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Artificial and Biological Neural Networks

artificial neural network AlexNet '12 C. elegans connectome '17

Aim: understand the dynamics of neural networks, so that
o reproducible behavior, i.e., equilibrium response as function of stimula
@ robust behavior in face of uncertain stimuli and dynamics
@ learning models, efficient computational tools, periodic behaviors ...
A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012

G. Yan, P. E. Vértes, E. K. Towlson, Y. L. Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabdsi. Network control principles predict neuron function in the Caenorhabditis
elegans connectome. Nature, 550(7677):519-523, 2017. 4


http://dx.doi.org/10.1038/nature24056

Fixed point computation

Feedforward NN Implicit/Recurrent NN
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o = U, .’L':(I)(Al'—i-Bu—Fb),

y=Cx+d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4



http://dx.doi.org/10.1109/TSP.2021.3069677

© Contraction theory
@ Banach contractions and infinitesimal counterparts



Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. @
S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958. URL http://mi.mathnet.ru/eng/ivm2980.
(in Russian)
C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. IEEE Transactions on Circuit Theory, 19(5):480-486, 1972. ¢

@ Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998. @

@ Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In |EEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. 4


http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1109/CDC.2014.7039986
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ball centered at x(k) with radius p*

F is infinitesimally strongly contractive if its flow is a Banach contraction
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On fixed point algorithms and Banach contractions

x = G(x)
Banach Contraction Theorem

If Lip(G) < 1 that is ||G(u) — G(v)|| < Lip(G)]|ju — v],
then Picard iteration x4+ = G(zy) is a Banach contraction

e

For Lip(G) > 1, define the average iteration

Tpr1 = (1 — a)xg + aG(zy)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1
© the dynamics & = —z + G(«) is infinitesimally strongly contracting




Robustness of fixed point algorithms

Robustness based upon Contraction
x} is a fixed point of z = G(z,u) and Lip, G < 1, then

u

Lip, G
ot — 23l < Pl o]

— Lipr||

e

Robustness based upon Infinitesimal Contraction
x} is a fixed point of z = G(z,u)

x} is a fixed point of x = G(x,v) + D(z,v), and
osLip, (G + D) < 1, then

1

* *
— <
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Properties of contracting dynamical systems

Yo

Highly ordered transient and asymptotic behavior: o
@ time-invariant F: unique globally exponential stable equilibt*ijum,,,,,,,ui
two natural Lyapunov functions
@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability
@ modularity and interconnection properties,

© accurate numerical integration, and

Q there exist efficient methods for their equilibrium computation



The log norm of A € R™*™ wrt to || - ||:

. | In+RhA|| -1
A= lim ———
HA) v h
Basic properties:
subadditivity: u(A+ B) < u(A) + pu(B)
scaling: pu(bA) = bu(A), Vb >0
norm/spectrum: Re(A) < u(A) < ||A]], VA € spec(A)

Convexity and quasi-convexity:
fopioa S —¢ <  PA+A"P=-2P

Yies A £ =€ <— ayn; + Z laijln; < —cn; for all ¢
J#




Contraction equivalences on normed vector spaces

For x € R™ and continuously differentiable

& = F(x)

For norm || - || with log norm p(-)

osLip(F) := sup u(DF(z))

zeR™
Main equivalences: for ¢ > 0
© d-osL : osLip(F) < —c
@ dIs : DF|z(t) —y@)ll < —cllz(t) —y(®)||  for soltns z(-),y(")
@15 )~y < e |z (to) — y(to)l, for all soltns z(-),y(-) )




Equilibria of contracting vector fields:
For a time-invariant F, c-strongly contracting with respect to || - ||
O flow of F is a contraction,
i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global
Lyapunov functions

x|lz—2%| and z— ||F(z)]




Computing equilibria

Given F : R® — R"

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
1 = (Id+aF)x = z, + aF (xg) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1
© the map Id +aF is a contraction map with respect to || - || for

0<a<01{3(1+/€)

@ the optimal step size minimizing and minimum contraction factor:

1
@ 2ck?’ 4k2




Application: /.-contracting neural networks

x = ®(Ax + Bu+b) (INN fixed point)
&t =—z+ ®(Az + Bu+1b) (Recurrent NN)
Tpr1 = (1 — a)xg + a®(Axy + Bu+b) (Average iter.n)

Hoo(A) < 1 (i.e., ai; + Z la;j| < 1 for all 72)
J

@ dynamics is contracting with rate 1 — p1o(A4)+

1— A 1
@ average iteration is Banach with factor 1 — w ata=———-—+——
1 — min;(as;)— 1 — min;(as;) -
_ 1BllsollCllso

o input-output Lipschitz constant Lip,_,, =
1- NW(A)+




© Application to recurrent neural networks and implicit ML models
@ Implicit neural networks in machine learning



Detour: a bit more detail

Continuous-time recurrent neural networks:
T=—x+A®(z)+u (Hopfield)
t=—x+ ®(Ax +u) =: frr(x) (Firing rate ~ Implicit NNs)
&= AdP(x) (Persidskii-type)
&= Az — ®(x) (.. )
sigmoid, hyperbolic tangent ReLU = max{x,0} = (x)+

tanh(y) ReLU(y)

1 1
Yy Y
_2 1 1 2 —2 -1 1 2
— > — >

activation functions are locally-Lip and slope-restricted: for all ¢
1 09, o0P;
dmin = €858 lnfyeR % >0 and dmax :— ess SupyGR 8?53/) < 00




fer(x) = —x + ®(Az +u)

Tight transcription.

osLip (fFR) = €sssup poo ( — Iy + (D®(2))A) = =1+  max

fioo (diag(d) A)

x€eR™ de [dmin 7dmax]n

Max log norms over hypercubes. For A € R™*™ and 0 < dmin < dmax

de[dﬁ?‘iax]n Moo (dlag(d)A) = max {Hoo (dminA)7 Moo (dmaxA)}

; [dmag ] w1 (diag(d) A)= max{u1 (dmaxA), 1 (dmaxA — (dmax
€ [Amin;Tmax "

de[dgil:,%;fm]" loo (Adiag(d))= ...

A€ i ] w(4 diag(d))= ...

— dmin)(In © A))}




NonEuclidean contractivity of firing rate model

&t =—-Czx+ ®(Az + u) =: frr(x)
Q for arbitrary ) € R,

OSLipoo7[n]—1(fFR) = max{uoo,[n]q (—C + dmin4), Hoo ] 1 (—C 4 dmax4)}

@ optimal weight 1 and minimim value of OSLipOO’[n]—l(fFR) from quasiconvex opt:

inf b
bERJIER;O
st (—=C + dmin|Alm)n < b

(—C + dmax|A|M)77 < b77
Explicit solution (from PF theory) when dpin = 0

inf osLip ;) (frr) = max {a(=C),(=C + dmax|Alm) }

nERgo



Example: ¢,.-contracting neural networks

z=®(Ax + Bu+b) (INN fixed point)
&t =—x+ ®(Az + Bu+b) (Recurrent NN)
Tpr1 = (1 — a)xg + a®(Axg + Bu +b) (Average iter.n)

,U,OO(A) <1 (i.e., A Z ‘(1,1‘.}" < 1 for all ])
J

@ dynamics is contracting with rate 1 — o (A)+

1-— A 1
@ average iteration is Banach with factor 1 — w ata=———-—
— min;(a;;)— 1 — min;(as;)—
| Blloo |Clloo

e input-output Lipschitz constant Lip,_,, = T @)
— Moo +




© Application to recurrent neural networks and implicit ML models
@ Implicit neural networks in machine learning



Implicit neural networks in machine learning

Feedforward NN Implicit/Recurrent NN
Oy} ©)
o oY
O (@)
> ° m)
T Tg
Tiy1 = ®(Aiz; + ), z0 =1, z = ®(Az + Bu +b),
y=Cx,+d y=Cr+d

ML advantages of implicit/equilibrium/fixed point formulation:
bio-inspired

expressivity and ability to model 1/O behavior, instead of modalities
simplicity and memory efficiency

accuracy

00000

input-output robustness



Motivation #1: Generalizing FF to fully-connected synaptic matrices
™t = ®(Ajx’ + Biu+b;) <<= 1 = ®(Azx + Bu +b), where A has
upper diagonal structure.

Aupper—diagonal = E :> Acomplete =

Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN

A A A
UT» 1 —= X3 —| X3 | Tg =Y
|1 T T i

! = ®(Az' + Bu+b) = lim; .. 2" = z* solution to the INN




Recent literature on implicit NNs

© 6 o o

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. SIAM Journal on
Mathematics of Data Science, 3(3):930-958, 2021. 4

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591

M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL
https://arxiv.org/abs/2010.01732

A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A
panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In

International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=p-NZluwghl4

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit
depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print
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https://arxiv.org/abs/2103.12803

Implicit Neural Networks (INNs)

@ Training INNs:
@ loss function £
@ training data (u;, y;)
© training optimization problem

N
i=1

N
min Zﬁ Ui, Cx; + ¢
A,B,C,b,x — (5, Cxi + )
1=

€T; = @(ASCZ + Bu; + b)

o Efficient back-propagation through implicit differentiation
@ Stochastic gradient descent: at each step solve x = ®(Ax + Bu +b).



Robustness of INNs

Adversarial examples: small input change can cause large output change!

0.005

Robustness measures: input-output Lipschitz constant
@ /s-norm Lipschitz constant: not informative in many scenarios

@ /s-norm Lipschitz constant: large-scale input wrt wide-spread perturbations




Robustness of INNs

Adversarial examples: small input change can cause large output change!

0.005 x

Robustness measures: input-output Lipschitz constants

@ NP-hard to compute exactly

@ Approximations provide only coarse certified robustness guarantees




Training INNs

Training optimization problem:

N
A,mB}ICl',b ; E(y’u Cw’L + C) + A Llpu~>y
x; = <I>(Axi + Bu; + b)
foo(A) <7y

@ )\ > 0 is a regularization parameter

@ v < 1 is a hyperparameter

Parametrization of ., constraint:

poo(A) <~ <<= ITst. A=T —diag(|T|1,) + vIn.




Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

.

—| B

Acom plete

> — >
:> Ad ropout

@ Adropout 1S @ principal submatrix of Acomplete

o Noo(Adropout) S Noo(Acomplete)

o Well-posedness of original INN implies well-posedness of INN with subset of neurons
e Promotes compression and sparsity of overparametrized models



Numerical Experiments

e MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)

@ implicit neural network order: n = 100

Glolstd]alglal o
Oololsidlalalal ¢
OlolsiHlalalal ¢
OlojsiHlalglal ¢



Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits

] 1.0
"l e ® =10 — A=10"!
16 1 ® =10 A= 102
® =100 084 — A=10-25
144 A=10"% A=10"%
A=10"4 A=10"*
3121 A=107° 061 A=10"5
5 ® =0 g — =0
g{ @ ° @ Al <095 E — Al <095
o g
<
g s 0.4 MON
6
0.2 4
4
24 %
T . T — 0.0 T T T T
10% 10 10 10° 0.0 0.1 0.2 0.3 0.4 0.5
Lipschitz constant l amplitude of perturbation

@ Pareto-optimal curve @ Clean performance vs. robustness



Mixed monotonicity for INN reachability

Idea: mixed monotone systems theory for reachability analysis of RNN dynamics

é |

u

Embedded INN

INN with u € [u, U]

o siaremen, =0 (lape fapee] (][ 120] [+ []):

et Y- e[

8




Training provably robust INNs

Training INNs
O training data (W, %),
@ loss function £

© optimization problem

N
min ;( RIL(Y,G) + RL(Y, T,

z' = p(Ax’ + Bu' +b), y'=Cz'+d,

y' = [T'C] 2’ + [T°C] 7" + T, fhoo -1 (A) <.
where k € [0,1] and v < 1 are hyperparameters.

@ Stochastic gradient descent: at each step solve 2 fixed-point problems

@ Backpropagation through fixed-point equations



Numerical Experiments

Robustness of INNs

@ Tradeoff between accuracy and robustness

@ implicit neural network order: n. = 100 vs 5-layer feedforward network

Certified robustness vs perturbation on MNIST

N o
'S >

e
o

Certified robust test accuracy

—— INN w/ MM
—— FFNN w/ IBP
INN w/o MM
——- FFNN w/o IBP

0.05

0.10 0.15 0.20 0.25

{ amplitude of perturbation

0.30

Empirical robust test accuracy

Empirical robustness vs perturbation on MNIST
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@ Scientific and engineering problems from neural networks

© Contraction theory
@ Banach contractions and infinitesimal counterparts

© Application to recurrent neural networks and implicit ML models
@ Implicit neural networks in machine learning

@ Conclusions and future research



Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory, monotone operator theory, convex optimization

o effective methodologies to tackle control, optimization and learning problems
e extensions to network dynamics

@ from Euclidean to non-Euclidean norms
© application to recurrent and implicit neural networks

e existence, uniqueness, and computation of fixed-points
e robustness analysis and robust training via Lipschitz bounds
o https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

From Contracting Dynamics to Contracting Algorithms:
@ implicit graph neural architectures
@ bio-inspired Hebbian learning

© robustness of implicit models


https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

Supplementary slides



Background on Infinitesimal Contraction Theorem

@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1

© the dynamics & = F(z) := —x + G(x) is infinitesimally contracting

o the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= osLip(F) < —¢ <= osLip(G) <1 —¢, for
c>0
e in (£, P), osLip(F) < —c is usual Krasovskii: PJ(z)+ J(z)" P < —2¢P for all x and J = DF
@ (2) = (1): known in monotone operator theory (page 15 “forward step method" in)
o vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)

= (1) for any norm (with proper osLip definitions) and the converse direction (1) =
(2) for £, P. Theorem 3 in? proves the one-sided Lim Lemma (see next slide).

lE. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021. URL http://arxiv.org/abs/2106.03194


http://arxiv.org/abs/2106.03194

Euclidean vs. non-Euclidean contractions

Most foundational results in systems theory are based on /5 linear-quadratic theory;
their ¢1/{~ analogs are yet to be worked out.
Advantages of non-Euclidean approach

@ computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas /5
constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.
A. Rantzer. Scalable control of positive systems. European Journal of Control, 24:72-80, 2015. ¢

@ guaranteed robustness to structural perturbations: £+, contractivity ensures:

@ absolute contractivity = with respect to a class of activation functions
@ total contractivity = remove any node and all its incident connections
@ connective contractivity = remove any set of edges

© adversarial input-output analysis
loo better suited for the analysis of adversarial examples than ¢5: in high dimensions, large
inner product between two vectors is possible even when one vector has small /o, norm

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learr
Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6572


http://dx.doi.org/10.1016/j.ejcon.2015.04.004
https://arxiv.org/abs/1412.6572

Literature on recurrent NN ODEs

@ J. J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984. ©

@ E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. /[EEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 41(2):171-174, 1994. &

© M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of
neural networks. |[EEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 41(7):491-494, 1994. ¢

© Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. |[EEE Transactions on
Neural Networks, 7(4):996-1006, 1996. 4

© H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability
analysis for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370,
2001. @

@ W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure
approach. Nonlinear Dynamics, 55:55-65, 2009. 4

@ H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time
recurrent neural networks. |[EEE Transactions on Neural Networks and Learning Systems, 25(7):
1229-1262, 2014. 4
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