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§2. Chapter #1: Contraction theory

§3. Chapter #2: Time-varying contracting dynamics and convex optimization
§4. Chapter #3: Optimization-based control

§5. Conclusions

3/42



Chapter #1: Contraction theory

& - ’// >

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J
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Chapter #2: Time-varying convex optimization via contracting dynamics

2" (0(t))
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Chapter #3: Optimization-based control

J, w(t)

@ = Optimizer(u, y) . Plant 4
|—> =0p Y (linear, stable, fast)

optimization via dynamical systems
online time-varying optimization, optimization-based feedback control, ... J
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Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. €

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972. d

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):

683-696, 1998. ¢
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http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

@ Incomplete list of active scientists
Aminzare, Andrieu, Arcak, Astolfi, Chung, Coogan, Corless, Dall’Anese, Di Bernardo,
Giesl, Kawano, Manchester, Margaliot, Martins, Ngoc, Pavel, Pavlov, Praly, Pham,
Proskurnikov, Russo, Sepulchre, Slotine, Sontag, Tarbouriech, ...

@ Surveys and Perspectives:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In |EEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. 4

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of

complex networks via contraction theory. In Complex Systems and Networks. Springer, 2016. ¢

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and

learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. €

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction
metrics. Journal of Computational Dynamics, 10(1):1-47, 2023. @

A. Davydov and F. Bullo. Perspectives on contractivity in control, optimization and learning. /[EEE Control
Systems Letters, 8:2087-2098, 2024a. d
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http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
http://dx.doi.org/10.1016/j.arcontrol.2021.10.001
http://dx.doi.org/10.3934/jcd.2022018
http://dx.doi.org/10.1109/LCSYS.2024.3436127

Figure: Stefan Banach (Krakow, 30 Mar 1892 — Lviv, 31 Aug
1945) was a self-taught Polish mathematician

1920: doctoral thesis on Banach spaces @ University of Lviv
1920-1922: Assistant Professor @ Lwow Polytechnic

1922: Full Professor @ Lwow Polytechnic

1924: Member of the Polish Academy of Arts and Sciences
1929: Founder, Lvov School of Mathematics

1931: first functional analysis: “Theory of Linear Operations”
1939-45: dark years

S. Banach. Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales. Fundamenta

Mathematicae, 3(1):133-181, 1922. @
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http://dx.doi.org/10.4064/fm-3-1-133-181

Ongoing education and research on Contraction Theory

Contraction Theory @ Textbook: Contraction Theory for Dynamical Systems, Francesco
for D ical Syst Bullo, rev 1.2, Aug 2024. (PDF freely available)
or Uynamical systems https:/ /fbullo.github.io/ctds

@ Tutorial slides: https://fbullo.github.io/ctds

@ Youtube lectures: " Minicourse on Contraction Theory”
https://youtu.be/FQV5PrRHks8 6 lectures, total 12h

Francesco Bullo

@ upcoming 2025 IEEE CDC Tutorial Session on " Contraction Theory in
" Continuous improvement is better than Control, Optimization, and Learning”
delayed perfection” Mark Twain
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https://fbullo.github.io/ctds
https://fbullo.github.io/talks/2023-09-FBullo-ContractionTheory-Tutorial.pdf
https://youtu.be/FQV5PrRHks8

Examples of contracting dynamics:
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with
symmetric weights. /[EEE Control Systems Letters, 7:1724-1729, 2023. 4
@ R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. [EEE
Control Systems Letters, 7:1566-1571, 2023, 4

Applications to machine learning:
@ S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. @
@ S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended
linearization and global guarantees. In Advances in Neural Information Processing Systems, 2024. @

Application to neuroscience:
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse
reconstruction. Neural Computation, 36(6):1163-1197, 2024. d

Applications to optimization-based control:

@ A. Davydov and F. Bullo. Exponential stability of parametric optimization-based controllers via Lur'e contractivity.
IEEE Control Systems Letters, 8:1277-1282, 2024b. g

@ Z. Marvi, F. Bullo, and A. G. Alleyne. Control barrier proximal dynamics: A contraction theoretic approach for
safety verification. /EEE Control Systems Letters, 8:880-885, 2024. d

@ Y. Chen, F. Bullo, and E. Dall'Anese. Sampled-data systems: Stability, contractivity and single-iteration suboptimal
MPC. |EEE Transactions on Automatic Control, 2025. 4. Submitted

@ A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A
contraction and equilibrium tracking approach. IEEE Transactions on Automatic Control, 70(11), 2025. 4. To

appear
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http://dx.doi.org/10.1109/LCSYS.2023.3278250
http://dx.doi.org/10.1109/LCSYS.2023.3275169
http://dx.doi.org/10.48550/arXiv.2106.03194
http://dx.doi.org/10.48550/arXiv.2402.08090
http://dx.doi.org/10.1162/neco_a_01657
http://dx.doi.org/10.1109/LCSYS.2024.3408110
http://dx.doi.org/10.1109/LCSYS.2024.3402188
http://dx.doi.org/10.48550/arXiv.2505.18336
http://dx.doi.org/10.1109/TAC.2025.3576043

§1. A story in three chapters

§2. Chapter #1: Contraction theory
@ Basic notions on finite-dimensional vector spaces
@ Examples and selected properties
@ On error and speed

§3. Chapter #2: Time-varying contracting dynamics and convex optimization
@ Equilibrium tracking
@ Dynamic regret

§4. Chapter #3: Optimization-based control
@ Gradient controller
o Safety filters

§5. Conclusions
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Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm p(-)

One-sided Lipschitz constant  (~ maximum expansion rate)

osLip(F) = sup, pu(DF(x))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az +a
= AP+ AP < 2(P

< aii—i-Z]aij]SE
J#i

osLipy p(Fa) = p2,p(A) <

¢
osLip(Fa) = poo(A) < ¢

IA
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Banach contraction theorem for continuous-time dynamics
If —c:= osLip(F) < 0, then
@ F is infinitesimally contracting:  ||z(¢t) —y(®)|| < e |zo — wol|

@ F has a unique, glob exp stable equilibrium x*

ct
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Example contracting systems

@ gradient descent flows under strong convexity assumptions
(proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)

@ neural network dynamics under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)

© Lur'e-type systems under assumptions on nonlinearity and LMI conditions
(Lipschitz, incrementally passive, monotone, conic, etc)

@ interconnected systems under contractivity and small-gain assumptions
(Hurwitz Metzler matrices, network small-gain theorem, etc)

© data-driven learned models (imitation learning)

O feedback linearizable systems with stabilizing controllers

@ incremental ISS systems

© nonlinear systems with a locally exponentially stable equilibrium

are contracting with respect to appropriate Riemannian metric
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Example #1: Gradient dynamics for strongly convex function

Given differentiable, strongly convex f : R” — R with parameter v > 0, gradient dynamics

i = Fo(a) = —Vf(a)

Fg is infinitesimally contracting wrt || - |2 with rate v
unique globally exp stable point is global minimumJ
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Convexity & Contractivity Theorem: For differentiable f : R® — R, equivalent statements:
Q f is strongly convex with parameter v (and minimum z*)

@ —Vf is v-strongly infinitesimally contracting (with equilibrium z*)

Euler Discretization Theorem for Contracting Dynamics
Given norm || - || and differentiable and Lipschitz F : R* — R", equivalent statements

© & = F(x) is infinitesimally contracting

@ there exists @ > 0 such that ;1 = x; + aF(xy) is contracting

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity.” R.T. Rockafellar
R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. &
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http://dx.doi.org/10.48550/arXiv.2106.03194

Example #2: Parametric convex optimization and contracting dynamics

Many convex optimization problems can be solved with contracting dynamics J

& = F(z,0)

Convex Optimization | Contracting Dynamics

Unconstrained m%{n f(z,0) &= —-V,f(x,0)

rER™
min  f(x,0)

Constrained | z€R" & = —x + Projyg)(x — vV f(z,0))
st. zeX()

Composite miRn f(z,0) +g(x,0) | & = —x+prox, , (v — vV f(z,0))
zeR™
min  f(z,0) = —Vaf(z,0)—ATA

Equality zeR™ v f(@,9) ’

st. Az =b(0) A=Az —b(0)
min  f(z,0) i = —Vf(z,0) — ATVM, ) (Az + 7\

Inequality zeR” €r f(l’, ) ’y,b(@)( T+ )7

st. Az < b(0) A =7(=A+ VM, 40)(Az + yN))
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Example #3: Systems in Lur'e form

z = Ax + Bu

)

u= V() <

For A € R"*™ and B € R™*", nonlinear system in Lur’e form
&= Ax+ BY(x) =:FpLyre(z)

where ¥ : R™ — R™ is described by an incremental multiplier matrix M

For P = PT > 0, following statements are equivalent:

@ Frure infinitesimally contracting wrt || - ||2,p with rate nn > 0 for each W described by M,

PA+ATP+2pP PB

>
@ )\ > 0 such that BTp O

+ M <0
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Example #4: Firing-rate networks for implicit ML via £

t=—x+ ®(Ax + Bu+0b) (recurrent NN)
- Y x = ®(Ax + Bu+1b) (implicit NN)
zr1 = (1 — o)z + a®(Azy + Bu+b) (Euler discrt.)

Hoo(A) < 1 (i.e., ai; + Z#i laij| <1 for all i)

e recurrent NN is infinitesimally contracting with rate 1 — p(A)+

o implicit NN is well posed
1

e Euler discretization is contracting at o* = (1 — min;(a;;)—)~
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§1. A story in three chapters

§2. Chapter #1: Contraction theory

@ On error and speed

§3. Chapter #2: Time-varying contracting dynamics and convex optimization
§4. Chapter #3: Optimization-based control

§5. Conclusions
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Speed and error

osLip(F) = —c <0 and z* is equilibrium

—---="""error: ||z — x|
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The two canonical Lyapunov functions

Lyapunov functions. If osLip(F) = —¢ < 0 and F(z*) = 0,, then
@ two global Lyapunov functions:
x|l — ¥ (error)
z — ||F(z)] (speed)
@ for each z(0) = xp and t € R>,
lz(t) —a*|| < e [lwo — 27| (error)
IF@)Il < e [[F(zo)ll (speed) |

Additionally, cost : R* — R such that

x* = argmin cost(x) and Lcost = Lip(cost)
xX

23/42



Cumulative error and curve length

osLip(F) = —c < 0 and z* is equilibrium

OO

curve length = /
0

speed

- 00
_----~“cumulative error = / distance
Jo

2(0)
curve length(z(p o)) = / [IF(x(t))] dt <
0
cumulative error (2, «)) :/ lx(t) — || dt <
0

cumulative cost(zg o)) = / cost(z(t)) — cost(z*)dt <
0

—[[F(zo)ll

~[lzo — ™|

Lc
== ||mo — z*|
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§3. Chapter #2: Time-varying contracting dynamics and convex optimization
@ Equilibrium tracking
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Parametric and time-varying convex optimization

Parametric and time-varying convex optimization
© parametric contracting dynamics for parametric convex optimization

min&(z,0) <= &=F(z,0) e i )

@ contracting dynamics for time-varying strongly-convex optimization

min & (z,0(t)) <= @ =F(z,0(t)) ey 1 (0(8))
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Equilibrium tracking and tube invariance

¢ .
sup [|0(7)||
C” r¢lo,t]

#(t) = F(x(t),0(2))

x*(0(t)) = equilibrium trajectory

If ||6(t)|| <6 for all ¢,

14
z(t) — the tube with center 2*(6(¢)) and radius =
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Equilibrium tracking

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ 0 C R?

e contractivity wrt z: osLip,(F) < —c<0
<

e Lipschitz wrt 6: Lipy(F) < ¢

Theorem: Equilibrium tracking for contracting dynamics.

The equilibrium map z*(+) is Lipschitz with constant . and
—ct ¢ )
speed : IF(z(t),008))| < e ||F(z0,60)| + - Sli}g 1160(7)]]

? .
error lz(t)—2*(0(t)|| < e ||zo—z*(60)|| + =2 sr;gllt‘)(f)ll
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Exact equilibrium tracking with feedforward control

Time-varying contracting dynamics with feedforward prediction

i(t) = F@(t),0(t) — (D:F(2(t),0(1) DoF(x(),6(2)) 6(t)

Asymptotically exact equilibrium tracking
speed : |F(=(2),0(t))]]

1 »=Lin.(F) ¢, .
eror: Ja(t) — @@ < —e|F(zo,60)l < Ze g — 2*(0)

IN

e_CtH F(.CIZQ, 90) H

Eg.,if F=—-V,f, then i =—V,f(z,0)+ (Hess f(z, 0))_1D9sz(:n, 0)6
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§3. Chapter #2: Time-varying contracting dynamics and convex optimization
@ Equilibrium tracking
@ Dynamic regret
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Dynamic regret

cumulative tracking error / Hm — " ‘dt

dynamic regret(x[oyT],e[o?T}) = /Ocost( (t),6(t)) — cost(z*(0(t)),0(t))dt
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Dynamic regret

For parameter-dependent vector field F : R” x R? — R™ and differentiable 6 : R>g — © C R?

(t)
@ contractivity wrt z: osLip,.(F)
o Lipschitz wrt 0: Lipy(F) <

< —c<0
4

Error and regret estimate
cumulative tracking error(mo,H[o’T})

dynamic regret (1‘0, 9[07:@)

1 /
E”xo — x*(QO)H + 2 curve length (Q[O,T])

£cost cumulative tracking error (1‘0, 9[07T])

(’)(1 + curve Iength(G[O’T]))
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§4. Chapter #3: Optimization-based control
@ Gradient controller
o Safety filters
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Motivation: Optimization-based control

©000O0CO0

online feedback optimization
control barrier functions
model predictive control
distributed optimization

imitation learning

R
T o5

parametric QP. YALMIP + Multi-Parametric Toolbox

Transportation systems
[Bianchin et al '20]
[Cothren et al’ 22

/aﬁ

Robotics

and vehicles *\\

w Q Feedback
optimization

[Lawrence et al'21]

[Terpin et al '21]

[Cothren et al '22]

Compressor stations

[Zagorowska et al'23]
Epidemic control

=
Q \ [Bianchin et al’22] @ P
o ©

Power
systems

[Jokic et al'09]
[Bolognam-zampler\'w]
[Hirata-Hespanha-Uchida’14]
[Lietal14]

[Dall’Anese et al'15]
[Bernstein et al'15]
[Gan-Low’16]
[Dall’Anese-Simonetto’18]
[Menta et al'18]

[Ortmann et al’20]

[Picallo et al'22]

... and many others

Online feedback optimization. Courtesy of Emiliano Dall’Anese.
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Application: Online feedback optimization

l w(t)

U Plant Y

’_‘> @ = Optimizer(u, y) (linear, stable, fast)

min costy (u) + costa(y) . @ = Optimizer(u, y)
subj. to y = Plant(u, w(t)) y = Plant(u, w(t))
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Example #5: Gradient controller

Online feedback optimization
u*(w(t)) = argmin @(u) +Y(y(t)) (c-strongly convex ¢, convex 1))
u
subj to  y(t) = Yyu + Y,w(t)
gradient controller

i = Foradc(u,w) = =V (p(u) + ¥(y(t)) = —Vé(u) — Y, Vi (You + Yyw)

Contractivity of the gradient controller —- eq. tracking + regret estimate

Ly
O u(t) — tube with center u*(w(t)) and radius 3 S [l (7)]
<t

oty
c2

@ dynamic regret < %”uo — u*(wo)| + curve length (wo,77)
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Application to safety filters

Given & = F(z)+ G(z)u with nominal controller unom(z)
Safe control design: render forward invariant safe set {z € R" | hj(z) >0, i€ {1,...,k}}
Safety filter (QP with linear inequalities)
u*(z) = argmin  [|u — unom(x)||3
st. hi(z,u) > —a(hi(z)), ie{l,....k} (safety constraints)
lullo < @ (actuator constraints)

Relax safety constraints to log barriers 4 adopt projected gradient dynamics:

u(t) = —u(t) + Projj, Sﬂ(u(t) = Vates (u(t), x(t))) + FeedForward,, (u(t), z(t))

where &, (u, ) = ||u — tnom ()3 — Zlog (Vh (F(z) + G(z)u) + a(hﬂx)))
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Results: Numerical simulations

Collision avoidance with 4 robots

U = Fprox(u, ) U = Fprox(u, ) + FF(u, x)
Trajectories without Feedforward Trajectories with Feedforward
2 2
—— with FF
1 11 —— without FF
S 0 o
& s 0]
5.0 7.5 10.0 12.5 15.0
1NN T T T /T
~1
9 b
i >
0.0
-2 0 2 -2 -1 0 1 2 25 50 75 100 125 150
1 ) t
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Results: Robotic experiments in the Robotarium

No feedforward

With feedforward

—— with feedforward
—— without feedforward

15

Videos:

@ experiment without feedforward

@ experiment with feedforward

Code: github link

contracting systems as controllers =
promising approach to optimization-based control
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https://motion.me.ucsb.edu/talks/Robotarium-no-feedforward.mp4
https://motion.me.ucsb.edu/talks/Robotarium-with-feedforward.mp4
https://github.com/davydovalexander/time-varying-convex
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Conclusions

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

Ongoing work
@ catalog of contracting dynamics with sharp constants
@ local, weak, k-, and other generalizations of contractivity
© optimization-based control designs: MPC, CBFs, ...

@ ML and biologically-inspired neural networks

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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