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Dynamical Systems: Definition and Scientific Examples
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1.1 Introduction
Dynamical systems frequently emerge in science and engineering, where they model a wide range of phenomena. These systems
can describe anything from planetary motion and the oscillation of a pendulum to the growth dynamics of a bacterial population or
fluctuations in stock market prices.

Figure 1.1: Long-exposure sky photo, sourced from https://unsplash.com. The movement of the stars across the night sky has captivated human imagination
since the birth of mankind. This image is a static visualization of a periodic behavior.

https://unsplash.com
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Loosely speaking, a dynamical system is a way to understand how things change over time based on rules.

Definition 1.1. A dynamical system is a mathematical concept that describes how variables of interest changes over time.
A dynamical system is a set of rules or equations that dictates how a system’s state evolves from one moment to the next.

The state of a dynamical system is a set of variables that completely describe the current condition or position of the system. For
example,

(i) for a mechanical pendulum, the state might be the angle and angular velocity of the pendulum,

(ii) for an electric circuit, the state could be the voltage across a capacitor or the current through an inductor,

(iii) in a fluid dynamics problem, the state might include variables such as pressure, temperature, velocity, and density at every
point in a fluid.

The number of state variables is the dimension of the system.
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Knowledge of the state at a given time and knowledge of the system’s governing equations allow one to predict the system’s
future behavior. Typically:

(i) all dynamical systems can be described by ordinary differential equations (ODEs) and their variations (e.g., partial differential
equations for variables defined over a spatial domain, or difference equations for systems in discrete time),

(ii) given an initial condition (and, if present, an external input stimulus), there exists one unique solution (aka evolution, trajectory)
originating from it, and

(iii) the behavior of the dynamical system is affected by values of a single or multiple parameters.
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Examples in mechanical engineering

Many dynamical systems of interest in mechanical engineering exhibit rich and complex behavior. Here are some examples that are
widely studied because of their importance or interesting behavior:

• The classic mass-spring-damper system models a wide range of structures and electro-mechanical systems. Mass-spring-damper
systems exhibit underdamped or overdamped responses.

• The double pendulum is a classic example of a system with chaotic behavior. Even with two simple links, its motion can become
highly unpredictable and sensitive to initial conditions.

• Vibrating beams and plates, such as those found in structures or mechanical components, exhibit complex dynamics, especially
when subject to large deflections or nonlinear boundary conditions.

• Rotating systems like turbines or helicopter blades involve gyroscopic effects and can exhibit nonlinearities, whirling, and even
chaotic vibrations under certain operating conditions.

• Fluid-structure interactions, such as aeroelastic flutter in aircraft wings or vortex-induced vibrations in bridges and pipelines,
show rich dynamics due to the coupling between fluid flow and structural response.

• Multi-link robotic arms with flexible joints and components can exhibit rich nonlinear dynamics, especially when considering
real-world effects like joint friction, flexible elements, and time-varying forces.

• MEMS devices, which operate on a micro-scale, often show nonlinear dynamics due to electrostatic forces, material nonlinearities,
and damping effects, leading to intricate vibrational behaviors.
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1.2 One dimensional examples: exponential and logistic growth

We consider two simple intuitive examples describing the dynamics of populations in ecology . Both examples are 1-dimensional, in
the sense that the system state is described by only a single scalar variable. Both examples systems are modeled using differential
equations.

Figure 1.2: Bacterial colonies are shown growing on a plate, starting from just a few cells and expanding rapidly. The colony grows at an exponential rate, but
this growth slows as resources become limited. Image sourced from https://unsplash.com.

https://unsplash.com
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1.2.1 A first model: the linear growth/decay model

Let us now make a number of assumptions to obtain a quantitative model:

(i) we let t denote time, the independent variable;

(ii) let x(t) denote the number1 of individuals in a population at time t (or a suitably scaled version of this quantity);

(iii) assume that each individual has a given chance of reproducing or dying, so that the birth rate and death rate are proportional
x(t), that is,

birth rate(t) = rbirthx(t) and death rate(t) = rdeathx(t),

where rbirth > 0 and rdeath > 0 are average per-individual birth/death rate and are assumed to be constant and positive;

(iv) we compute birth rate(t)− death rate(t) =
(
rbirth − rdeath

)
x(t) and define r = rbirth − rdeath.

1Since the population size x(t) is assumed to be sufficiently large, treating it as a continuous variable rather than as an integer is an acceptable approximation.
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In summary, the linear growth/decay model is

ẋ(t) = rx(t), (1.1)

where the parameter r is per-individual growth rate.

• This system has 1 independent variable t, 1 dependent variable x(t), and 1 parameter r.

• We call x(t) the state of the system and r a parameter of the system.

• Since there is only 1 independent variable and the dependent variable is differentiated only once the system is a 1st order
ordinary differential equation.
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Mathematical analysis of the linear growth/decay model

Note that the model (1.1) is linear, in the sense that the right hand size depends upon the state x in a linear way. For such a linear
model, the solution is straightforward:

x(t) = ert x(0). (1.2)

This simple model makes the following three predictions about the long-term evolution of the population:

(i) if r < 0, then the population will become extinct,

(ii) if r = 0, then the population remains constant, and

(iii) if r > 0, then the population will experience a demographic explosion (exponential growth, to be precise).2 Modelli descritti da equazioni di↵erenziali

s<0
s>0

s=0A

A

A

Figure 1.1:

dove A, ! > 0 e � 2 R. Si noti che l’ampiezza della sinusoide precedente e’ A
mentre il suo periodo e’ T = 2⇡/! e quindi la sua frequenza e’ f = 1/T = !/2⇡
da cui possiamo desumere che ! = 2⇡f . Nella figura 1.2 e’ illustrato l’andamento
del segnale sinusoidale. Mostriamo ora che e’ conveniente rappresentare i segnali
sinusoidali attraverso segnali a valori complessi. In e↵etti, si noti che

A cos(!t + �) = Re[Aej(!t+�)] = Re[Aej�ej!t] = Re[aej!t]

dove
a = Aej� 2 C

Si noti che A = |a| e � = \a, dove il simbolo \ indica la fase di un numero complesso.

T=2p/v
A

-A

Figure 1.2:

3) Un altro segnale rilevante, che generalizza il segnale esponenziale e quello sinu-
soidale e’

Ae�t cos(!t + �)

Si tratta di segnali sinusoidali a frequenza f = !/2⇡ la cui ampiezza e�t varia con
t in maniera esponenziale. Nella figura 1.3 sono illustrati gli andamenti di questa
classe di segnali al variare del valore di Re[p].
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-

M
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Figure 1.3: Solutions to the linear growth model in equation (1.2).
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1.2.2 A second model: the logistic equation

Next, we consider a slightly more realistic population dynamics model. We start by observing that, for r > 0, exponential unbounded
growth is unreasonable in an environment with finite resources. Therefore, it makes sense to make birth and death rates dependent
on the population x(t).

Specifically, we assume that the per-individual growth rate is a decreasing function of x(t), meaning that, the larger the population,
the fewer are the available resources. Instead of the linear model rx, a simple model for this diminishing growth phenomenon is

per-individual growth rate = r
(
1− x(t)

K

)
, (1.3)

where the parameter K defines a threshold behavior :
• growth is positive for x(t) < K ,
• growth is zero for x(t) = K , and
• growth turns negative, hence growth turns into decay, for x(t) > K .

This threshold behavior indicates the existence of a critical population threshold separating the situation of a positive rate (increasing
population) from that of a negative rate (decreasing population).
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In summary, the logistic growth model is

ẋ(t) = r
(
1− x(t)

K

)
x(t) = rx(t)︸ ︷︷ ︸

linear growth

+
(
− r

K

)
x2i (t)︸ ︷︷ ︸

logistic correction

. (1.4)

with the parameters:

• r is the intrinsic growth rate of the population: how fast the population would grow without any constraints, and

• K is the carrying capacity of the environment: the maximum population that can be sustained over the long term.

Note: the logistic growth model (1.4) is a nonlinear dynamical system, whereas the growth/decay model (1.1) is a linear dynamical
system.
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Numerical analysis of the logistic growth model

We now perform a numerical analysis, i.e., a simulation-based analysis of the logistic equation.

1 # Python libraries
2 import numpy as np; import matplotlib.pyplot as plt;
3 from scipy.integrate import odeint
4

5 # Logistic equation
6 def logistic_equation(x, t, r, K):
7 return r * x * (1 - x / K)
8

9 # Parameters
10 r = 0.1 # growth rate
11 K = 100 # carrying capacity
12

13 # Initial conditions and time range of integration
14 initial_conditions = [1, 5, 10, 25, 50, 75, 125, 150, 175]
15 colors = ['#752 d00', '#a43e00 ', '#d35000 ', '#ff6100 ', ...

'#ff8800 ', '#ffaf00 ', '#ffcc00 ']
16

17 T = 125 # maximum time
18 dt = 0.1 # time step
19 times = np.arange(0, T, dt) # array of time values
20

21 # Numerically solve the ODE and plot solution
22 plt.figure(figsize =(10, 6))
23 for i, x0 in enumerate(initial_conditions):
24 solution = odeint(logistic_equation , x0, times , args=(r, K))
25 plt.plot(times , solution , label=f'Initial condition: ...

{x0}', color=colors[i % len(colors)])
26

27 plt.title("Numerical solutions to the logistic equation")
28 plt.xlabel("Time t"); plt.ylabel("Population size x")
29 plt.legend (); plt.grid(True);
30 plt.xlim(0, 120); plt.ylim(0, 180)
31

32 # Save to PDF
33 plt.savefig("logistic -equation.pdf", bbox_inches='tight ')

Listing 1.1: Python script generating Figure 1.4. Available at:
logistic-equation.py
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Numerical solutions to the logistic equation
Initial condition: 1
Initial condition: 5
Initial condition: 10
Initial condition: 25
Initial condition: 50
Initial condition: 75
Initial condition: 125
Initial condition: 150
Initial condition: 175

Figure 1.4: Solutions frommultiple initial conditions x(0) to the logistic equation (1.4):
ẋ = r(1− x/K)x, for r = 0.1 and K = 100.
Note:
(i) For each x(0) > 0, x(t) approaches the carrying capacity K as t → ∞.
(ii) Each solution with 0 < x(0) < K is monotonically increasing, whereas each
solution with K < x(0) is monotonically decreasing.
(iii) For x(0) = 0, the solution is the equilibrium solution 0. We do not consider
negative initial conditions.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/logistic-equation.py


Lectures on Dynamical Systems, ed. 2024 (This version: October 8, 2024). Chapter 1, slide 15

In class assignment

What happens to the solutions to initial conditions x(0) and x(K)?
Do solutions have inflection points?
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Mathematical analysis of the logistic equation

Beside the numerical analysis (based upon numerical integration and visualization), it is useful to perform some mathematical

analysis of the logistic equation ẋ(t) = r
(
1− x(t)

K

)
x(t). Let us introduce some useful concepts.

Definition of equilibrium point for a dynamical system: For a dynamical system ẋ = f(x)

(i) a point x∗ is an equilibrium point if it is a solution to the equilibrium equation f(x∗) = 0,
(ii) when x∗ is an equilibrium point, the constant curve x(t) = x∗ is a solution of the dynamical system,
(iii) an equilibrium point x∗ is stable if nearby trajectories converge to x∗,
(iv) an equilibrium point x∗ is unstable if nearby trajectories move away from x∗.

The equilibrium points of the logistic equation: The logistic equation model (1.4) has two equilibrium points, corresponding to
the solutions of the equation a(1− x

K )x = 0, which are

x∗1 = 0 and x∗2 = K. (1.5)

At x∗1 we have extinction of the population and at x∗2 we are at carrying capacity.

x∗1 = 0 is unstable

x∗2 = K is stable
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Remark 1.2. As demonstrated in Exercise E1.1, the exact solution to the logistic equation is given by

x(t) =
Kx0 e

rt

K + x0(ert−1)
, (1.6)

where x0 represents the population at time t = 0, i.e., x(0) = x0. From this equation, it is possible to understand when the solution has
an inflection point.

• Equation (1.6) provides a closed-form solution for the logistic growth model (1.4),

• In general, finding a closed-form solution for a nonlinear dynamical system is not possible. As a result, one typically relies either on
numerical simulations or on qualitative analysis techniques.

• In this text, we will primarily focus on linear dynamical systems that are more tractable and for which solutions can be derived
analytically. •
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The structure of a numerical integrator and visualization program

Here is a breakdown of what the Python script does:

(i) loads useful software libraries

(ii) defines the differential equation (ODE) describing the dynamics

(iii) defines values for all parameters

(iv) defines a set of initial conditions and a time range

(v) computes numerical solutions to the ODE, e.g., via the routine odeint

(vi) plots the component(s) of the solution as a function of time

(vii) saves the plot to a PDF file.

Now, to be precise, it is important to clarify: odeint computes only a numerical approximation to the precise solution. Useful
reading: consult the manual and options for odeint.

https://python.org
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Programming notes

It is useful to briefly compare Python and Matlab:

• Python is a general-purpose programming language. Any editor can be used to write a Python script. Matlab is a
high-level language and interactive environment for numerical computations. Matlab is designed for engineers and
scientists, with an intuitive interface and simplified programming syntax.

• Python is open-source and, as such, it will remain at your disposal on any arbitrary device and operating systems. The
open-source community provides extensive resources, tutorials, and documentation.

• Since Python is general purpose, it is perceived to have a steeper learning curve than Matlab. However, large-language
models (such as ChatGPT) provide a simple way to generate scripts that can function at initial working prototypes and
can then be tweaked.

• Numerous leading libraries are freely available to enhance Python scripts. For example, Matplotlib is a Python library for
creating static, animated, and interactive visualizations. Other notable examples in machine learning and data science
include Pandas, TensorFlow, and PyTorch, and in robotics include the Robot Operating System.

• To draw phase portraits, these lecture notes adopt the function in Python’s Matplotlib library. Similar outcomes are
possible with the streamline function in Matlab.

The streamplot of a vector field is a visual representation of the vector field. It provides a snapshot of the direction
and magnitude of the field at various points in the phase space. The streamlines are not guaranteed to represent exact
trajectories, but give a qualitative idea about them.

https://python.org
https://python.org
https://python.org
https://python.org
https://python.org
https://python.org
https://pandas.pydata.org
https://www.tensorflow.org
https://pytorch.org
https://www.ros.org
https://python.org
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1.3 A two-dimensional dynamical system with periodic evolutions

Figure 1.5: The Canadian lynx (Lynx canadensis) is a major predator of the snowshoe hare (Lepus americanus).
Historical records of animals captures indicate that the lynx and hare numbers rise and fall periodically;
see (Odum, 1959).
Public domain image from Rudolfo’s Usenet Animal Pictures Gallery (no longer in existence).

In this section we consider the classic predator-prey dynamical model. In this model, we let x1 denote the number of preys and
x2 denote the number of predators. The Lotka-Volterra predator-prey model in the variables x1 and x2 is:

ẋ1 = αx1 − βx1x2,

ẋ2 = −δx2 + γx1x2,
(1.7)

with the parameters:

• α > 0 is the intrinsic growth rate of the prey,

• δ > 0 is the intrinsic decay rate of the predator,

• β > 0 and γ > 0 describe the inter-species interactions.

For general values of the parameters, no simple closed form solution is available. Therefore, we perform a numerical analysis.



Lectures on Dynamical Systems, ed. 2024 (This version: October 8, 2024). Chapter 1, slide 21

Numerical analysis of the Lotka-Volterra predator-prey model

1 # Python libraries
2 import numpy as np; import matplotlib.pyplot as plt
3 from scipy.integrate import odeint
4

5 # Define the Lotka -Volterra equations:
6 def lotka_volterra(z, t, alpha , beta , gamma , ∆):
7 x, y = z
8 dxdt = alpha * x - beta * x * y
9 dydt = -∆ * y + gamma * x * y
10 return [dxdt , dydt]
11

12 # Parameters:
13 alpha = 0.1; beta = 0.02; gamma = 0.01; ∆ = 0.1
14

15 # Solve the equations:
16 initial_condition = (20, 5)
17 T = 200; dt = 0.1; times = np.arange(0, T, dt)
18 solution = odeint(lotka_volterra , initial_condition , times , ...

args=(alpha , beta , gamma , ∆))
19

20 # Plot the solution as a function of time and save to PDF
21 plt.figure(figsize =(10, 5));
22 plt.plot(times , solution[:, 0], label='Prey')
23 plt.plot(times , solution[:, 1], label='Predator ')
24 # plt.title("Lotka -Volterra Predator -Prey Model: sample solutions ...

(population sizes vs time) and phase portrait ")
25 plt.xlabel("Time (t)"); plt.ylabel("Population Size")
26 plt.legend (); plt.grid(True); plt.xlim(0, 200); plt.ylim(0, 22.25)
27 plt.savefig("lotka -volterra -predator -prey.pdf", bbox_inches='tight ')
28

29 # Phase portrait
30 u, v = np.meshgrid(np.linspace(0, 25, 20), np.linspace(0, 15, 20))
31 du, dv = lotka_volterra ([u, v], 0, alpha , beta , gamma , ∆)
32 magnitude = 2*np.sqrt(du**2 + dv**2)
33

34 plt.figure(figsize =(10 ,6)); plt.xlim(0, 25); plt.ylim(0, 15)
35 plt.streamplot(u, v, du, dv, density =.95, ...

color='#0085 ff',linewidth=magnitude)
36 # plt.streamplot(u, v, du, dv, density =.5, ...

color = '#0085ff',linewidth=magnitude , broken_streamlines=False)
37

38 # Adding the specific solution trajectory to the phase portrait
39 plt.plot(solution[:, 0], solution[:, 1], color='#752 d00', ...

label='Trajectory from (20,5)')
40 plt.scatter (10, 5, color='black ', s=50, zorder =5)
41

42 # plt.title('Phase Portrait of the Lotka -Volterra Predator -Prey Model ');
43 plt.xlabel('prey population x1'); plt.ylabel('predator population x2'); ...

plt.grid(True)
44 plt.savefig("lotka -volterra -predator -prey -phase.pdf", bbox_inches='tight ')

Listing 1.2: Python script generating Figure 1.6. Available at
lotka-volterra-predator-prey.py
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Figure 1.6: Solution and phase portrait for the Lotka-Volterra predator-
prey dynamics (1.7).
The black line is the solution originating from initial condition (20, 5).

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/lotka-volterra-predator-prey.py
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1.4 Visualization of dynamical systems

A 1-dimensional ODE defines a line of vectors on the real line. Specifically, for a 1-dimensional system,2 ẋ = f(x) with x ∈ R,

• if f(x) < 0, then the solution starting at x moves to the left,

• if f(x) = 0, then the solution starting at x does not move, since the point x is an equilibrium, and

• if f(x) > 0, then the solution starting at x moves to the right.

We show this line of vectors for a few simple examples in Figure 1.7.

(a) Linear decay: ẋ = −x (that is, ẋ = rx with r = −1).
Note: 0 is a stable equilibrium.

(b) Linear growth: ẋ = x (that is, ẋ = rx with r = +1).
Note: 0 is an unstable equilibrium.

(c) Logistic equation: ẋ = x− x2 (for x > 0, r = 1,K = 1.)

Figure 1.7: Line of vector of simple 1-dimensional ODEs.

2We let R denote the set of real numbers and Rd denote the set of column vectors with d real entries.
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Next, we consider a generic 2-dimensional ODE:
ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2).
(1.8)

This 2-dimensional ODE defines a vector field on the plane in the sense:

at each point (x1, x2) on the plane, we compute the vector with components (f1(x1, x2), f2(x1, x2)), this is the velocity
vector of a particle at point (x1, x2) that is flowing according to the ODE (1.8).

By flowing according or along the ODE, the particle traces out a curve, that is a solution of the ODE.

For clarity,

• an ODE is the same thing as a vector field,

• the plane is filled with trajectories, since there is a solution to the ODE from each point in the plane, and

• trajectories never intersect because of the uniqueness of solutions to differential equations.
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The phase portrait (aka trajectory diagram) is a graphical representation that shows the trajectories that a 2-dimensional dynamical
system can take through the plane. It is an illustrations of the paths that a particle obeying the ODE would follow. We illustrate how
to draw the phase portrait in Figure 1.8.

Once the phase portrait is plotted (or its numerical approximate version, the streamplot in Python), one can recognize some
special solutions and some qualitative features of many solutions:

(i) an equilibrium, including an attractive equilibrium, or just marginally stable, or an unstable,

(ii) a closed orbit = periodic trajectory, or

(iii) a diverging trajectory.

Note: Generalizing from the plane, the state space is a multidimensional space in which each axis corresponds to one of the
system’s variables. But it is not clear how to draw a phase portrait in dimensions larger than 2.

https://python.org


Lectures on Dynamical Systems, ed. 2024 (This version: October 8, 2024). Chapter 1, slide 25

0 5 10 15 20 25
Prey Population

0

2

4

6

8

10

12

14

Pr
ed

at
or

 P
op

ul
at

io
n

Lotka-Volterra Vector Field: howto-phaseportrait-1.pdf
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Lotka-Volterra Vector Field: howto-phaseportrait-2.pdf
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Lotka-Volterra Vector Field: howto-phaseportrait-3.pdf
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Figure 1.8: In the 2-dimensional Lotka-Volterra predator-prey example, the state space is (x1, x2) and the phase portrait from Figure 1.6 is reported here.
Relevant questions are: How many equilibria are there? Are they stable? Is there any trajectory diverging to infinity? Is there any trajectory converging to an
equilibrium?
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Example phase portraits
Stable equilibrium Saddle point Unstable equilibrium

Periodic orbit Multiple stable equilibria Infinite equilibrium points

Figure 1.9: Examples of phase portraits.

First row:

{
ẋ = −x

ẏ = −y
,

{
ẋ = x

ẏ = −y
, and

{
ẋ = x

ẏ = y
. Second row:

{
ẋ = y

ẏ = −x
,

{
ẋ = x(1− x2)

ẏ = −y
, and

{
ẋ = −x(1− (x2 + y2))

ẏ = −y(1− (x2 + y2))
.
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1.5 Summary

In summary, in this chapter we saw:

Systems
• examples of first and second order dynamical systems
• examples of linear and nonlinear systems
• distinction between a variable and a parameter

Phenomena
• an equilibrium point is a solution where the state is constant
• solutions may diverge to infinity, may converge to an equilibrium point, or may be periodic
• additional phenomena may occur: chaos, synchronization, entrainment, etc

Analysis methods
• mathematical analysis (obtain solution in closed form; possible only some times)
• numerical analysis (numerical integration of differential equations, Python as a flexible open-source language and environment)

https://python.org
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Content of these lecture notes:

In the first two parts of this course, we will study:
systems: linear dynamical systems relevant in mechanical engineering,
phenomena: equilibria, stability, responses to basic inputs, vibrations
analysis: the Laplace transform and transfer functions
In the third part of this course, we will study how to control dynamical systems, i.e., how to shape the dynamics of systems.



Lectures on Dynamical Systems, ed. 2024 (This version: October 8, 2024). Chapter 1, slide 29

1.6 Historical notes, further reading, and online resources

Studying dynamical systems was once a perilous pursuit! Galileo Galilei (1564–1642) famously faced severe consequences from the
Catholic Church for advocating the heliocentric model, a once-revolutionary idea that the Earth revolves around the Sun. This view
directly challenged the long-held geocentric beliefs of Aristotle (384–322 BC) and Ptolemy (c. AD 100–170), which had been adopted
and defended by the Church. Galileo’s support for the heliocentric theory not only contradicted centuries of philosophical and
scientific tradition, but also sparked a broader conflict between emerging scientific thought and religious authority.

For further reading, a wonderful reference is the textbook (Strogatz, 2015) and, specifically, Chapters 2 “Flows on the line” and 6
“Phase plane”. Numerous additional example systems can be found in Ogata (2003), in (Åström and Murray, 2021, Chapter 3) and
throughout (Strogatz, 2015). Extensive additional information is available on wikipedia, for example, see the page on the logistic
equation.

An online application that draws phase portraits (more accurate than the Python’s streamplot) is “Phase Plane - Nonlinear
System with Nullclines” by Patrick Davix.

https://en.wikipedia.org/wiki/Logistic_function#Applications
https://en.wikipedia.org/wiki/Logistic_function#Applications
https://python.org
https://www.geogebra.org/m/gk9aunzy
https://www.geogebra.org/m/gk9aunzy
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Interesting youtube videos (links are functional as of Sep 2024):

• Mechanical systems

– simple harmonic motion and London’s Millennium Bridge (9m 10s) and mathematics of harmonic motions (8m 9s)
– damping and resonance (5m 3s) and safety in skyscrapers (tuned mass damper) (9m 36s)
– the double pendulum and the chaos phenomenon (short)
– resonance and the 1940 Tacoma bridge collapse

• Biology

– simplest genetic circuit: the toggle switch (9m 49s)
– a white blood cell chases bacteria in real life (29s)

• Ecology

– schooling and collective intelligence in animals (with intervention by Ian Couzin, 8m 42s)
– why do fish swim (3m 48s), and why do they swim in harmony (6m 6s)

• Coupled oscillators

– synchronizing oscillators (short)
– synchronization out of chaos (with intervention by Stephen Strogatz, 20m 57s)

• Traffic networks

– traffic causes and control strategies (4m 29s)

https://youtu.be/jxstE6A_CYQ
https://youtu.be/Z52emur7Rko
https://youtu.be/y0YFw9ZzSyM
https://youtu.be/f1U4SAgy60c
https://www.youtube.com/shorts/WFaCoO-2Dro
https://www.youtube.com/shorts/Tb4Ck0WygEs
https://youtu.be/Zlv0mqUe11g
https://youtu.be/JnlULOjUhSQ
https://youtu.be/Y-5ffl5_7AI
https://youtu.be/7F_f6KReJo8
https://youtu.be/dkP8NUwB2io
https://www.youtube.com/shorts/wR1PxzjZE9Q
https://youtu.be/t-_VPRCtiUg
https://youtu.be/iHzzSao6ypE
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1.7 Appendix: The logistic equation in business management and sociology

The logistic equation studied in Section 1.2.2 models not only population dynamics but also technology adoption, spread of innovations,
and other diffusion phenomena that follow an S-curve pattern. (In some cases, the state x(t) is only taken in the range [0, K].)

Figure 1.10: Adoption curve: the S-curve is the integral of adoption curve. Image from Commons Wikimedia, licensed under the Creative Commons Attribution-
Share Alike 4.0 International.

The S-curve describes a slow initial adoption, followed by a rapid increase in adoption, and finally a slowing down as saturation is
approached. The inflection point of the curve is where the adoption rate is fastest. In the context of technology adoption:

• x(t) represents the number of adopters (or the market share of a particular technology) at time t,

• r is the rate of adoption and

• K is the saturation level, or the maximum number of adopters (e.g., the total market size or the total population that can adopt
the technology).

In the logistic equation, the growth rate slows as the number of adopters approaches the saturation level.
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1.8 Appendix: A bistable toggle switch in synthetic biology

From Wikipedia: “Synthetic biology is a multidisciplinary field of science that focuses on living systems and organisms, and it
applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature”

The field synthetic biology and systems biology studies regulatory networks, that is, groups of molecules (genes, proteins, etc) with
varying concentration that interact and promote or repress each other. A toggle switch is a simple regulatory network that manifests
bistability , that is, the ability to remain stably in one of two states and to be toggled between these two states using a stimulus.

(a) An electromechanical toggle
switch
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(b) A diagram illustrating a biological toggle switch is shown. While the specific chemicals
and their interactions may not be immediately clear, a simplified mathematical model will be
introduced below for clarity. This image is taken from the seminal work by (Gardner et al., 2000),
which demonstrates the successful creation of a synthetic, bistable gene-regulatory network
within Escherichia coli bacteria.

Figure 1.11: Synthetic biology holds the potential to design biological circuits in much the same way we design electrical circuits and electromechanical
systems.
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We present here a simple (possibly the simplest) dimensionless mathematical model of the toggle switch which exhibits bistability.
Consider two genes with concentrations u and v, the toggle switch dynamics is

u̇ =
α1

1 + vn1
− βu,

v̇ =
α2

1 + un2
− βv,

(1.9)

where:

• the quantity
α1

1 + vn1
is the production rate of u, inhibited by v,

• the quantity
α2

1 + un2
is the production rate of v, inhibited by u,

• the quantities n1 and n2 are sensitivity coefficients indicating the non-linearity of the repression,

• the quantities α1 and α2 are the maximum production rates of u and v, respectively, and

• the quantity β is the degradation rate common for both u and v (we choose it equal for simplicity).

Note: To describe the production rates, we used a Hill function f(u) =
α

1 + un
. This expression is derived from the theory of mass

action kinetics in chemistry. The sensitivity parameter n plays a key role.
As we show in the next Figure 1.12, the system can exhibit bistability, meaning it can remain stable in a state where u is high and

v is low, or vice versa. An external stimulus can be employed to switch between these states.
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Numerical analysis of the toggle switch dynamics

1 # Python libraries
2 import numpy as np; import matplotlib.pyplot as plt;
3 from scipy.integrate import odeint
4

5 # Toggle switch dynamics
6 def toggle_switch(Y, t, alpha1 , alpha2 , n1, n2, beta):
7 u, v = Y
8 dudt = alpha1 / (1 + v**n1) - beta * u
9 dvdt = alpha2 / (1 + u**n2) - beta * v
10 return [dudt , dvdt]
11

12 # Parameters
13 alpha1 , alpha2 = 1.0, 1.0 # production rates
14 n1 = 3.53; n2 = 3.55 # Hill coefficients
15 beta = 0.5 # degradation rate
16

17 # Initial conditions: [u0, v0] and Time array
18 initial_conditions = [ [0.35, 1.1], [.9, 0.5], [1, 2], [2.5, 1] ]
19 t = np.linspace(0, 10, 1000); plt.figure(figsize =(10, 4))
20

21 # Solve and plot for each initial condition
22 colors = ['b', 'g', 'r', 'k']
23 for idx , ic in enumerate(initial_conditions):
24 Y = odeint(toggle_switch , ic, t, args=(alpha1 , alpha2 , n1 , n2, beta))
25 u, v = Y.T; plt.plot(t, u, color=colors[idx], label=f'u0={ic[0]}, ...

v0={ic[1]} (u)')
26 plt.plot(t, v, '--', color=colors[idx], label=f'u0={ic[0]}, ...

v0={ic[1]} (v)')
27

28 # Annotate the plot and save to PDF (plt.xlabel('Time , t '))
29 plt.title('Toggle Switch: sample solutions (u(t) solid and v(t) dashed ...

vs t) and phase portrait ')
30 plt.ylabel('Concentrations (u=solid , v=dashed)'); plt.legend ();
31 plt.xlim(0, 10); plt.ylim(0, 2.25); plt.grid(True)
32 plt.savefig("toggle -switch.pdf", bbox_inches='tight ')
33

34 # Phase portrait
35 u, v = np.meshgrid(np.linspace(0, 4, 20), np.linspace(0, 3, 20))
36 du, dv = toggle_switch ([u, v], 0, alpha1 , alpha2 , n1 , n2 , beta)
37 magnitude = np.sqrt(du**2 + dv**2);
38 # Plot the phase portrait with trajectories and equilibrium points
39 plt.figure(figsize =(12 ,9));
40 plt.streamplot(u, v, du, dv, density =.75, ...

color='#0085 ff',linewidth=magnitude , broken_streamlines=False)
41 for idx , ic in enumerate(initial_conditions):
42 Y = odeint(toggle_switch , ic, t, args=(alpha1 , alpha2 , n1 , n2, beta))
43 plt.plot(Y[:,0], Y[:,1], color=colors[idx], label=f'u0={ic[0]}, ...

v0={ic[1]}')
44 eq_points = np.array ([[1., 1.], [0.17, 2.], [2., 0.17]])
45 plt.scatter(eq_points[:, 0], eq_points[:, 1], color='black ', s=75, zorder =5)
46 plt.xlabel('u'); plt.ylabel('v'); plt.xlim(0, 4); plt.ylim(0, 3)
47 plt.savefig("toggle -switch -phase.pdf", bbox_inches='tight ')

Listing 1.3: Python script generating Figure 1.12. Available at
toggle-switch.py
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Toggle Switch: sample solutions (u(t) solid and v(t) dashed   vs   t) and phase portrait
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Figure 1.12: Solutions and phase portrait for the toggle switch dynamics (1.9). Four
initial conditions are randomly selected. Two trajectories (green and black) converge to
the “(u, v) = on/off” equilibrium, the other two (red and blue) to the “(u, v) = off/on”
equilibrium.

https://python.org
http://motion.me.ucsb.edu/ME103-Fall2024/handouts/toggle-switch.py
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1.9 Exercises

E1.1 Closed-form solution of the logistic equation. Verify that

(i) the exponential function x(t) = x0 e
at is the solution to the linear differential equation ẋ = ax with initial condition x(0) = x0;

(ii) the logistic function x(t) =
Kx0 e

rt

K + x0(ert−1)
is the solution to the logistic differential equation

ẋ = rx
(
1− x

K

)
, x(0) = x0.

Answer:

(i) The solution follows simply by taking the derivative of x(t) = x0e
at with respect to t:

ẋ = ax0e
at = ax.

An alternative method is via integration:

dx

dt
= rx =⇒ dx

x
= rdt =⇒

∫ t

0

dx

x
= rt =⇒ ln(x(t)) = ln(x(0)) + rt =⇒ x(t) = x(0) ert .

(ii) To solve the logistic equation, we separate the variables and then integrate. Starting with:

dx

x(1− x/K)
= rdt.

We integrate both sides, with the right side integrated with respect to t and the left side with respect to x. The integral will yield an equation of the form:

− ln

(∣∣∣∣Kx − 1

∣∣∣∣) = C − rt.

Solving for x and evaluating at x(0) = x0, we compute

C = ln(x0/(x0 −K)).

Finally, the conclusion follows by substituting C into the solution for x yielding:

x(t) =
K

K−x0
x0

ert + 1
=

Kx0e
rt

K + x0 (ert − 1)
.

■



Lectures on Dynamical Systems, ed. 2024 (This version: October 8, 2024). Chapter 1, slide 36

E1.2 Reasonable and unreasonable predictions of a Lotka-Volterra model. Given an interaction parameter α taking one of the values {0,−0.5, 0.5, 2}, consider the
following Lotka-Volterra system for two species (note this is not the same predator-prey system in Section 1.3):

ẋ1 = x1 − x21 + αx1x2

ẋ2 = x2 − 2x22 + αx1x2
(E1.1)

Note: when α = 0 the two species do not interact with each other. When α > 0, each species has a beneficial effect on the other; this is called mutualism. When
α < 0, each species has a detrimental effect on the other; this is called competition.
Note: For clarity, x1 and x2 are normalized numbers, not absolute numbers. For example: the number of individuals of species #1 may be of x1 · 106.
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(b) Low competition: α = −0.5
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(c) Low mutualism: α = 0.5
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(d) High mutualism: α = 2

(i) For the no-interaction case α = 0, compute the carrying capacity for each of the two species in isolation and compute each equilibrium point of the two-species
system.

(ii) For each case (α = 0, α = −0.5, α = 0.5, α = 2), how many equilibria exist?
(iii) For α ̸= 0, how does the interaction between species affect the location of the equilibria?
(iv) Is the behavior (location of equilibria and asymptotic value of solutions) predicted by the model (E1.1) ecologically reasonable for each value of α?

Answer: First, observe that

ẋ1 = x1 − x21 + αx1x2 = x1(1− x1 + αx2)

ẋ2 = x2 − 2x22 + αx1x2 = x2(1− 2x2 + αx1)
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(i) Setting the above equations for ẋ1 and ẋ2 equal to 0 with α = 0, we can see that the fixed points are x1 = 0, 1 and x2 = 0, 0.5. Thus, the carrying capacities
are 1 and 0.5, respectively.

(ii) Setting the above equations equal to zero, we can see that we have at least three equilibria in all four cases: (0, 0), (0, 1/2), (1, 0).

Additionally, when α ̸= ±
√
2, a fourth equilibrium also exists, which solves the system of equations

0 = 1− x1 + αx2,

0 = 1− 2x2 + αx1.

A little linear algebra shows that this system has a unique solution at all four parameter values considered. The fourth equilibrium occurs at the point(
2 + α

2− α2
,
1 + α

2− α2

)
.

(Note that in the case where α = ±
√
2, this system of equations has no solutions.) When α = 2, the solution is (−2,−3/2), which is not physically since the

variables (x1, x2) are supposed to be positive or zero.

(iii) The first three equilibria are unaffected by the value of α. We can see that as α increases from 0, the fourth equilibrium moves up and to the right until it
escapes to (∞,∞) at α =

√
2. As α decreases from 0, this point first moves down and to the left, and then moves down and to the right until it escapes to

(∞,−∞) at α = −
√
2.

(iv) We at least expect both populations to be nonnegative and finite. We can see that the values for which this holds are −1 < α <
√
2. Thus cases (a), (b), and (c)

are arguably reasonable, while case (d) certainly is not.

■
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E1.3 Matching phase portraits to dynamics. Given a real number r taking six possible values in {−2,−1,−0.5, 0, 1, 5}, consider the linear dynamical system

ẋ = rx,

ẏ = −y.

Match the six possible values of r to each of the six images below.
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Answer: The answer is:

(a) r = −0.5, (b) r = 1, (c) r = 5, (d) r = −1, (e) r = −2, (f) r = 0

Here is the explanation: If ẋ > 0, the arrow points to the right and if ẋ < 0, the arrow points to the left. With the same concept, if ẏ > 0, the arrow points upward
and if ẏ < 0, the arrow points downward (ref. Chapter 1, slide 23). In this case, the change rate ẏ is not affected by r and we can see how the lines pointing towards
the x-axis at y = 0, curve.

(a) When r = −0.5, ẋ = −0.5x and ẏ = −y. There are two vectors, one points towards the x-axis at y = 0 and the other points towards the y-axis at x = 0. When
the value of x is approaching 0, the change rate ẋ is decreasing. Therefore, the lines pointing towards the x-axis at y = 0 is slightly curved because ẋ < ẏ.

(b) When r = 1, ẋ = x and ẏ = −y. There are two vectors, one points towards the x-axis at y = 0 and the other points away from the y-axis at x = 0. Therefore,
the lines curved and pointed out from the y-axis at x = 0. When the value of x is approaching 2 or −2, the change rate ẋ is also increasing and the lines
pointing to the x-axis at y = 0 are dramatically curved because ẋ > ẏ.

(c) When r = 5, ẋ = 5x and ẏ = −y. There are two vectors, one points to the x-axis at y = 0 and the other points away from the y-axis at x = 0. Because the
change rate ẋ is much greater than ẏ when x is increasing, it caused the lines to significantly point away from the y-axis at x = 0

(d) When r = −1, ẋ = −x and ẏ = −y. There are two vectors, one points towards the x-axis at y = 0 and the other points towards y-axis at x = 0. The magnitude
depends on the value of x and y. Adding two vectors together results in arrows pointing straight to (0, 0) because ẋ = ẏ everywhere.

(e) When r = −2, ẋ = −2x and ẏ = −y. There are two vectors, one points towards the x-axis at y = 0 and the other points towards the y-axis at x = 0. When
the value of x is approaching 0, the change rate ẋ is decreasing. Therefore, the lines pointing to x-axis at y = 0 is slightly curved because ẋ < ẏ. However, with
a larger x value, the change rate ẋ is bigger and curved the lines in a greater magnitude because ẋ > ẏ.

(f) When r = 0, ẋ = 0 and ẏ = −y. We can see the straight lines point towards the x-axis at y = 0 when we apply y = −2 to 0 and y = 2 to 0.

■
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E1.4 Discrete-time dynamical systems. This exercise is meant to illustrate that dynamical systems exist also over the discrete-time domain and not only over continuous
time. Instead of the time variable t (taking values in the non-negative real numbers), we let k be the discrete time variable, that is, a non-negative integer. An
interesting example of discrete-time dynamical systems arises in the domain of finance, in the context of investments and accumulation of bank deposits.

A single initial deposit: Given a scalar a and an initial condition x(0), consider the discrete-time equation x(k + 1) = ax(k), for all nonnegative integers k. Show
that the solution is x(k) = x(0)ak.
Note: Assume you deposit an amount x(0) at a bank today. Let the coefficient a satisfy a = 1+ i, where i is the yearly interest offered by the bank. Then x(k) is the
value in your bank account k years from now.

An initial deposit, plus yearly deposits: Consider the discrete-time equation x(k + 1) = ax(k) + b, where b is a constant input or forcing term. Show that the
solution from initial condition x(0) is

x(k) =

 x(0) + kb, if a = 1,

akx(0) +
1− ak

1− a
b if a ̸= 1.

(E1.2)

Hint: Recall the geometric series
1− ak

1− a
= 1 + a+ a2 + · · ·+ ak−1.

Note: This scenario assumes that, after depositing an amount x(0) at year 0, you deposit the amount b each following year.

Answer: We prove only equation (E1.2), since the case where b = 0 is an immediate consequence. The case when a = 1 is trivial. We need to show that
x(k) = akx(0) + 1−ak

1−a b for a ̸= 1, when x(k + 1) = ax(k) + b. (The case a = 1 is elementary.) We proceed by induction. First, at k = 0, we verify

x(0) = akx(0) +
1− ak

1− a
b
∣∣∣
k=0

= x(0) +
0

1− a
b = x(0). (E1.3)

Second, we assume the statement is true at k and we need to show that it holds at k + 1. We compute

x(k + 1) = ax(k) + b = a
(
akx(0) +

1− ak

1− a
b
)
+ b

= ak+1x(0) + a
1− ak

1− a
b+ b

= ak+1x(0) +
(
a
1− ak

1− a
+ 1

)
b

= ak+1x(0) +
a− ak+1 + 1− a

1− a
b = ak+1x(0) +

1− ak+1

1− a
b.

This expression matches the form of the solution for k + 1, so the inductive step holds. ■
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E1.5 Finding typos in Python code. Each of the following three programs contains precisely one programming mistake. Identify the mistake and the line in which it
happens.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import odeint
4

5 # Logistic equation
6 def log_eq(x, t, r, K)
7 return r * x * (1 - x / K)
8

9 # Parameters
10 r, K = 0.1, 100
11 initial_conditions = [1, 10, 50, 100]
12 times = np.linspace(0, 125, 1000)
13

14 # Solve and plot
15 plt.figure ()
16 for x0 in initial_conditions:
17 solution = odeint(log_eq , x0, ...

times , args=(r, K))
18 plt.plot(times , solution)
19

20 plt.xlabel("Time"), plt.ylabel("Population")
21 plt.legend (), plt.show()

Listing 1.4:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import odeint
4

5 # Logistic equation
6 def log_eq(x, t, r, K):
7 return r * x * (1 - x / K)
8

9 # Parameters
10 r, K = 0.1, 100
11 initial_conditions = [1, 10, 50, 100]
12 times = np.linspace(0, 125, 1000)
13

14 # Solve and plot
15 plt.figure ()
16 for x0 in initial_conditions:
17 solution = odeint(log_eq , x0, ...

times , args=(r, K))
18 plt.plot(times , soluton)
19

20 plt.xlabel("Time"), plt.ylabel("Population")
21 plt.legend (), plt.show()

Listing 1.5:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import odeint
4

5 # Logistic equation
6 def log_eq(x, t, r, K):
7 return r * x * (1 - x / K)
8

9 # Parameters
10 r, K = 0.1, 100
11 initial_conditions = [1, 10, 50, 100]
12 times = np.linspace(0, 125, 1000)
13

14 # Solve and plot
15 plt.figure ()
16 for x0 in initial_conditions:
17 solution = odeint(log_eq , times , ...

args=(r, K))
18 plt.plot(times , solution)
19

20 plt.xlabel("Time"), plt.ylabel("Population")
21 plt.legend (), plt.show()

Listing 1.6:

https://python.org
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E1.6 A conserved quantity for the predator-prey system. With the same notation as in Section 1.3, consider the Lotka-Volterra predator-prey model

ẋ1 = αx1 − βx1x2,

ẋ2 = −δx2 + γx1x2.
(E1.4)

Show that the following quantity is conserved along the solution of the dynamical system:

H(x1, x2) = γx1 − δ ln(x1) + βx2 − α ln(x2). (E1.5)

Hint: Note that the quantity H(x1, x2) along the solution of the dynamical system really is a function of time H(x1(t), x2(t)), where x1(t) and x2(t) are the
solutions the system.
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E1.7 Matching phase portraits to dynamics. Given a number ω taking values in {−1, 0, 1}, consider the nonlinear dynamical system

ẋ = ωy +
(
1− (x2 + y2)

)
x,

ẏ = −ωx+
(
1− (x2 + y2)

)
y.

(i) Match the three possible values of ω to each of the three phase portraits below.

(ii) For each value of ω, calculate all the equilibrium points of the resulting system and their stability.

Hint: An equilibrium point x∗ is marginally stable if nearby trajectories converge to x∗ or remain near x∗.
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(c) ω =
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E1.8 Understanding phase portraits. Here are some basic questions about phase portraits for 2-dimensional systems. Please provide a short 1-sentence response.

(i) why can there be only one solution curve passing through a given point in the phase portrait?

(ii) what do the arrows on the trajectories in a phase portrait represent?

(iii) why can solution curves never cross each other in a phase portrait?

(iv) what are equilibrium points, and how do you find them on a phase portrait?

(v) how can you tell if an equilibrium point is stable or unstable by looking at the phase portrait?

Note: Please provide a short 1-sentence response.
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