary dampers and torsion springs

Just like we saw for translational motion, there exist dampers and springs for rotational motion, see Figure 2.12. Therefore, even for
rotational mechanics it is possible and common to encounter damped harmonic oscillators:

16(t) + bO(t) + kB(t) = 0 (2.23)

As for the translational system depicted in Figure 2.3, equation (2.23) is based on the assumption that the rotatory damper and
torsional springs are connected at one end to a fixed body and at the other end to the rotating angle 6.

(a) A small rotary damper. Exploit- (b) A small torsional spring. Torsional springs
ing fluid viscosity, rotary dampers store and release energy. For example, in au-
slow down the motion of rotating tomotive applications, torsional springs help
parts. For example, in automotive ap- balance the weight of the trunk or tailgate,
plications, rotary dampers are used making it easier to open and close.

for glove compartments, cup holders,
and grad handles.

Figure 2.12: Rotary dampers and torsional springs play the same role for rotational motion as linear dampers and springs.
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2.3.1 The pendulum

As illustrated in Figure 2.13, consider a pendulum of length ¢ with mass m concentrated at its end, subject to gravity with constant g
and to linear friction (due to air or due to the mechanical rotation at the pivot point) described by a damping coefficient b. We note:

« the moment of inertia is m¢?, and
« the gravity force tangent to the circular motion of the pendulum is mgsin(#), hence the torque on the pendulum is m/fg sin(6).

Figure 2.13: A pendulum subject to gravity, connected to a pivot point.

k The variable is the angle 6, measured counterclockwise from the zero value when the

pendulum is in its vertical rest state.

pivot o . oL 9
nt | / The moment of inertia of the pendulum about the pivot point is I = m/~.
poin : ¢ // .7 The pendulum is subject to the gravity force of magnitude mg, which translates into a
| /7 restoring torque of magnitude m/g sin(0).
|

9 7

mgsin(Q) - 4 mg

7/
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Equations of motion

To compute the equations of motion of the pendulum we adopt Newton’s law (2.22) for rotational motion (see also (2.23)).

In summary, the pendulum dynamics are } '
ml20 4 b0 + mlgsin(6) = 0. (2.24)

If there is no friction, the equations of motion simplify to:

0 + %sin(@) = 0. (2.25)
We can write the equation in first order form .
0=uw
b (2.26)
W= = %sin(@)

or in vector form

6 w
L’] N [—#w — 9 sin(0) (2.27)
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Equilibrium points: pendulum down and up

We look for equilibria by setting both right-hand sides to zero and obtain
w=0 and sinf=0 <= 60==xnx (2.28)

for arbitrary integers n = 0,41, —1,+2, —2,.... In what follows, we restrict our attention to the range —m < 6 < 7 so that we
have only two equilibria:

« the equilibrium point ‘ZS‘Q’”] = [8] , corresponding to the pendulum in its down position,

[ N*
Qup

w*

« the equilibrium point

7-‘- 1 . . e .
] = {0] , corresponding to the pendulum in its up position.

We know from intuition that the “pendulum down” equilibrium is stable and the “pendulum up” equilibrium is unstable.



Lectures on Dynamical Systems, ed. 2024 (This version: October 9, 2024). Chapter 2, slide 31

Numerical simulation of the pendulum without friction

# Python libraries
import numpy as np; import matplotlib.pyplot as plt
from scipy.integrate import odeint n

Undamped pendulum dynamics (theta(t) vs time) and phase portrait

~ A RN
L\
X

def pendulum(Y, t, g, ell):

theta, omega = Y /2

dtheta = omega
domega = -g/ell * np.sin(theta)
10 return [dtheta, domegal 0

1
2
3
4
5 # Pendulum dynamics
6
7
8
9

Theta(t)

12 # Parameters and time array
13 g = 9.81 # gravity

u o ell
B5om

1.0 # length of the pendulum —np
0.5 # mass (not directly used in the equations, but provided for ... \_/
completeness)

16 t = np.linspace(@, 10, 1000)

Q
C

18 # Initial conditions: [theta@, omega@] and plot the solution

19 initial_conditions = [[.1*np.pi, @], [.4xnp.pi, @], [.7*np.pi, @1, [.99*np.pi, 01] )
20 colors = ['#752d00', '#a43e00', '#d35000', '#ff6100'] Time, t
21 plt.figure(figsize=(10, 4))

2 \
23 for idx, ic in enumerate(initial_conditions): 6 \ / / \ \\

10

2 Y = odeint(pendulum, ic, t, args=(g, ell)) \
25 theta, omega = Y.T

26 plt.plot(t, theta, label=f'theta@={ic[0]:.2f}, omega@={ic[1]:.2f}", ...
color=colors[idx])

~

>

1)
/)

28 # Set y-ticks to be fractions of pi
29 plt.yticks( [-np.pi, -np.pi/2, @, np.pi/2, np.pil,

~

30 ['$-\pis$', '$-\pi/28', '@', '$\pi/2%', '$\pi$'] )

31 plt.title('Undamped pendulum dynamics (theta(t) vs time) and phase portrait') \

N

32 plt.xlabel('Time, t'); plt.ylabel('Theta(t)'); plt.xlim(o, 10);
33 plt.grid(True); plt.savefig(”pendulum.pdf”, bbox_inches="'tight")

Omega
S

35 # Phase portrait

3 theta_range, omega_range = np.meshgrid(np.linspace(-2%*np.pi, 2%np.pi, 20),
np.linspace(-7, 7, 20))

37 dtheta, domega = pendulum([theta_range, omega_rangel, 0, g, ell)

\
/

38 magnitude = np.sqrt(dtheta**2 + domega*x2)/2; plt.figure(figsize=(12,8)); -2 '
39 plt.streamplot(theta_range, omega_range, dtheta, domega, density=.5, ..
linewidth=magnitude, color='#0085ff' , broken_streamlines=False, arrowsize=3)

0 » /

\
\\
N\

41 # Plotting the trajectories in the phase portrait
42 for idx, ic in enumerate(initial_conditions): /
43 Y = odeint(pendulum, ic, t, args=(g, ell)) /\
a4 theta, omega = Y.T
25 plt.plot(theta, omega, color=colors[idx], label=f'theta@={ic[0]:.2f}, ... -6 /, — \\ / — \
omega@={ic[1]:.2f}") / / \\ / /
46
47 # Plotting the scatter points at theta = -2pi, -pi, @, pi, 2pi —2n —3ni2 - -n2 Tho w2 n 3n/2 2n
48 for scatter_theta in [-2*np.pi, -np.pi, @, np.pi, 2*np.pil: eta
49 plt.scatter(scatter_theta, @, color='black', s=50, zorder=5)
50 plt.xticks([-2%xnp.pi, -3*np.pi/2, -np.pi, -np.pi/2, @, np.pi/2, np.pi, 3*np.pi/2, ... . . . .
25np. pil, Figure 2.14: Solutions and phase portrait for the undamped pendulum dynamics (2.25)
51 ['$-2\pis$', '$-3\pi/2%', '$-\pis$', '$-\pi/2%$', '@', '$\pi/2%', '$\pis’, .o . . . .
'$3\pi/2s’, '$2\pis']) (i.e., the pendulum without friction).
52 plt.xlabel('Theta'); plt.ylabel('Omega'); plt.xlim([-2%xnp.pi, 2*np.pil); . ... L. . .
plt.ylin([-7, 71) Top image: Four initial conditions are randomly selected within the angular range

53 plt.grid(True); plt.savefig(”pendulum-phase.pdf”, bbox_inches="tight")

Listing 2.6 Python script generating Figare 214, Available at [—7/2,7/2] and with low initial angular velocity. Bottom image: phase portrait with
pendulum.py @B the four trajectories superimposed.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/pendulum.py
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Numerical simulation of the pendulum with friction

# Python libraries
import numpy as np; import matplotlib.pyplot as plt
from scipy.integrate import odeint n

Pendulum dynamics (theta(t) vs time) with damping

def pendulum(Y, t, g, ell, b): \
theta, omega = Y n/2

dtheta = omega

domega = -g/ell * np.sin(theta) - b/(mxell**2) * omega
10 return [dtheta, domegal / E
12 # Parameters and time array \?C
13 g = 9.81 # gravity

1
2
3
4
5 # Pendulum dynamics with damping
6
7
8
9

Theta(t)
o

N

1 ell = 1.0 # length of the pendulum

B5om = 0.5 # mass —n/2

16 b = 0.2 # damping coefficient (adjust this value as desired)

17 t = np.linspace(@, 10, 1000)

18

19 # Initial conditions: [theta@, omega@] and plot the solution —-n

20 initial_conditions = [[.1*np.pi, @], [.4*np.pi, @1, [.7*np.pi, @], [.99%np.pi, @]] 0 2 4 ) 6 8 10
21 colors = ['#752d00', '#a43e00', '#d35000', '#ff6100'] Time, t

2

23 plt.figure(figsize=(10, 4)) \ W //- \Y /

24 for idx, ic in enumerate(initial_conditions): 64 /

2 Y = odeint(pendulum, ic, t, args=(g, ell, b)) v r v

26 theta, omega = Y.T

27 plt.plot(t, theta, label=f'theta0={ic[0]:.2f}, omega@={ic[1]:.2f}", ... \ /
color=colors[idx]) 4 /_
2 _/

29 plt.yticks([-np.pi, -np.pi/2, @, np.pi/2, np.pil, \ \ /

30 ['$-\pi$', '$-\pi/2$', '@', '$\pi/2$', '$\pis$'1)

31 plt.title('Pendulum dynamics (theta(t) vs time) with damping') ﬁ /_
32 plt.xlabel('Time, t'); plt.ylabel('Theta(t)"'); plt.xlim(0, 10); plt.grid(True)

33 plt.savefig("pendulum-damped.pdf”, bbox_inches="'tight")

34

35 # Phase portrait

36 theta_range, omega_range = np.meshgrid(np.linspace(-2xnp.pi, 2xnp.pi, 20),
np.linspace(-7, 7, 20))

37 dtheta, domega = pendulum([theta_range, omega_rangel, 0, g, ell, b)

38 magnitude = np.sqrt(dtheta**2 + domega=*x2)/2; plt.figure(figsize=(12,8));

39 plt.streamplot(theta_range, omega_range, dtheta, domega, density=.5,

linewidth=magnitude, color='#0085ff"', broken_streamlines=False, arrowsize=3) /
40 /

41 for idx, ic in enumerate(initial_conditions):

42 Y = odeint(pendulum, ic, t, args=(g, ell, b)) -4
43 theta, omega = Y.T —/ /

a4 plt.plot(theta, omega, color=colors[idx], label=f'theta@={ic[0]:.2f},

omega@={ic[1]:.2f}") /4’\ /4/—.
45 - 7
46 # Plotting the scatter points at theta = -2pi, -pi, @, pi, 2pi / A \ —//

47 for scatter_theta in [-2*np.pi, -np.pi, @, np.pi, 2*np.pil:

&
\
N
\_J

\\

/

AN

=
/ 3
X
N

)

:2 plt.scatter(scatter_theta, 0, color='black', s=50, zorder=5) —2n —3ni2 _'" -2 Th?eta 2 " 3m2 n

50 plt.xticks([-2*np.pi, -3*np.pi/2, -np.pi, -np.pi/2, @, np.pi/2, np.pi, 3*np.pi/2,
2xnp.pil, . . . .

;i E'5-2\pis’, '$-3\pi/2s', '$-\piS', '$-\pi/25', '0', '$\pi/2s', ... Figure 2.15: Solutions and phase portrait for the damped pendulum dynamics (2.24)

"$\pi$', '$3\pi/2%$', '$2\pis$'1) . . . .

2 pLt.xlabel('Theta'); plt.ylabel( Onega'd; ple.xLin([-2xnp.pi, 2enp.pil) (i.e., the pendulum with friction).

53 plt.ylim([-7, 71); plt.grid(True); plt.savefig(”"pendulum-damped-phase.pdf”, . ... .. . .
bbox_inches="tight ) Top image: Four initial conditions are randomly selected within the angular range
Listing 2.7: Python script generating Figure 2.15. Available at [—7/2,7/2] and with low initial angular velocity. Bottom image: phase portrait with

dulum-damped. . . :
pendulun-damped. py ¢ the four trajectories superimposed.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/pendulum-damped.py
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2.3.2 Mechanical gears

« Gears are toothed elements that transfer motion and power between mechanical subsystems. Gears operate in pairs, with their
teeth meshing to prevent slippage (there might be backlash). Each gear is attached to a shaft.

« The input gear (also known as driver gear) affects the movement of the output gear (also known as driven gear).
« Unequal gear sizes lead to a mechanical advantage, changing output speed and output torque.

« Example applications include clocks, windmills, bicycles, and automobile transmissions.

(a) Vintage internal clockwork (spring and toothed (b) Bicycle drivetrain

gearwheels inside a mechanical clock), sourced from The crankset and rear wheel of a bicycle are connected by a chain that engages with
https://unsplash.com. sprockets, commonly known as “chainrings” at the front and the “cassette” at the
Traditional mechanical clocks rely on gear trains to rear. The gear ratio determines how many times the rear wheel rotates for each full
transfer energy from a wound spring or suspended revolution of the crank.

weight to the clock hands, ensuring precise movement. On a single-speed bicycle, the gear ratio is fixed.

The intricate design allows for accurate timekeeping by On a multi-speed bicycle, shifting the chain between larger or smaller sprockets
compensating for variations in power delivery, main- alters the gear ratio, adjusting the bicycle’s resistance. Depending on the terrain,
taining the clock’s consistency over time. the rider selects an optimal gear for slowly climbing hills or quickly riding on flat

surfaces.


https://unsplash.com
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Sprockets and chains function similarly to gears in transferring rotational motion and power. Gear design can change the direction
of rotation or movement (e.g., read up on bevel gears). Rack and pinion systems convert between rotational motion and linear motion.
Here are some instructive videos:

« quick review of spur gear, helical gear (quiter), double helical gear (even quiter and stable), worm gear (high reduction gear,
self-locking), screw gear, rack & pinion gear (conversion between rotational and linear motion), straight bevel gear (transfers
motion between intersecting axes), helical bevel gear, and internal/external gear (read up also on planetary gears): basic gear
types (short);

« advanced gear types (short);
« explanations of gear trains and composite gear trains (8m 47s);

« the automobile differential is a gear system designed to allow two wheels to rotate at different speed: differential steering (3m
45s), and (short 49s); and

a GOOGOL:1 reduction with lego gears (9m 58s)


https://www.youtube.com/shorts/-_RyAFJWLoU
https://www.youtube.com/shorts/-_RyAFJWLoU
https://youtube.com/shorts/N-UHgAacA8U
https://youtu.be/4ROtKKuSaBI
https://www.youtube.com/watch?v=OHpETf_XY0s
https://www.youtube.com/shorts/227iMf4h4mk
https://www.youtube.com/watch?v=QwXK4e4uqXY
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force balance
T /7“1 = TQ/’I“Q

Figure 2.16: Two gears interconnecting two parallel shafts (not
drawn).

The angles 6; and 0, are measured counterclockwise (this
is our convention for all angles in these notes). The two shaft
move in opposite direction so that §; > 0 if and only if 6, < 0.

At the contact point peontact: .
(i) the no-slip condition is: velocity, ..., = 1101 = —7ra0s.
T T
(ii) the force-balance condition is: forcecontact = 12
(A T
Note: It appears that the radius of the two gears is pro-
portional to their number of teeth (ny = 10, no = 20, and it

appears o = 2r1). Why would that be true?
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Mathematical analysis: transmission of velocities

We adopt the following notation:
« the input gear has angle 0,4, radius 7inpue and njnpy: teeth, and
« the output gear has angle 0,uput, radius rourpur and nouepur teeth.

(i) The equal tooth pitch property is that the distance between the same point on two consecutive teeth. Under this property, the
radius of a gear is proportional to its number of teeth:

Tinput Toutput Toutput Noutput
T = P = = 2T (2.29)
Ninput Noutput Tinput Ninput
It is customary to define the gear ratio to be
. Noutput
gear ratio = ——"— (2.30)
Ninput

(i) We assume the gear interconnection satisfies the no slip condition, namely the linear velocities of the two gears at the point of
contact are equal. Since linear velocity = radius x angular velocity, we obtain:

Tinput einput = —Toutput eoutput- (2'31)

Therefore, we can write

9out ut Tinput Mhimioui: 1
Joutput ___ _mpwt ___ _mput : (2.32)
einput Toutput Toutput gear ratio
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Mathematical analysis: transmission of torques

When the two gears are in contact, a contact force is applied on both gears. This force is equal in magnitude and opposite in direction.
Let torque Tinpyt is applied on the input gear, a torque T,y is felt at the output gear through the contact point. Because both angles
are measured in the same direction (counterclockwise), as illustrated in Figure 2.16, we obtain

Tinput . Toutput

(2.33)

Tinput Toutput
In turn, the equal tooth pitch property implies

Toutput Toutput o
P = PT — gear ratio (2.34)
Tinput Minput

In our example in Figure 2.16, treating the gear #1 (with n; = 10) as the input and the gear #2 (with ny = 20) as the output, we
calculate the gear ratio to be 20/10 = 2. Therefore,
(i) the angular velocity of gear #1 is halved at gear #2 (with opposite direction), and
(ii) a torque at gear #1 is perceived twice as large at gear #2 (with same direction).
This is the meaning of mechanical advantage: Engaging a smaller gear (in terms of radius or number of teeth) with a larger gear

increases the torque in the system, but reduces the speed. Such a gear pair provides a mechanical advantage, making it easier to do
tasks like lifting heavy objects or climbing steep inclines in vehicles.
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2.3.3 Dynamics of interconnected gears

Here we study a natural dynamical system associated to the interconnected gears in Figure 2.16. Specifically, we suppose a torque 7'
is applied to the first gear and we obtain the dynamics for 6,. (Other combinations are possible, e.g., see E2.5.)
When the shafts are not interconnected, assuming /; and [, are the two moments of inertia, we have

10, =T (2.35)
L,05 =0 (2.36)

When the gear interconnection is included, two torques 7 and 7, appear:

]191 =T + Al (2.37)
]2(92 = T2 (2.38)
Since nlél = —ngég and nyT = n17, we know
él = —@92, él = —@ég and T = m7'2. (2.39)
ny ni n2
Plugging these expressions into the dynamics, we obtain:
]1 (—@92> =T + E7'2, (2.40)
ni o)
[292 = T9. (2.41)

We now wish to eliminate 75; to do so, we multiply the first equation by —72 and sum the two resulting equations:

2 ..
(IQ + n—311>92 — (—%)T (2.42)

2
The moment of inertia I, + “31; in equation (2.42) is called the equivalent moment of inertia of the interconnected shafts.
1
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2.4 Electrical circuits

r / voltage source current source

C
Figure 2.17: Passive elements (resistor, capacitor, and inductor) and active elements (voltage source and current source)

Components and their constitutive relations

Resistor: The constitutive relation of a resistor is v = ri (Ohm’s law), where the resistance r is measured in Ohms (£2).

Here, v is the voltage across the resistor and i is the current through the resistor.

, - : Lo . : :
Capacitor: The constitutive relation of a capacitor is 1 = cor where the capacitance c is measured in Farads (F).

dv I
Note: i = c— is equivalent to v(t) = v(0) + —/ i(T)dr
¢ Jo
Note: we assume “pure capacitors” which are capable of storing energy and releasing all of it; there are no energy losses.
di

dt

Inductor: The constitutive relation of an inductor is v = {—, where the inductance ¢ is measured in Henrys (H).

di 1 [
Note: v = Ed—z is equivalent to i(t) = i(0) + z/ v(T)dr
0

Voltage source: A voltage source provides a fixed or varying voltage irrespective of the current drawn from it, measured in Volts (V).

For example, a battery is often modelled as a constant voltage source.

Current source: A current source supplies a fixed or varying current irrespective of the voltage across it, measured in Amperes (A).
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Kirchhoff’s voltage law (KVL) KVL states that the algebraic sum of all voltages around a closed loop or closed path in a circuit is
zero. Specifically, for voltages v, across components around a given loop, measured with consistent reference direction (either all
clockwise or all counterclockwise):

Z Vr = 0.

k

Kirchhoff’s current law (KCL) KCL states that the algebraic sum of all currents entering and leaving a node (or junction) in a circuit
is zero. Specifically, for currents i; associated with a given node k, currents entering the node are considered positive, and those
leaving are considered negative (or vice versa, based on convention):

Zz’k:O.
k

In other words, the total current flowing into the node equals the total current flowing out.
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RC circuit with a voltage generator

We start by consider a circuit with a voltage source, a resistor and a capacitor in series, as illustrated in Figure 2.18. Let vinpyt(t) be
the voltage at the input, r > 0 be a resistance, ¢ > 0 be a capacitance, and Vouput (t) be the voltage at the output.

_‘N\?\[‘-*- * °

+
voltage input N — voltage output
Vinput (t) ~ i(t) — Voutpus ()
L @
Figure 2.18: Series RC circuit. Based upon the convention for the voltages: vUyesistor = 7% and @ = —(’:%'z)output.

From Kirchhoff’s voltage law (KVL), the sum of the voltage drops across the resistor and the capacitor equals the supplied voltage

Vinput*
Vinput + Uresistor — Ucapacitor — 0.

Substituting in the constitutive relation for the resistor and noting vcapacitor = Voutput, We obtain:

Vinput + Tl(t) — Uoutput — 0.

From the constitutive relation of the capacitor, we know 7 = —c%voutput, so that the overall differential equation governing the RC
circuit is
. . 1 1
Uinput - Crvoutput - Uoutput =0 <~ voutput(t) + E/Uoutput(t) = T_C’Uinput<t) (2'43)

This is a first-order model in voyepyr With input vinpys.
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RLC circuit with a voltage generator

We now consider a circuit with a voltage source, a resistor, an inductor, and a capacitor in series, as illustrated in Figure 2.19. Let
Vinput (t) be the voltage at the input, 7 > 0 be a resistance, ¢ > 0 be a capacitance, ¢ be an inductance, and vouput(t) be the voltage at

the output.
14 T
W—e- -
- + + 1
voltage input —_ . VO tage output
Vinput (t) / Z(t) ___ Uoutput (t)
@ L

Figure 2.19: Series RLC circuit

As in Figure, we consider a series RLC circuit with a voltage source vinpy(t). The governing differential equation can be obtained

from the KVL and from the constitutive relations for each element. In short:

Vinput () = 7i(t) + Kdi(t) -+ 1/0 i(T)dr

dt c

Taking the derivative with respect to time” of both left and right had side, and rearranging terms, we obtain:

d%i(t)  di(t) 1
/ +r + —(t Z@i ut 2.44
This is a second-order model in the current ¢ with input vjnpy:. Following similar reasoning, we can obtain a second-order model for
the output voltage:
. T, 1. 1
VUoutput + Zvoutput + e_cvoutput = g_cvinput(t)- (2'45)

“Recall that the fundamental theorem of calculus states fot i(T)dr =i(t).
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The equation (2.44) is analogous to the forced damped harmonic oscillator, described by the equation of motion
mi + bt + kx = f(t)

for a spring-mass-damper system subject to a force f(t).

mass-spring-damper mechanical system RLC electrical circuit
m mass 14 inductance
b damping coefficient r resistance
k stiffness 1/c inverse capacitance,
d
f(t) external force %vinput(t) forcing term

Table 2.1: Analogies between mechanical and electrical systems
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2.5 Electromechanical systems: the DC motor

An electromechanical system is an engineering device composed of both electrical and mechanical components. Specifically, a
direct-current motor (DC motor) converts electrical energy into mechanical energy or, more precisely, direct current into a torque. A
DC motor is illustrated in Figure 2.20 and its functioning is illustrated in this wikipedia animation. Here are some highlights on how
the DC motor functions:

Physical principle: A current-carrying conductor experiences a mechanical force when placed in a magnetic field. This force is
called the Lorentz force.

From physical principle to engineering design: The Lorentz force cause the conductor to rotate, thus turning the motor’s shaft
and producing mechanical work.

Figure 2.20: In a typical DC motor, the conductor is a coil, that is, a series of
loops made from conductive wires wound around a core.

In a brushed DC motor, brushes are used to ensure that the current in
the conductor is in the correct direction to produce maximum torque. In this
image, a brushed DC electric motor generates torque from a supplied DC
power, by using internal commutation (via brushes) and stationary permanent
magnets.

Brushless DC motors (which do not use brushes) rely on electronic con-
trollers to switch the current in the motor’s windings.

Public domain image from Wikipedia.



http://motion.me.ucsb.edu/ME103-Fall2024/handouts/DCmotorAnimation.gif
https://en.wikipedia.org/wiki/Lorentz_force
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A complete derivation of the governing equations for a DC motor is outside the scope of these notes. Based upon the formulas
for the Lorentz force and upon the geometry and design of the motor circuit, it suffices to say that

(i) the current through the conductor i, generates a torque on the shaft, with magnitude equal to Kiorquetcond Where Kigrque > 0 is
constant, and

(i) the shaft’s angular velocity 0, generates a “back emf” voltage® on the conductor circuit, with magnitude equal to Kvelocityém with
K\elocity > 0 and opposed to the voltage applied to the motor.

We assume some rotational damping with coefficient b and a moment of inertia I,,, for the rotor. We also let ¢ denote the inductance
and r denote the resistance of the conductor circuit.

In summary, the equations of motion for the DC motor are:
Imém (t) + bem (t) = Ktorqueicond (t) (2.463)

d .
K%icond (t) + 7nicond (t) — Usource(t) - Kvelocityem (t) (2'46b)

where vsource (1) is the externally applied voltage to the conductor circuit.

>"Back emf" stands for "back electromotive force."
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These equations are electromechanical since they involve both mechanical and electrical quantities:

« equation (2.46a) with state 0, is a rotational mechanical system with damping and with a forcing torque Kiorquetcond, and

« equation (2.46a) with state iconq is an RL circuit with a forcing voltage source vsource (t) — Kvelocitytm

14 r L
— T — W 7
| DC motor
voltage source AT : ’ g Lorentz force
Usource <t) ()_ ; (t) Uemf(i ) C)_ Uemf(t) — Kvelocityém
cond i L T = Ktorqueicond

Figure 2.21: A DC motor relies upon the physical principle of the Lorentz force the transduce a voltage into a torque:
(i) the current through the conductor ic,nq generates a torque on the shaft, with magnitude equal to Kiorquetcond, and
(ii) the shaft’s angular velocity 6, generates a “back emf” voltage , with magnitude equal to K\eiocityfin and opposed to the voltage applied to the motor.
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Numerical analysis of the DC motor

import numpy as np; from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

1

2

3

4 def motor_dynamics(t, state, I_m, b, K_torque, L, R, K_velocity, V_input):
5 theta_m, theta_m_dot, ic = state

6 theta_m_ddot = (K_torque x ic - b * theta_m_dot) / I_m

7 ic_dot = (V_input(t) - K_velocity * theta_m_dot - R * ic) / L

8 return [theta_m_dot, theta_m_ddot, ic_dot]

9

Motor resistance
Back EMF constant

v

10 # Parameters for the DC motor
n I_m = 0.01 # Moment of inertia of the motor
12 b =20.1 # Damping coefficient
13 K_torque = 0.01 # Torque constant
1“ L =20.5 # Motor inductance
R 1 #
K_vel #

ocity = 0.01

18 # Time array
19 t = np.linspace(@, 6, 1000)

21 # Voltage input: step function at 1V
22 V_input = lambda t: 1.0 if t > 1 else 0.0

24 # Initial conditions: [theta_m, theta_m_dot, ic]

25 initial_conditions = [0.0, 0.0, 0.0]

26 sol = solve_ivp(motor_dynamics, [t[@], t[-1]], initial_conditions,
t_eval=t, args=(I_m, b, K_torque, L, R, K_velocity, V_input))

28 # Plotting

29 plt.figure(figsize=(12, 10)); plt.subplot(3, 1, 1); plt.xlim(@, 6)
30 plt.plot(sol.t, sol.y[@], label='Motor Position (rad)"')

31 plt.grid(True); plt.ylabel('Position (rad)'); plt.legend()

33 plt.subplot(3, 1, 2)
3 plt.plot(sol.t, sol.y[1], label='Motor Speed (rad/s)'); plt.xlim(@, 6)
35 plt.grid(True); plt.ylabel('Speed (rad/s)'); plt.legend()

37 plt.subplot(3, 1, 3)
38 plt.plot(sol.t, sol.y[2], label='Current (A)', color='red');
plt.xlim(o, 6)
39 plt.grid(True); plt.xlabel('Time'); plt.ylabel('Current (A)'); plt.legend()

41 plt.tight_layout()
42 plt.savefig(”"dcmotor.pdf”, bbox_inches='"tight")

Listing 2.8: Python script generating Figure 2.22. Available at
dcmotor. py ﬁ

—— Motor Position (rad)
0.4 4

o
W
s

Position (rad)
o
N
N

=}
-
L

0.0

0.10 1" — Motor Speed (rad/s)
0.08 1
0.06

0.04 4

Speed (rad/s)

0.02 4

101 — current (A)

Current (A)

Time

Figure 2.22: Solutions of the DC motor system (2.46): response to a 1V step input voltage
at time t = 1s, that is, the input voltage satisfies vsource(t) = 0V from time 0 < ¢ < 1

and then vsoyee(t) = 1V for t > 1.


https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/dcmotor.py
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2.6 Historical notes, further reading, and online resources

Instructive videos:

« how do car suspensions work (20m 23s) and (short) (2m 49s) with animations and explanation of different types of automobile

suspensions;
« applications of rotary dampers and torsion springs: how to install rotary dampers (2m 26s);

« the only mechanical gears known to occur in nature are reviewed in this article and video interview (3m 41s).

The loss of the Mars Climate Orbiter in 1999 was a significant engineering failure due to a unit conversion error—specifically,
a miscommunication between metric (SI) and imperial (U.S. customary) units. In this disaster, the problem was that NASA’s Jet
Propulsion Laboratory (JPL) used the metric system, while the spacecraft’s contractor, Lockheed Martin, used imperial units.
Lockheed Martin provided data for the spacecraft’s thrusters in pounds of force, but NASA was expecting the data in Newtons (the
SI unit for force). This discrepancy led to the orbiter’s trajectory being incorrect, causing it to enter the Martian atmosphere at a
much lower altitude than intended, leading to its destruction.


https://youtu.be/aNxSigpIhxA
https://youtu.be/DKql4Is8Pas
https://www.youtube.com/watch?v=JV6tw77FFB4
https://www.smithsonianmag.com/science-nature/this-insect-has-the-only-mechanical-gears-ever-found-in-nature-6480908/
https://youtu.be/Q8fyUOxD2EA
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2.7 Exercises

E2.1 Equations of motion for the suspension system. Consider the suspension system studied in Section 2.2: ms and mys are sprung mass and unsprung mass,
respectively; ks and k,, are the spring constants for ms and my; respectively, b is the damping coefficient, and r(¢) is the road surface.

Sprung mass M —L Ts
g
Unsprung mass Mys Lus

(i) Draw a free body diagram for each mass and accounting for each spring and damper (ignore gravity).
(if) Write equations for each force acting on the masses ms and my;s.

(iif) Write the equations of motion for the sprung and unsprung masses based on Newton’s law.

Answer:

(i) Assume the positive axis is pointing upwards. In this system, we have spring and damping forces.

Fipring = (stiffness coefficient) x displacement and Fyamper = (damping coefficient) x velocity (E2.1)
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mo | L me | L

R B

Figure E2.1: Free Body Diagram

(if) For mass ms: There are two forces acting on the mass
st = [Tt — (970 — ks(xus — fEs)
Fy = biys — b = b(dys — &)

so that msis = Fy, + Fy = ks(zys — @) + b(Eys — Zs)-
For mass mys: There are three forces acting on the mass. Specifically, the directions of the forces Fj, and F}, are opposite

st = ksms - ksxus = _ks(xus - xs) s
Fb = bms - b{vus = _b(j;us - xs) )
Fy, = kwr(t) — kwzys = —kw(zus — r(1)) ,
so that mysiys = Fi, + Fy + Fr, = —ks(xus — xs) — b(Zys — &s) — kw(xus — 7(t)).
(iii) Rearrange the equations:
Mgl + b (s — Bys) + ks (s — Tys) =0

MysZus + 0 (ius — is) + ks (xus - -'L's) A Pt = kwr(t)
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E2.2  Governing equations for two interconnected masses . Consider the mass-spring-damper system in figure, where the spring have zero rest length and the friction
on the second mass acts like a damper with damping coefficient bs.

—> S
54 PN W ;a/
T /{ZL_ ’{‘ 3
B My —— Mo e

A

Xy 170077727 ey /27
No Friction Friction b

p

Perform the following steps:

(i) Draw the free body diagram for each mass.

(if) Use Newton’s 2nd Law (i.e., F' = ma) to write the equations of motion for the system.

Answer:

(i) Here is the free body diagram:

£ Fea
1‘:b7,

Note that Fj, is in opposite directions for first and second body.
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Given the conventions in the drawing, we compute

Fb1 = b1, Fk1 = k111, FkQ = k‘z(l‘g — l‘l) (EZ.Z)
Fy, = by,  Fiy = k3(y — x2). (E2.3)

(if) Given the convention in the drawing, Newton’s 2nd Law gives us

sz — Fbl — Fk1 = mlil
Fk3 — Fk2 — Fb2 = mgflfg.

Substituting expressions for each of the forces gives

ko(xg —x1) — b1y — kixy = midy

k3(y — x2) — ka(xg — 1) — bata = mais.

Putting these in standard form, we have

i = _—(kl + kQ)ml _ b_lg'Cl + 2562
ma ma mq
k ko + K ba . k
By = —ay (ke & ko) ——2932+—3y
mo meo mo
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E2.3

Solution to the harmonic oscillator. Consider a mass-spring system described by the harmonic oscillator (i.e., an undamped harmonic oscillator) as in Figure E2.2

2 el
m

OO o

Figure E2.2: A mass-spring system described by the harmonic oscillator system mi + kxz = 0.

Let m denote the mass of the oscillating object and & the stiffness of the spring. From equation (2.17), each solution to the undamped harmonic oscillator is of the
form

z(t) = asin(wt) + bcos(wt)

(E2.4)
where the natural frequency is w = \/k/m. Define the abbreviations: 2 := x(0) and vy := 4(0).
(i) Write a formula for (a,b) as function of (x, vg) and viceversa.
(if) Consider the equality
asin (wt) + bcos (wt) = Asin (wt + <b) (E2.5)
Write a formula for (a, b) as function of (A, ¢) and viceversa.
Hint: Recall that in class we saw A = v/a? + b2. You will need to use trigonometric identities.
(iii) Optional: Show that the solution can also be written as
x(t) = Cre 7%t 4 Chel®t (E2.6)

for appropriate complex numbers C and Ca. Write C and Cs as a function of (xg, vp).
Hint: Recall Euler’s formula for complex numbers.

Answer:

(i) From equation (E2.4), the time derivative of x(t) is given by

i(t) = aw cos(wt) — bwsin(wt). (E2.7)
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Evaluating equation (E2.4) and equation (E2.7) at time O we obtain:

x(0) = asin(0) + bcos(0)
aw cos(0) — bw sin(0)

— b=2x9p and a=—

Similarly, we can write (z9, vg) as a function of (a, b) by rearranging the terms above to find
zg=0b and vy=aw
Finally, it is useful to substitute the expression for (a, b) into the formula for x(t) to obtain:

x(t) = kll sin(wt) + xq cos(wt)
w

(if) Recall that the angle sum trigonometric identity for the sinusoidal function is sin(a + ﬁ) = sin acos B + cos asin 5. Using this identity, we expand the right

hand side of the equation (E2.5) to find
asin(wt) + beos(wt) = Asin(wt) cos(¢) + A cos(wt) sin(¢)

Therefore, by matching terms, we obtain
a = Acos(9) and b= Asin(¢)
To write A in terms of (a,b) we make use of the fact that sin? + cos? = 1. Observe that
a® +b? = A? (cos2(d>) + sin2(¢)) — A=+a+p?
Next, rearranging the expressions for (a, b) in terms of (A, ¢) we see

a = Acos(¢)

b = Asin(¢) — 2 = tan ¢ = ¢ = arctan(b/a)

(iii) We want to show that, for some complex numbers C; and Cs,

x(t) = asin(wt) + beos(wt) = Cre 7t 4+ Chel®t
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From Euler’s formulas, we have the relationships
e/t = cos(wt) + j sin(wt) and e 9 = cos(wt) — jsin(wt).
Substituting these equations into the exponential form (E2.6) of the solution we have

z(t) = Cy (cos(wt) — jsin(wt)) + Ca(cos(wt) + j sin(wt))
= (C1 + C2) cos(wt) + j(Cq — C1) sin(wt)

Observe that the time derivative of this equation is given by
2(t) = —w(Cy + C2) sin(wt) + jw(Cy — C1) cos(wt)
Similarly to before, by substituting our initial conditions for (z(t), (t)), we can write (C, C3) as a function (xg, vg) as follows
z(0) = (Cl + Cg) cos(0) + j(Cg — Cl) sin(0) = Ci+ Cy = xg
i(0) = —w(C1 + C2) sin(0) + jw(Ca — C1) cos(0) = Co—Cr=—
From here, we can find C and C5 independently to be

. Vo

1
(C1+02)+(02—C1)=$0—J; = C2=§(wo—j—)

| =

Clz.%'o—CQ =4 Clz
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E24  Inverted pendulum cart via Lagrangian mechanics. Consider the inverted

pendulum cart in Figure E2.3.

QO

Figure E2.3: Inverted Pendulum Cart

(i) Write the kinetic energy of the cart, the kinetic energy of the pendulum, the potential energy of the cart, and the potential energy of the pendulum in terms of
the variables x, Z, y, 9, 2, and Z. (Assume that the rod has negligible mass and that the rotational kinetic energy is negligible.)

(if) Now write the kinetic and potential energies you found in terms of only the variables z, 7, 6, and 0.

(iii) Write down the Lagrangian of the system L :=T — V where T is the total kinetic energy of the system and V is the total potential energy of the system.

(iv) Substitute the Lagrangian L = L(z, &, 6, §) into the following Euler-Lagrange equations, taking care to compute the derivatives correctly:

d (0L\ 0L
dt<8x>_6ﬂc
d (0L\ 0L
dt(aé>_89'

Simplify the resulting two equations.

Note: It is a result in mechanics that the Euler-Lagrange equations are equivalent to Newton’s law.

(v) Now write down the dynamics of the system in the form

T =

é:

Hint: You should have two equations and two unknowns for i and .

f(fI,’,.’jj‘7 97 9)
g(x, 2,0, 6?)



Lectures on Dynamical Systems, ed. 2024 (This version: October 9, 2024). Chapter 2, slide 57

(vi) Do the dynamics (i.e., the functions f and g) depend on x or £? What does this say about our system?

Note: This alternative method of describing the dynamics is called Lagrangian Mechanics. Lagrangian mechanics allows us to find the equations of motion for a system
without explicitly looking at the forces that elements exert on one another. For many systems (especially more complicated systems), this is the easiest way to find the
equations of motion. Read more about this method at: https://en.wikipedia.org/wiki/Lagrangian_mechanics

Answer:

i) Kinetic energy of cart: M2, kinetic energy of pendulum: 2m(3? + 22), potential energy of cart: 0, potential energy of pendulum: mgy.
gy 2 gy ot p 2 p gy p gy of p
(if) We have that y = £cqs f,and z =z + Esi‘n 6. Taking derivatives accordingly and substituting yields the following. Kinetic energy of cart: %Mj:2, kinetic energy
of pendulum: %m(€292 + @2 4 2/ cos 00), potential energy of cart: 0, potential energy of pendulum: mg¢ cos 6.
(iii) The Lagrangian is given by

1 1 . .
L = §M552 + 5m(e?o2 + &% 4 244 cos 00) — mgl cos 6.
(iv) After substituting and taking the derivatives, we have
ml%6 — mli sin 00 + mli cosd = —mli sin B0 + mglsin 6,
M + mi + mf(cos 6 — sin 06%) = 0.
Simplifying yields

00 + & cos — gsinf = 0,

(m + M) + mé(cos 06 — sin 062) = 0.

(v) We have two equations and two unknowns for & and 0. Substituting these equations into each other and isolating & and 0 yields the following equations of
motion:

mt sin(6) (02 — gcosf)
m+ M — m/lcos? 0
B sinf((m+ M)g — m{ cos 092)
B ¢(M + msin?0)

(vi) No, the dynamics do not depend on z or z. This is because the dynamics are the same under all reference frames (which are either at rest or moving with an
velocity). This means that the initial values that we choose for x and & are arbitrary — only their relative values matter.


https://en.wikipedia.org/wiki/Lagrangian_mechanics
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E2.5

Equations of motion for interconnected shafts. Consider two parallel shafts with meshed gears as in figure.

F-Jf) 1 ¥)
El Un
Zemlog

(i) the first shaft with angle #; has moment of inertia I; and the second shaft with angle 62 has moment of inertia Io;
(i) the first shaft is subject to a external torque 7', whereas no external torque is applied to the second shaft; and
(iii) the two shafts are interconnected via a pair of gears with n; teeth on the first gear and ny teeth on the second gear.

NOONVNNNN

Assume that

Show that the equations of motion are

n?
(Il + 7[2)91 =T
ny

Hint: Write the two equations of motion for the two shafts, including torques 71 and 72 generated by the meshed gears. Then, using the equalities nib, =

and nyT = ni7y, eliminate the intermediate variables 92, ég, 71 and 7.
2

Note: The moment of inertia I + Z—%Ig in equation (E2.8) is the equivalent moment of inertia of the interconnected shafts.
2

Answer: When the shafts are not interconnected, we have
Lé =T
L0y =0
Add the gear interconnection and therefore two torques, call them 7 and 7:
L0, =T+mn

Iy =7

(E2.8)

—naba

(E2.9)
(E2.10)

(E2.11)
(E2.12)
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Since nlél = —ngég and nom = nq7e, we know
éz = —Eél, ég = —Eél and T2 = @Tl (E2.13)
no n9g ni
so that we can plug in and obtain
L6, =T+mn (E2.14)
_[2 (—E(gl) = @Tl (E2.15)
ng ni

Equation (E2.8) follows from multiplying the second equation by —n/ns and summing the two equations, thereby eliminating the intermediate variable ;. W
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E2.6 Sprockets and chains in bycicles. In the image of a bycicle gear train below, the wheel angle 6,,neel and the crank angle 6.,k are measured counterclockwise (per
convention in this text). In other words, while pedaling forward, both Oy heel and O,ani are negative, indicating counterclockwise motion.

(i) Do the wheel and crank sprockets satisfy the equal tooth pitch assumption? Justify your answer.
(if) Write the no-slip condition for the interaction between the sprockets and the chain.

(iii) When biking uphill on a steep incline, explain which gear ratio is preferable. How does this compare to the preferable gear ratio when biking quickly on flat

terrain?
number of teeth on the output sprocket (rear wheel)

Hint: Recall that: gear ratio =
& number of teeth on the input sprocket (crank)

Notes: Many multi-speed bicycles feature a “50/34T crankset” coupled with an “11 speed 11-32 rear cassette.” These numbers means:

(i) the crankset has two “chainrings” with 50 and 34 teeth, respectively,

(ii) the rear cassette has 11 “cogs” ranging from 11 teeth up to 32 teeth (the exact number of teeth are 11/12/13/14/16/18/20/22/25/28/32).

The entries in the following table are all the possible gear ratios, calculated as the number of teeth on the front chainring divided by the number of teeth on
the rear cog:

Chainring 1T 12T 13T 14T 16T 18T 20T 22T 25T 28T 32T
50 __ 50 __ 50 __ 50 __ 50 __ 50 __ 50 __ 50 __ 50 __ 50 __ 50 __
soT |99 =4.55]%8 — 4.17]%8 = 3.85[ %9 - 3.57[ 3 — 3.13[ 3% — 2.78[ 37 — 2.50[ 33 = 2.27| 3F — 2.00| 3 = 179/ 3 =~ 1.56
34T |32 =309|3 =283|32 =262|22 =243|31 =213|32 =1.89| 32 = 1.70 |52 = 1.55 | 52 = 1.36 | 52 = 1.21 | 37 = 1.06
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Equations of motion for ship on the ocean. Consider an oceangoing ship. As shown in the left figure, when the ship is at rest, the balanced forces of weight W
and buoyancy B act along the centerline of the ship, generating no torque. However, as shown in the right figure, when the ship is inclined at an angle 6 (e.g., due to
rough seas), the buoyancy force B shifts to the left, intersecting the centerline of the ship at a point called the metacenter and denoted as M. The hull of the ship is
designed so that the metacenter M is above the ship’s center of gravity C; this arrangement results in a restoring torque that stabilizes the ship. The vertical distance

between the center of gravity C and the metacenter M is known as the metacentric height h.

E2.7

(i) Derive the equation of motion for the inclined ship in terms of the inclination angle 8, the moment of inertia I, the weight W, and the metacentric height h. If

no other forces are present, is there damping in this system?
(ii) Recall the small-angle approximations sin x ~ z and cos z =~ 1 for x near zero. Assume a small inclination angle 6, and use the small-angle approximation to

simplify the equation of motion from part (i). Identify the natural frequency wy, of the system.
(iii) Write down the solution for the inclination angle 8 as a function of time ¢, of the natural frequency w, and of the initial conditions 6(0), 6(0).
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E2.8  Mechanical modeling of a muscle. A muscle connected to a fixed point and subject to a load force can be modeled by the equivalent mechanical system shown

in the Figure E2.4. The key elements of the system are: (1) The muscle connects the fixed point to a mass m at position z. (2) The muscle is represented by the
interconnection of two components, with the intermediate point at coordinate Zinterm. (3) The muscle exerts a force Fiyyscle at the intermediate point. (4) A damper

with damping coefficient b connects the intermediate point to the stationary point. (5) A spring with stiffness k connectes the intermediate point to the mass. (6) The
mass m is subject to a load force Fjgag.

(i) Write a differential equation for the mass acceleration & as a function of the load force Fiy,4, the force generated by the muscle Fi,yscle, and the velocity of the
intermediate point Zinterm-

Hint: First, use the free body diagram of the mass m. Next, consider the free body diagram of the intermediate point with zero mass; the net force on this
intermediate point must be 0.

(ii) Determine the equilibrium condition that relates Fjyaq and Fiyscle such that the system is at rest (i.e., at an equilibrium, no motion)
(iii) Assuming the equilibrium condition holds, find the final length of the spring.

XO'-‘O ya
s - - Cm - —— -i‘-- - - wa ~---—7'
Z R et | ""‘TCM
o [

ceme ==Y

F&a& 7

B Pl | F
T g by

Figure E2.4: Left image: A muscle connected to a fixed point and subject to a load force. Right image: Equivalent mechanical system for the muscle excitation.
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E2.9  Rigid and flexible foundations in vibration isolation. In many engineering applications, such as vehicles and machinery, controlling vibrations is critical to
ensuring the stability and longevity of structures. Vibrating machinery is often mounted on structures, where it is necessary to reduce the transmission of vibrations.

A common approach to isolating vibrations is by introducing a spring between the machine and the structure.
In this exercise, you will design a system where a vibrating machine is mounted on a structure. Our objective is to explore how the rigidity or flexibility of the

foundation affects the system’s dynamic properties.

r: p° sinwt ‘r: Pﬁ S‘tﬂw‘b
l slf
Wy, Ergine ) xi

1 ..k O

—_— E‘a'o‘ ":u,nalad"lbl\ I
hqnala\“'tor\////// ////// sz

(a) Rigid foundation

Ery.ne

(b) Flexible foundation

Figure E2.5: Engine mounted on a rigid (left) and flexible (right) foundation, e.g., in a car. The parameter k is the total stiffness of the two springs. The engine

mass is m1, and, in the right image, m, is the mass of the foundation.

The system’s motion is modeled using harmonic solutions of the form:
(E2.16)

(E2.17)

T1 = Tim Sinwt

Lo = Toy, Sinwt

where z1,,, and x9,, are the maximum oscillation amplitude of masses m1 and ma, respectively.

Rigid foundation system: Assume that the foundation my is rigid.
(i) Write down the differential equations for the rigid foundation system as shown in Figure E2.5(a).
(i) Find the squared natural frequency w? of the rigid system as shown in Figure E2.5(a).

Flexible foundation system: Now, consider the flexible foundation system.

(iii) Write down the differential equations for the flexible foundation system in Figure E2.5(b).
(iv) Solve for the natural frequency squared w? of the flexible system in Figure E2.5(b). Your final answer should be in terms of only the variables k,m1, and ms.
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Comparative analysis: Finally, we perform a comparative analysis.

(v) If mp = 10meg, what is the natural frequency of the system? How does it compare to the case where we assume the foundation is rigid?

(vi) Under what conditions is the natural frequency of the two systems equal?

Hint: Recall that the natural frequency is found by considering the solution to the un-forced system, i.e., the system with F' = 0.
Hint: To find the natural frequency, you will need to substitute our assumed solution into the dynamical system and solve for the frequency.
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